Advertisement

Molecular Neurobiology

, Volume 55, Issue 12, pp 9251–9266 | Cite as

2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease

  • Marika Cordaro
  • Rosalba Siracusa
  • Rosalia Crupi
  • Daniela Impellizzeri
  • Alessio Filippo Peritore
  • Ramona D’Amico
  • Enrico Gugliandolo
  • Rosanna Di Paola
  • Salvatore Cuzzocrea
Article

Abstract

Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. Moreover, PEA-OXA treatment prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and decreased α-synuclein aggregation in neurons. PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD.

Keywords

2-Pentadecyl-2-oxazoline Inflammation Nrf-2 Parkinson disease 

Notes

Acknowledgements

The authors would like to thank Maria Antonietta Medici for the excellent technical assistance during this study, Mr. Francesco Soraci for the secretarial and administrative assistance, and Miss Valentina Malvagni for the editorial assistance with the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Dr. Salvatore Cuzzocrea is co-inventor on patent WO2013121449A8 (Epitech Group SpA) which deals with compositions and methods for the modulation of amidases capable of hydrolysing N-acylethanolamines applied in the therapy of inflammatory diseases. Moreover, Dr. Cuzzocrea is also a co-inventor with the Epitech group on the following patents:

1. EP2821,083

2. MI2014A001495

3. 102015000067344

None of the other authors have any conflicts of interest to declare.

Supplementary material

12035_2018_1064_MOESM1_ESM.jpg (29 kb)
ESM 1 (JPEG 29 kb)
12035_2018_1064_MOESM2_ESM.jpg (27 kb)
ESM 2 (JPEG 27 kb)
12035_2018_1064_MOESM3_ESM.jpg (34 kb)
ESM 3 (JPEG 33 kb)
12035_2018_1064_MOESM4_ESM.jpg (34 kb)
ESM 4 (JPEG 33 kb)
12035_2018_1064_MOESM5_ESM.jpg (30 kb)
ESM 5 (JPEG 30 kb)
12035_2018_1064_MOESM6_ESM.jpg (31 kb)
ESM 6 (JPEG 30 kb)

References

  1. 1.
    Herrera AJ, Tomas-Camardiel M, Venero JL, Cano J, Machado A (2005) Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm (Vienna) 112(1):111–119.  https://doi.org/10.1007/s00702-004-0121-3 CrossRefGoogle Scholar
  2. 2.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145.  https://doi.org/10.1146/annurev.immunol.021908.132528 CrossRefGoogle Scholar
  3. 3.
    Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O (2006) Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson’s disease. Neurochem Int 48(4):255–262.  https://doi.org/10.1016/j.neuint.2005.10.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11(9):2077–2082.  https://doi.org/10.1089/ars.2009.2697 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta 1792(7):676–687.  https://doi.org/10.1016/j.bbadis.2008.09.009 CrossRefPubMedGoogle Scholar
  6. 6.
    More SV, Choi DK (2015) Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Mol Neurodegener 10:17.  https://doi.org/10.1186/s13024-015-0012-0 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jung KH, Hong SW, Zheng HM, Lee DH, Hong SS (2009) Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model. J Pineal Res 47(2):173–183.  https://doi.org/10.1111/j.1600-079X.2009.00698.x CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy NM, Suryanaraya V, Yates MS, Kleeberger SR, Hassoun PM, Yamamoto M, Liby KT, Sporn MB et al (2009) The triterpenoid CDDO-imidazolide confers potent protection against hyperoxic acute lung injury in mice. Am J Respir Crit Care Med 180(9):867–874.  https://doi.org/10.1164/rccm.200905-0670OC CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wei Y, Liu XM, Peyton KJ, Wang H, Johnson FK, Johnson RA, Durante W (2009) Hypochlorous acid-induced heme oxygenase-1 gene expression promotes human endothelial cell survival. Am J Physiol Cell Physiol 297(4):C907–C915.  https://doi.org/10.1152/ajpcell.00536.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang H, Khor TO, Saw CL, Lin W, Wu T, Huang Y, Kong AN (2010) Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid. Mol Pharm 7(6):2185–2193.  https://doi.org/10.1021/mp100199m CrossRefPubMedGoogle Scholar
  11. 11.
    Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A (2012) Alpha-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21(14):3173–3192.  https://doi.org/10.1093/hmg/dds143 CrossRefPubMedGoogle Scholar
  12. 12.
    Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029CrossRefGoogle Scholar
  13. 13.
    Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116(4):984–995.  https://doi.org/10.1172/JCI25790 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A, Lin W, Reddy B et al (2006) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. Cancer Lett 243(2):170–192.  https://doi.org/10.1016/j.canlet.2005.11.050 CrossRefPubMedGoogle Scholar
  15. 15.
    Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278(10):8135–8145.  https://doi.org/10.1074/jbc.M211898200 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsvetkov AS, Arrasate M, Barmada S, Ando DM, Sharma P, Shaby BA, Finkbeiner S (2013) Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat Chem Biol 9(9):586–592.  https://doi.org/10.1038/nchembio.1308 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Skibinski G, Hwang V, Ando DM, Daub A, Lee AK, Ravisankar A, Modan S, Finucane MM et al (2017) Nrf2 mitigates LRRK2- and alpha-synuclein-induced neurodegeneration by modulating proteostasis. Proc Natl Acad Sci U S A 114(5):1165–1170.  https://doi.org/10.1073/pnas.1522872114 CrossRefPubMedGoogle Scholar
  18. 18.
    Tufekci KU, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Park Dis 2011:314082.  https://doi.org/10.4061/2011/314082 CrossRefGoogle Scholar
  19. 19.
    Alpini G, Demorrow S (2009) Changes in the endocannabinoid system may give insight into new and effective treatments for cancer. Vitam Horm 81:469–485.  https://doi.org/10.1016/S0083-6729(09)81018-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guindon J, Hohmann AG (2009) The endocannabinoid system and pain. CNS Neurol Disord Drug Targets 8(6):403–421CrossRefGoogle Scholar
  21. 21.
    Li H, Wood JT, Whitten KM, Vadivel SK, Seng S, Makriyannis A, Avraham HK (2013) Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells. Br J Pharmacol 170(3):489–505.  https://doi.org/10.1111/bph.12111 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skaper SD, Facci L (2012) Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond Ser B Biol Sci 367(1607):3312–3325.  https://doi.org/10.1098/rstb.2011.0391 CrossRefGoogle Scholar
  23. 23.
    Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26(8):3103–3117.  https://doi.org/10.1096/fj.11-197194 CrossRefPubMedGoogle Scholar
  24. 24.
    Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141(3):314–327.  https://doi.org/10.1111/imm.12170 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ueda N, Tsuboi K, Uyama T (2010) N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 49(4):299–315.  https://doi.org/10.1016/j.plipres.2010.02.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R et al (2009) Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci U S A 106(49):20966–20971.  https://doi.org/10.1073/pnas.0907417106 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamano Y, Tsuboi K, Hozaki Y, Takahashi K, Jin XH, Ueda N, Wada A (2012) Lipophilic amines as potent inhibitors of N-acylethanolamine-hydrolyzing acid amidase. Bioorg Med Chem 20(11):3658–3665.  https://doi.org/10.1016/j.bmc.2012.03.065 CrossRefPubMedGoogle Scholar
  28. 28.
    Yang L, Li L, Chen L, Li Y, Chen H, Li Y, Ji G, Lin D et al (2015) Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR-alpha. Sci Rep 5:13565.  https://doi.org/10.1038/srep13565 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ribeiro A, Pontis S, Mengatto L, Armirotti A, Chiurchiu V, Capurro V, Fiasella A, Nuzzi A et al (2015) A potent systemically active N-Acylethanolamine acid Amidase inhibitor that suppresses inflammation and human macrophage activation. ACS Chem Biol 10(8):1838–1846.  https://doi.org/10.1021/acschembio.5b00114 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Benito C, Tolon RM, Castillo AI, Ruiz-Valdepenas L, Martinez-Orgado JA, Fernandez-Sanchez FJ, Vazquez C, Cravatt BF et al (2012) Beta-amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-alpha, PPAR-gamma and TRPV1, but not CB(1) or CB(2) receptors. Br J Pharmacol 166(4):1474–1489.  https://doi.org/10.1111/j.1476-5381.2012.01889.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Siegmund SV, Wojtalla A, Schlosser M, Zimmer A, Singer MV (2013) Fatty acid amide hydrolase but not monoacyl glycerol lipase controls cell death induced by the endocannabinoid 2-arachidonoyl glycerol in hepatic cell populations. Biochem Biophys Res Commun 437(1):48–54.  https://doi.org/10.1016/j.bbrc.2013.06.033 CrossRefPubMedGoogle Scholar
  32. 32.
    Hoyer FF, Khoury M, Slomka H, Kebschull M, Lerner R, Lutz B, Schott H, Lutjohann D et al (2014) Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J Mol Cell Cardiol 66:126–132.  https://doi.org/10.1016/j.yjmcc.2013.11.013 CrossRefPubMedGoogle Scholar
  33. 33.
    Rivera P, Bindila L, Pastor A, Perez-Martin M, Pavon FJ, Serrano A, de la Torre R, Lutz B et al (2015) Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci 9:98.  https://doi.org/10.3389/fncel.2015.00098 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Impellizzeri D, Cordaro M, Bruschetta G, Siracusa R, Crupi R, Esposito E, Cuzzocrea S (2017) N-Palmitoylethanolamine-oxazoline as a new therapeutic strategy to control neuroinflammation: neuroprotective effects in experimental models of spinal cord and brain injury. J Neurotrauma 34(18):2609–2623.  https://doi.org/10.1089/neu.2016.4808 CrossRefPubMedGoogle Scholar
  35. 35.
    Petrosino S, Campolo M, Impellizzeri D, Paterniti I, Allara M, Gugliandolo E, D'Amico R, Siracusa R et al (2017) 2-Pentadecyl-2-Oxazoline, the oxazoline of pea, modulates carrageenan-induced acute inflammation. Front Pharmacol 8:308.  https://doi.org/10.3389/fphar.2017.00308 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Impellizzeri D, Cordaro M, Bruschetta G, Crupi R, Pascali J, Alfonsi D, Marcolongo G, Cuzzocrea S (2016) 2-Pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol Res 108:23–30.  https://doi.org/10.1016/j.phrs.2016.04.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Sian J, Gerlach M, Youdim MB, Riederer P (1999) Parkinson’s disease: a major hypokinetic basal ganglia disorder. J Neural Transm (Vienna) 106(5–6):443–476.  https://doi.org/10.1007/s007020050171 CrossRefGoogle Scholar
  38. 38.
    Moriguchi S, Yabuki Y, Fukunaga K (2012) Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. J Neurochem 120(4):541–551.  https://doi.org/10.1111/j.1471-4159.2011.07608.x CrossRefPubMedGoogle Scholar
  39. 39.
    Perry JC, Da Cunha C, Anselmo-Franci J, Andreatini R, Miyoshi E, Tufik S, Vital MA (2004) Behavioural and neurochemical effects of phosphatidylserine in MPTP lesion of the substantia nigra of rats. Eur J Pharmacol 484(2–3):225–233CrossRefGoogle Scholar
  40. 40.
    Reksidler AB, Lima MM, Zanata SM, Machado HB, da Cunha C, Andreatini R, Tufik S, Vital MA (2007) The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur J Pharmacol 560(2–3):163–175.  https://doi.org/10.1016/j.ejphar.2006.12.032 CrossRefPubMedGoogle Scholar
  41. 41.
    Tanila H, Bjorklund M, Riekkinen P Jr (1998) Cognitive changes in mice following moderate MPTP exposure. Brain Res Bull 45(6):577–582CrossRefGoogle Scholar
  42. 42.
    Siracusa R, Paterniti I, Cordaro M, Crupi R, Bruschetta G, Campolo M, Cuzzocrea S, Esposito E (2017) Neuroprotective effects of temsirolimus in animal models of Parkinson’s disease. Mol Neurobiol 55:2403–2419.  https://doi.org/10.1007/s12035-017-0496-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125(1–2):109–125CrossRefGoogle Scholar
  44. 44.
    Bortolato M, Godar SC, Davarian S, Chen K, Shih JC (2009) Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. Neuropsychopharmacology 34(13):2746–2757.  https://doi.org/10.1038/npp.2009.118 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167CrossRefGoogle Scholar
  46. 46.
    Siracusa R, Paterniti I, Impellizzeri D, Cordaro M, Crupi R, Navarra M, Cuzzocrea S, Esposito E (2015) The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol Disord Drug Targets 14(10):1350–1365CrossRefGoogle Scholar
  47. 47.
    Lee KW, Zhao X, Im JY, Grosso H, Jang WH, Chan TW, Sonsalla PK, German DC et al (2012) Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One 7(1):e29935.  https://doi.org/10.1371/journal.pone.0029935 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cordaro M, Paterniti I, Siracusa R, Impellizzeri D, Esposito E, Cuzzocrea S (2016) KU0063794, a dual mTORC1 and mTORC2 inhibitor, reduces neural tissue damage and Locomotor impairment after spinal cord injury in mice. Mol Neurobiol 54:2415–2427.  https://doi.org/10.1007/s12035-016-9827-0 CrossRefPubMedGoogle Scholar
  49. 49.
    Paterniti I, Briguglio E, Mazzon E, Galuppo M, Oteri G, Cordasco G, Cuzzocrea S (2010) Effects of Hypericum perforatum, in a rodent model of periodontitis. BMC Complement Altern Med 10:73.  https://doi.org/10.1186/1472-6882-10-73 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rodriguez-Sanabria F, Rull A, Beltran-Debon R, Aragones G, Camps J, Mackness B, Mackness M, Joven J (2010) Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. J Mol Histol 41(6):379–386.  https://doi.org/10.1007/s10735-010-9299-x CrossRefPubMedGoogle Scholar
  51. 51.
    Ferre N, Marsillach J, Camps J, Mackness B, Mackness M, Riu F, Coll B, Tous M et al (2006) Paraoxonase-1 is associated with oxidative stress, fibrosis and FAS expression in chronic liver diseases. J Hepatol 45(1):51–59.  https://doi.org/10.1016/j.jhep.2005.12.018 CrossRefPubMedGoogle Scholar
  52. 52.
    Hernandez-Aguilera A, Sepulveda J, Rodriguez-Gallego E, Guirro M, Garcia-Heredia A, Cabre N, Luciano-Mateo F, Fort-Gallifa I et al (2015) Immunohistochemical analysis of paraoxonases and chemokines in arteries of patients with peripheral artery disease. Int J Mol Sci 16(5):11323–11338.  https://doi.org/10.3390/ijms160511323 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3(4):461–491.  https://doi.org/10.3233/JPD-130230 CrossRefGoogle Scholar
  54. 54.
    Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson’s disease neurodegeneration. Curr Neuropharmacol 8(1):62–68.  https://doi.org/10.2174/157015910790909485 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee Y, Kang HC, Lee BD, Lee YI, Kim YP, Shin JH (2014) Poly (ADP-ribose) in the pathogenesis of Parkinson’s disease. BMB Rep 47(8):424–432CrossRefGoogle Scholar
  56. 56.
    D'Andrea MR, Ilyin S, Plata-Salaman CR (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci Lett 306(3):137–140CrossRefGoogle Scholar
  57. 57.
    Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1beta and tumor necrosis factor-alpha: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53.  https://doi.org/10.3389/fncel.2013.00053 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Todorovic M, Wood SA, Mellick GD (2016) Nrf2: a modulator of Parkinson’s disease? J Neural Transm (Vienna) 123(6):611–619.  https://doi.org/10.1007/s00702-016-1563-0 CrossRefGoogle Scholar
  59. 59.
    Schulz JB, Falkenburger BH (2004) Neuronal pathology in Parkinson’s disease. Cell Tissue Res 318(1):135–147.  https://doi.org/10.1007/s00441-004-0954-y CrossRefPubMedGoogle Scholar
  60. 60.
    Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150.  https://doi.org/10.1073/pnas.0937239100 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Barone MC, Sykiotis GP, Bohmann D (2011) Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis Model Mech 4(5):701–707.  https://doi.org/10.1242/dmm.007575 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Avagliano C, Russo R, De Caro C, Cristiano C, La Rana G, Piegari G, Paciello O, Citraro R et al (2016) Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: In vivo and in vitro evidence. Pharmacol Res 113(Pt A):276–289.  https://doi.org/10.1016/j.phrs.2016.09.004 CrossRefPubMedGoogle Scholar
  63. 63.
    Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS One 7(8):e41880.  https://doi.org/10.1371/journal.pone.0041880 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Menza MA, Robertson-Hoffman DE, Bonapace AS (1993) Parkinson’s disease and anxiety: comorbidity with depression. Biol Psychiatry 34(7):465–470CrossRefGoogle Scholar
  65. 65.
    Chotibut T, Apple DM, Jefferis R, Salvatore MF (2012) Dopamine transporter loss in 6-OHDA Parkinson’s model is unmet by parallel reduction in dopamine uptake. PLoS One 7(12):e52322.  https://doi.org/10.1371/journal.pone.0052322 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Stefanis L (2012) Alpha-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399.  https://doi.org/10.1101/cshperspect.a009399 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365.  https://doi.org/10.1016/j.nurt.2010.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tufekci KU, Meuwissen R, Genc S, Genc K (2012) Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol 88:69–132.  https://doi.org/10.1016/B978-0-12-398314-5.00004-0 CrossRefPubMedGoogle Scholar
  69. 69.
    Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557.  https://doi.org/10.1016/j.molmed.2004.09.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marika Cordaro
    • 1
  • Rosalba Siracusa
    • 1
  • Rosalia Crupi
    • 1
  • Daniela Impellizzeri
    • 1
  • Alessio Filippo Peritore
    • 1
  • Ramona D’Amico
    • 1
  • Enrico Gugliandolo
    • 1
  • Rosanna Di Paola
    • 1
  • Salvatore Cuzzocrea
    • 1
    • 2
  1. 1.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  2. 2.Department of Pharmacological and Physiological ScienceSaint Louis University School of MedicineSt LouisUSA

Personalised recommendations