Advertisement

Molecular Neurobiology

, Volume 56, Issue 1, pp 490–501 | Cite as

Chronic Mild Stress Alters Kynurenine Pathways Changing the Glutamate Neurotransmission in Frontal Cortex of Rats

  • David Martín-Hernández
  • Hiram Tendilla-Beltrán
  • José L. M. Madrigal
  • Borja García-Bueno
  • Juan C. LezaEmail author
  • Javier R. CasoEmail author
Article

Abstract

Immune stimulation might be involved in the pathophysiology of major depressive disorder (MDD). This stimulation induces indoleamine 2,3-dioxygenase (IDO), an enzyme that reduces the tryptophan bioavailability to synthesize serotonin. IDO products, kynurenine metabolites, exert neurotoxic/neuroprotective actions through glutamate receptors. Thus, we study elements of these pathways linked to kynurenine metabolite activity examining whether antidepressants (ADs) can modulate them. Male Wistar rats were exposed to chronic mild stress (CMS), and some of them were treated with ADs. The expression of elements of the IDO pathway, including kynurenine metabolites, and their possible modulation by ADs was studied in the frontal cortex (FC). CMS increased IDO expression in FC compared to control group, and ADs restored the IDO expression levels to control values. CMS-induced IDO expression led to increased levels of the excitotoxic quinolinic acid (QUINA) compared to control, and ADs prevented the rise in such levels. Neither CMS nor ADs changed significantly the antiexcitotoxic kynurenic acid (KYNA) levels. The QUINA/KYNA ratio, calculated as excitotoxicity risk indicator, increased after CMS and ADs prevented this increase. CMS lowered excitatory amino acid transporter (EAAT)-1 and EAAT-4 expression, and some ADs restored their expression levels. Furthermore, CMS decreased N-methyl-D-aspartate receptor (NMDAR)-2A and 2B protein expression, and ADs mitigated this decrease. Our research examines the link between CMS-induced pro-inflammatory cytokines and the kynurenine pathway; it shows that CMS alters the kynurenine pathway in rat FC. Importantly, it also reveals the ability of classic ADs to prevent potentially harmful situations related to the brain scenario caused by CMS.

Keywords

Chronic mild stress Antidepressants Indoleamine 2,3-dioxygenase Kynurenine pathways Glutamate neurotransmission Frontal cortex 

Notes

Funding Information

Funding for this study was provided by the Instituto de Salud Carlos III (PI13/01102) and Fondos Europeos de Desarrollo Regional (FEDER) and the Ministerio de Economía, Industria y Competitividad (MINECO; SAF2016-75500-R), and CIBERSAM to JCL, including an Intramural Translational Project awarded to JRC from the CIBERSAM (SAM15PINT1514). BGB and JRC are postdoctoral Ramón y Cajal fellows (MINECO). HTB was funded by the CONACYT (Consejo Nacional de Ciencia y Tecnología, Mexico).

Compliance with Ethical Standards

Conflict of Interest

The authors provide full disclosure of any and all biomedical financial interests.

The authors declare that there are not conflicts of interest.

References

  1. 1.
    Marcus M, Yasamy MT, van Ommeren M, Chisholm D (2012) Depression, a global public health concern. WHO Department of Mental Health and Substance Abuse, pp 1–8Google Scholar
  2. 2.
    Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800.  https://doi.org/10.1016/S0140-6736(15)60692-4 CrossRefGoogle Scholar
  3. 3.
    Disease GBD, Injury I, Prevalence C (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602.  https://doi.org/10.1016/S0140-6736(16)31678-6 CrossRefGoogle Scholar
  4. 4.
    Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7(2):137–151.  https://doi.org/10.1038/nrn1846 CrossRefGoogle Scholar
  5. 5.
    Mrazek DA, Hornberger JC, Altar CA, Degtiar I (2014) A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013. Psychiatr Serv 65(8):977–987.  https://doi.org/10.1176/appi.ps.201300059 CrossRefGoogle Scholar
  6. 6.
    Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34.  https://doi.org/10.1038/nri.2015.5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    O'Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW et al (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209.  https://doi.org/10.1523/JNEUROSCI.5032-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403.  https://doi.org/10.1038/mp.2009.116 CrossRefGoogle Scholar
  9. 9.
    Dantzer R, O'Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36(3):426–436.  https://doi.org/10.1016/j.psyneuen.2010.09.012 CrossRefGoogle Scholar
  10. 10.
    Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354.  https://doi.org/10.1016/S0006-3223(99)00230-9 CrossRefGoogle Scholar
  11. 11.
    Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H et al (1992) Molecular diversity of the NMDA receptor channel. Nature 358(6381):36–41.  https://doi.org/10.1038/358036a0 CrossRefGoogle Scholar
  12. 12.
    Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221.  https://doi.org/10.1126/science.256.5060.1217 CrossRefGoogle Scholar
  13. 13.
    Liu T, Zhong S, Liao X, Chen J, He T, Lai S, Jia Y (2015) A meta-analysis of oxidative stress markers in depression. PLoS One 10(10):e0138904.  https://doi.org/10.1371/journal.pone.0138904 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Martin-Hernandez D, Bris AG, MacDowell KS, Garcia-Bueno B, Madrigal JL, Leza JC, Caso JR (2016) Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats. Neuropharmacology 103:79–91.  https://doi.org/10.1016/j.neuropharm.2015.11.029 CrossRefGoogle Scholar
  15. 15.
    O'Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3(1):32.  https://doi.org/10.1038/s41537-017-0037-1 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discov 16(7):472–486.  https://doi.org/10.1038/nrd.2017.16 CrossRefGoogle Scholar
  17. 17.
    Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36(9):2085–2117.  https://doi.org/10.1016/j.neubiorev.2012.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Patricio P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, Correia JS, Korostynski M et al (2015) Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology 40(2):338–349.  https://doi.org/10.1038/npp.2014.176 CrossRefGoogle Scholar
  19. 19.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Exp Ther 1(2):94–99.  https://doi.org/10.4103/0976-500X.72351 CrossRefGoogle Scholar
  20. 20.
    Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110.  https://doi.org/10.1159/000087097 CrossRefGoogle Scholar
  21. 21.
    Bravo L, Mico JA, Rey-Brea R, Perez-Nievas B, Leza JC, Berrocoso E (2012) Depressive-like states heighten the aversion to painful stimuli in a rat model of comorbid chronic pain and depression. Anesthesiology 117(3):613–625.  https://doi.org/10.1097/ALN.0b013e3182657b3e CrossRefGoogle Scholar
  22. 22.
    Martin-Hernandez D, Caso JR, Bris AG, Maus SR, Madrigal JL, Garcia-Bueno B, MacDowell KS, Alou L et al (2016) Bacterial translocation affects intracellular neuroinflammatory pathways in a depression-like model in rats. Neuropharmacology 103:122–133.  https://doi.org/10.1016/j.neuropharm.2015.12.003 CrossRefGoogle Scholar
  23. 23.
    Kusmider M, Solich J, Palach P, Dziedzicka-Wasylewska M (2007) Effect of citalopram in the modified forced swim test in rats. Pharmacol Rep 59(6):785–788Google Scholar
  24. 24.
    Reneric JP, Lucki I (1998) Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology 136(2):190–197.  https://doi.org/10.1007/s002130050555 CrossRefGoogle Scholar
  25. 25.
    Garate I, Garcia-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, Mico JA, Leza JC (2011) Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8:151.  https://doi.org/10.1186/1742-2094-8-151 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115.  https://doi.org/10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006.  https://doi.org/10.1101/gr.229102 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Savitz J, Drevets WC, Wurfel BE, Ford BN, Bellgowan PS, Victor TA, Bodurka J, Teague TK et al (2015) Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun 46:55–59.  https://doi.org/10.1016/j.bbi.2015.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dang YH, Ma XC, Zhang JC, Ren Q, Wu J, Gao CG, Hashimoto K (2014) Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 20(32):5151–5159.  https://doi.org/10.2174/1381612819666140110120435 CrossRefGoogle Scholar
  30. 30.
    Liu YN, Peng YL, Liu L, Wu TY, Zhang Y, Lian YJ, Yang YY, Kelley KW et al (2015) TNFalpha mediates stress-induced depression by upregulating indoleamine 2,3-dioxygenase in a mouse model of unpredictable chronic mild stress. Eur Cytokine Netw 26(1):15–25.  https://doi.org/10.1684/ecn.2015.0362 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8(20):1–27.  https://doi.org/10.1017/S1462399406000068 CrossRefGoogle Scholar
  32. 32.
    Sekine A, Kuroki Y, Urata T, Mori N, Fukuwatari T (2016) Inhibition of large neutral amino acid transporters suppresses kynurenic acid production via inhibition of kynurenine uptake in rodent brain. Neurochem Res 41(9):2256–2266.  https://doi.org/10.1007/s11064-016-1940-y CrossRefGoogle Scholar
  33. 33.
    Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12:588–594.  https://doi.org/10.1006/cyto.1999.0661 CrossRefGoogle Scholar
  34. 34.
    Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7:468–473.  https://doi.org/10.1038/sj.mp.4000995 CrossRefGoogle Scholar
  35. 35.
    Garcia-Bueno B, Caso JR, Perez-Nievas BG, Lorenzo P, Leza JC (2007) Effects of peroxisome proliferator-activated receptor gamma agonists on brain glucose and glutamate transporters after stress in rats. Neuropsychopharmacology 32(6):1251–1260.  https://doi.org/10.1038/sj.npp.1301252 CrossRefGoogle Scholar
  36. 36.
    Madrigal JL, Caso JR, de Cristobal J, Cardenas A, Leza JC, Lizasoain I, Lorenzo P, Moro MA (2003) Effect of subacute and chronic immobilisation stress on the outcome of permanent focal cerebral ischaemia in rats. Brain Res 979(1–2):137–145.  https://doi.org/10.1016/S0006-8993(03)02892-0 CrossRefGoogle Scholar
  37. 37.
    Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 102:15653–15658.  https://doi.org/10.1073/pnas.0507901102 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58(2):465–473.  https://doi.org/10.1016/j.neuropharm.2009.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang XH, Jia N, Zhao XY, Tang GK, Guan LX, Wang D, Sun HL, Li H et al (2013) Involvement of pGluR1, EAAT2 and EAAT3 in offspring depression induced by prenatal stress. Neuroscience 250:333–341.  https://doi.org/10.1016/j.neuroscience.2013.04.031 CrossRefGoogle Scholar
  40. 40.
    Golembiowska K, Dziubina A (2000) Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex. Pol J Pharmacol 52(6):441–448Google Scholar
  41. 41.
    Lin TY, Yang TT, Lu CW, Wang SJ (2011) Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals. Prog Neuro-Psychopharmacol Biol Psychiatry 35(2):598–606.  https://doi.org/10.1016/j.pnpbp.2010.12.029 CrossRefGoogle Scholar
  42. 42.
    Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A et al (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5(1):e8566.  https://doi.org/10.1371/journal.pone.0008566 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77.  https://doi.org/10.1016/j.neuropharm.2011.07.036 CrossRefGoogle Scholar
  44. 44.
    Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62(11):1310–1316.  https://doi.org/10.1016/j.biopsych.2007.03.017 CrossRefGoogle Scholar
  45. 45.
    Lou JS, Li CY, Yang XC, Fang J, Yang YX, Guo JY (2010) Protective effect of gan mai da zao decoction in unpredictable chronic mild stress-induced behavioral and biochemical alterations. Pharm Biol 48(12):1328–1336.  https://doi.org/10.3109/13880201003789440 CrossRefGoogle Scholar
  46. 46.
    Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 33(1):70–75.  https://doi.org/10.1016/j.pnpbp.2008.10.005 CrossRefGoogle Scholar
  47. 47.
    Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, Earle N, Dagnino-Subiabre A et al (2010) Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 169(1):98–108.  https://doi.org/10.1016/j.neuroscience.2010.04.035 CrossRefGoogle Scholar
  48. 48.
    Erburu M, Munoz-Cobo I, Diaz-Perdigon T, Mellini P, Suzuki T, Puerta E, Tordera RM (2017) SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action. Neuropharmacology 117:195–208.  https://doi.org/10.1016/j.neuropharm.2017.01.033 CrossRefGoogle Scholar
  49. 49.
    Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA et al (2013) GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38(5):729–742.  https://doi.org/10.1038/npp.2012.246 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486.  https://doi.org/10.1038/nature17998 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G, Levit O, Zangen A (2008) Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem 107(2):522–532.  https://doi.org/10.1111/j.1471-4159.2008.05642.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • David Martín-Hernández
    • 1
    • 2
    • 3
    • 4
  • Hiram Tendilla-Beltrán
    • 5
  • José L. M. Madrigal
    • 1
    • 2
    • 3
    • 4
  • Borja García-Bueno
    • 1
    • 2
    • 3
    • 4
  • Juan C. Leza
    • 1
    • 2
    • 3
    • 4
    Email author
  • Javier R. Caso
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Departamento de Farmacología y Toxicología, Facultad de MedicinaUniversidad Complutense de MadridMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
  3. 3.Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12)MadridSpain
  4. 4.Instituto Universitario de Investigación en Neuroquímica UCMMadridSpain
  5. 5.Laboratorio de Neuropsiquiatría, Instituto de FisiologíaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations