Advertisement

Molecular Neurobiology

, Volume 56, Issue 1, pp 583–594 | Cite as

Taurine Protects from Pentylenetetrazole-Induced Behavioral and Neurochemical Changes in Zebrafish

  • Barbara D. FontanaEmail author
  • Paola R. Ziani
  • Julia Canzian
  • Nathana J. Mezzomo
  • Talise E. Müller
  • Matheus M. dos Santos
  • Vania L. Loro
  • Nilda V. Barbosa
  • Carlos F. Mello
  • Denis B. RosembergEmail author
Article

Abstract

Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures, which culminate in various neurobehavioral and neurochemical changes. Taurine (TAU) is an amino sulfonic acid which acts an endogenous inhibitory neuromodulator. Moreover, TAU displays intrinsic antioxidant activity, contributing to its beneficial actions in the CNS. Here, we evaluated whether TAU pretreatment protects from pentylenetetrazole (PTZ)-induced behavioral alterations and oxidative stress-related parameters in zebrafish brain tissue. Fish were pretreated with 42, 150, and 400 mg/L TAU (40 min) and further exposed to 10 mM PTZ (20 min) to analyze the seizure-like behaviors. As a positive control, another group was previously treated with 75 μM diazepam (DZP). Afterwards, biochemical experiments were performed. All TAU concentrations tested decreased seizure intensity in the first 150 s. Importantly, 150 mg/L TAU attenuated seizure-like behavioral scores, decreased seizure intensity, reduced the frequency of clonic-like seizures (score 4), and increased the latency to score 4. TAU (150 mg/L) also prevented oxidative stress in PTZ-challenged fish by decreasing lipid peroxidation and protein carbonylation and preventing changes on nonprotein thiol levels. No significant changes were observed in MTT assay and LDH activity. Differently than observed in DZP group, TAU did not affect the overall swimming activity of fish, suggesting different mechanisms of action. Collectively, we show that TAU attenuates PTZ-induced seizure-like behaviors and brain oxidative stress in zebrafish, suggesting the involvement of antioxidant mechanisms in neuroprotection.

Keywords

Epilepsy Seizure-like behaviors Neuroprotection Pentylenetetrazole Oxidative stress Zebrafish 

Notes

Author Contributions

All authors contributed to the preparation of the manuscript and approved the final version.

Funding Information

This study received financial support and fellowships from Conselho Nacional de Pesquisa e Tecnologia (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). NJM and BDF were recipients of CAPES fellowships. DBR, CFM, NVB, and VLL receive CNPq research productivity grants. The funders had no influence on the study design, the collection, analysis, and interpretation of data, as well as writing and submission of this manuscript.

Compliance with Ethical Standards

All experimental procedures were approved by the Ethics Commission on Animal Use of the Federal University of Santa Maria (protocol number 8707070316).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A, Epilepsy Foundation of America Working G (2005) Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia 46(9):1426–1441.  https://doi.org/10.1111/j.1528-1167.2005.31405.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mussulini BH, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, Rosemberg DB, Dias RD et al (2013) Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One 8(1):e54515.  https://doi.org/10.1371/journal.pone.0054515 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Afrikanova T, Serruys AS, Buenafe OE, Clinckers R, Smolders I, de Witte PA, Crawford AD, Esguerra CV (2013) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8(1):e54166.  https://doi.org/10.1371/journal.pone.0054166 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    McLin JP, Steward O (2006) Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur J Neurosci 24(8):2191–2202.  https://doi.org/10.1111/j.1460-9568.2006.05111.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Surges R, Thijs RD, Tan HL, Sander JW (2009) Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol 5(9):492–504.  https://doi.org/10.1038/nrneurol.2009.118 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pineda R, Beattie CE, Hall CW (2011) Recording the adult zebrafish cerebral field potential during pentylenetetrazole seizures. J Neurosci Methods 200(1):20–28.  https://doi.org/10.1016/j.jneumeth.2011.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gomes TKC, Oliveira SL, Ataíde TR, Filho EMT (2011) The role of the ketogenic diet on oxidative stress present in experimental epilepsy. J Epilepsy Clin Neurophysiol 17(2):54–64CrossRefGoogle Scholar
  8. 8.
    Loscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20(5):359–368.  https://doi.org/10.1016/j.seizure.2011.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768.  https://doi.org/10.1016/j.neuroscience.2004.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tollner K, Twele F, Loscher W (2016) Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures. Epilepsy Behav 57(Pt A):95–104.  https://doi.org/10.1016/j.yebeh.2016.01.032 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Alfaro JM, Ripoll-Gomez J, Burgos JS (2011) Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur J Neurosci 33(7):1252–1255.  https://doi.org/10.1111/j.1460-9568.2011.07622.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    White HS (1997) Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 38(Suppl 1):S9–S17CrossRefGoogle Scholar
  13. 13.
    Kundap UP, Kumari Y, Othman I, Shaikh MF (2017) Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical and behavioral approach. Front Pharmacol 8:515.  https://doi.org/10.3389/fphar.2017.00515 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Torres-Hernandez BA, Del Valle-Mojica LM, Ortiz JG (2015) Valerenic acid and Valeriana officinalis extracts delay onset of pentylenetetrazole (PTZ)-induced seizures in adult Danio rerio (zebrafish). BMC Complement Altern Med 15:228.  https://doi.org/10.1186/s12906-015-0731-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greenwood RS (2000) Adverse effects of antiepileptic drugs. Epilepsia 41(Suppl 2):S42–S52CrossRefGoogle Scholar
  16. 16.
    Vitvitsky V, Garg SK, Banerjee R (2011) Taurine biosynthesis by neurons and astrocytes. J Biol Chem 286(37):32002–32010.  https://doi.org/10.1074/jbc.M111.253344 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72(1):101–163CrossRefGoogle Scholar
  18. 18.
    Wu JY, Chen W, Tang XW, Jin H, Foos T, Schloss JV, Davis K, Faiman MD et al (2000) Mode of action of taurine and regulation dynamics of its synthesis in the CNS. Adv Exp Med Biol 483:35–44.  https://doi.org/10.1007/0-306-46838-7_4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosemberg DB, Braga MM, Rico EP, Loss CM, Cordova SD, Mussulini BH, Blaser RE, Leite CE et al (2012) Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol. Neuropharmacology 63(4):613–623.  https://doi.org/10.1016/j.neuropharm.2012.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJG, Rosemberg DB (2017) Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 83:525–539.  https://doi.org/10.1016/j.neubiorev.2017.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu JY, Tang XW, Tsai WH (1992) Taurine receptor: kinetic analysis and pharmacological studies. Adv Exp Med Biol 315:263–268CrossRefGoogle Scholar
  23. 23.
    van Gelder NM, Koyama I, Jasper HH (1977) Taurine treatment of spontaneous chronic epilepsy in a cat. Epilepsia 18(1):45–54CrossRefGoogle Scholar
  24. 24.
    Carruthers-Jones DI, van Gelder NM (1978) Influence of taurine dosage on cobalt epilepsy in mice. Neurochem Res 3(1):115–123CrossRefGoogle Scholar
  25. 25.
    Izumi K, Donaldson J, Minnich J, Barbeau A (1973) Ouabain-induced seizures in rats: modification by melatonin and melanocyte-stimulating hormone. Can J Physiol Pharmacol 51(8):572–578CrossRefGoogle Scholar
  26. 26.
    Hayashi T (1959) The inhibitory action of beta-hydroxy-gamma-aminobutyric acid upon the seizure following stimulation of the motor cortex of the dog. J Physiol 145(3):570–578CrossRefGoogle Scholar
  27. 27.
    Dinday MT, Baraban SC (2015) Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome (1,2,3). eNeuro 2(4). doi: https://doi.org/10.1523/ENEURO.0068-15.2015
  28. 28.
    Gupta P, Khobragade SB, Shingatgeri VM (2014) Effect of various antiepileptic drugs in zebrafish PTZ-seizure model. Indian J Pharm Sci 76(2):157–163PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86.  https://doi.org/10.1089/zeb.2012.0861 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB (2018) The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp Neurol 299(Pt A):157–171.  https://doi.org/10.1016/j.expneurol.2017.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23(4):341–346.  https://doi.org/10.1002/nbm.1465 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, Portugues R, Lacoste AM et al (2015) Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 12(11):1039–1046.  https://doi.org/10.1038/nmeth.3581 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14(10):721–731.  https://doi.org/10.1038/nrd4627 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rosemberg DB, da Rocha RF, Rico EP, Zanotto-Filho A, Dias RD, Bogo MR, Bonan CD, Moreira JC et al (2010) Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebrafish brain. Neuroscience 171(3):683–692.  https://doi.org/10.1016/j.neuroscience.2010.09.030 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fontana BD, Meinerz DL, Rosa LV, Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Filho GL et al (2016) Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol Biochem Behav 141:18–27.  https://doi.org/10.1016/j.pbb.2015.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Rosemberg DB (2016) The role of taurine on anxiety-like behaviors in zebrafish: a comparative study using the novel tank and the light-dark tasks. Neurosci Lett 613:19–24.  https://doi.org/10.1016/j.neulet.2015.12.037 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M et al (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214(2):277–284.  https://doi.org/10.1016/j.bbr.2010.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A et al (2013) Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 236(1):258–269.  https://doi.org/10.1016/j.bbr.2012.08.041 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N et al (2011) Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 6(3):e17597.  https://doi.org/10.1371/journal.pone.0017597 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rosa LV, Ardais AP, Costa FV, Fontana BD, Quadros VA, Porciuncula LO, Rosemberg DB (2018) Different effects of caffeine on behavioral neurophenotypes of two zebrafish populations. Pharmacol Biochem Behav 165:1–8.  https://doi.org/10.1016/j.pbb.2017.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zenki KC, Mussulini BH, Rico EP, de Oliveira DL, Rosemberg DB (2014) Effects of ethanol and acetaldehyde in zebrafish brain structures: an in vitro approach on glutamate uptake and on toxicity-related parameters. Toxicol in Vitro 28(5):822–828.  https://doi.org/10.1016/j.tiv.2014.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175PubMedPubMedCentralGoogle Scholar
  43. 43.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  44. 44.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77CrossRefGoogle Scholar
  46. 46.
    Nunes ME, Muller TE, Braga MM, Fontana BD, Quadros VA, Marins A, Rodrigues C, Menezes C et al (2017) Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol Neurobiol 54(6):3925–3934.  https://doi.org/10.1007/s12035-016-9919-x CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Muller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler AC, Carvalho FB, de Freitas CM et al (2017) Sodium selenite prevents paraquat-induced neurotoxicity in zebrafish. Mol Neurobiol 55:1928–1941.  https://doi.org/10.1007/s12035-017-0441-6 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431CrossRefGoogle Scholar
  49. 49.
    Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228(2):349–351.  https://doi.org/10.1006/abio.1995.1362 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang H, Tong J, Bi Y, Wang C, Guo L, Lu Y (2013) Evaluation of mercury mediated in vitro cytotoxicity among cell lines established from green sea turtles. Toxicol in Vitro 27(3):1025–1030.  https://doi.org/10.1016/j.tiv.2013.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    de Almeida LM, Leite MC, Thomazi AP, Battu C, Nardin P, Tortorelli LS, Zanotto C, Posser T et al (2008) Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats. Arch Biochem Biophys 480(1):27–32.  https://doi.org/10.1016/j.abb.2008.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Oliveira IJ, Molz S, Souza DO, Tasca CI (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22(3):335–344CrossRefGoogle Scholar
  53. 53.
    Wang J, Sun P, Bao Y, Dou B, Song D, Li Y (2012) Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol in Vitro 26(1):32–41.  https://doi.org/10.1016/j.tiv.2011.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fontella FU, Cimarosti H, Crema LM, Thomazi AP, Leite MC, Salbego C, Goncalves CA, Wofchuk S et al (2005) Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 65(5):443–450.  https://doi.org/10.1016/j.brainresbull.2005.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  56. 56.
    Cunliffe VT (2016) Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures. J Neurosci Methods 260:91–95.  https://doi.org/10.1016/j.jneumeth.2015.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Duy PQ, Berberoglu MA, Beattie CE, Hall CW (2017) Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain. Neuroscience 349:118–127.  https://doi.org/10.1016/j.neuroscience.2017.02.032 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Macdonald RL, Barker JL (1977) Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature 267(5613):720–721CrossRefGoogle Scholar
  59. 59.
    Okada R, Negishi N, Nagaya H (1989) The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazol-induced seizures. Brain Res 480(1–2):383–387CrossRefGoogle Scholar
  60. 60.
    Dhir A (2012) Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci Chapter 9:Unit9.37.  https://doi.org/10.1002/0471142301.ns0937s58 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang CG, Kim SJ (2007) Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo. Ann Nutr Metab 51(4):379–386.  https://doi.org/10.1159/000107687 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Poleszak E, Socala K, Szopa A, Wrobel A, Szewczyk B, Kasperek R, Blicharska E, Nowak G et al (2011) Involvement of NMDA receptor complex in the anxiolytic-like effects of chlordiazepoxide in mice. J Neural Transm (Vienna) 118(6):857–864.  https://doi.org/10.1007/s00702-011-0585-x CrossRefGoogle Scholar
  63. 63.
    Chan CY, Sun HS, Shah SM, Agovic MS, Friedman E, Banerjee SP (2014) Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. Eur J Pharmacol 728:167–175.  https://doi.org/10.1016/j.ejphar.2014.01.025 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY (2005) Mode of action of taurine as a neuroprotector. Brain Res 1038(2):123–131.  https://doi.org/10.1016/j.brainres.2005.01.058 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Menzie J, Pan C, Prentice H, Wu JY (2014) Taurine and central nervous system disorders. Amino Acids 46(1):31–46.  https://doi.org/10.1007/s00726-012-1382-z CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Saransaari P, Oja SS (2008) Taurine in neurotransmission. In: Lajtha A, Vizi ES (eds) Handbook of neurochemistry and molecular neurobiology. Springer, USA, pp. 325–342CrossRefGoogle Scholar
  67. 67.
    Vezzani A, Schwarcz R (1985) A noradrenergic component of quinolinic acid-induced seizures. Exp Neurol 90(1):254–258CrossRefGoogle Scholar
  68. 68.
    Wilson CL, Maidment NT, Shomer MH, Behnke EJ, Ackerson L, Fried I, Engel J Jr (1996) Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 26(1):245–254CrossRefGoogle Scholar
  69. 69.
    Sejima H, Ito M, Kishi K, Tsuda H, Shiraishi H (1997) Regional excitatory and inhibitory amino acid concentrations in pentylenetetrazol kindling and kindled rat brain. Brain and Development 19(3):171–175CrossRefGoogle Scholar
  70. 70.
    Gaby AR (2007) Natural approaches to epilepsy. Altern Med Rev 12(1):9–24PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67(4):773–782CrossRefGoogle Scholar
  72. 72.
    Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr (2010) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214(2):157–171.  https://doi.org/10.1016/j.bbr.2010.05.031 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bailey J, Oliveri A, Levin ED (2013) Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res C Embryo Today 99(1):14–23.  https://doi.org/10.1002/bdrc.21027 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pringle A, Warren M, Gottwald J, Cowen PJ, Harmer CJ (2016) Cognitive mechanisms of diazepam administration: a healthy volunteer model of emotional processing. Psychopharmacology 233(12):2221–2228.  https://doi.org/10.1007/s00213-016-4269-y CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R (2017) Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuro-Psychopharmacol Biol Psychiatry 75:16–27.  https://doi.org/10.1016/j.pnpbp.2016.12.004 CrossRefGoogle Scholar
  76. 76.
    Baldwin DS, Aitchison K, Bateson A, Curran HV, Davies S, Leonard B, Nutt DJ, Stephens DN et al (2013) Benzodiazepines: risks and benefits. A reconsideration. J Psychopharmacol 27(11):967–971.  https://doi.org/10.1177/0269881113503509 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Weintraub SJ (2017) Diazepam in the treatment of moderate to severe alcohol withdrawal. CNS Drugs 31(2):87–95.  https://doi.org/10.1007/s40263-016-0403-y CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Junyent F, Utrera J, Romero R, Pallas M, Camins A, Duque D, Auladell C (2009) Prevention of epilepsy by taurine treatments in mice experimental model. J Neurosci Res 87(6):1500–1508.  https://doi.org/10.1002/jnr.21950 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Oja SS, Saransaari P (2007) Pharmacology of taurine. Proc West Pharmacol Soc 50:8–15PubMedPubMedCentralGoogle Scholar
  80. 80.
    Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613–745620.  https://doi.org/10.1155/2015/745613 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37(9):768–778.  https://doi.org/10.1016/j.tips.2016.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827(1):65–75.  https://doi.org/10.1016/j.jchromb.2005.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rao MS, Hattiangady B, Reddy DS, Shetty AK (2006) Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J Neurosci Res 83(6):1088–1105.  https://doi.org/10.1002/jnr.20802 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435CrossRefGoogle Scholar
  85. 85.
    Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA (2004) Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci Lett 357(2):83–86.  https://doi.org/10.1016/j.neulet.2003.10.080 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV et al (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66(4):612–619.  https://doi.org/10.1002/jnr.10027 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Shimada K, Jong CJ, Takahashi K, Schaffer SW (2015) Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol 803:581–596.  https://doi.org/10.1007/978-3-319-15126-7_47 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F (2010) Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62(1):185–193CrossRefGoogle Scholar
  89. 89.
    Furian AF, Rattmann YD, Oliveira MS, Royes LF, Marques MC, Santos AR, Mello CF (2009) Nitric oxide and potassium channels mediate GM1 ganglioside-induced vasorelaxation. Naunyn Schmiedeberg's Arch Pharmacol 380(6):487–495.  https://doi.org/10.1007/s00210-009-0469-x CrossRefGoogle Scholar
  90. 90.
    Mazhar F, Malhi SM, Simjee SU (2017) Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J Basic Clin Physiol Pharmacol 28(1):31–42.  https://doi.org/10.1515/jbcpp-2016-0034 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Pitkanen A (2002) Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. Epilepsy Res 50(1–2):141–160CrossRefGoogle Scholar
  92. 92.
    Calabrese EJ, Baldwin LA (2001) Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 22(6):285–291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences CenterFederal University of Santa MariaSanta MariaBrazil
  2. 2.Graduate Program in Biological Sciences: Toxicological BiochemistryFederal University of Santa MariaSanta MariaBrazil
  3. 3.Graduate Program in PharmacologyFederal University of Santa MariaSanta MariaBrazil
  4. 4.The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellUSA

Personalised recommendations