Advertisement

Molecular Neurobiology

, Volume 55, Issue 11, pp 8243–8250 | Cite as

Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease

  • Li Lin
  • Li Juan Zheng
  • Long Jiang Zhang
Article

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that develops insidiously and causes dementia finally. There are also clinical complications in advanced dementia, such as eating problems, infections, which will lead to the decline of patients’ life quality, and the rising cost of care for AD to our society. AD will be important public health challenge. Early detection of AD may be a key issue to prevent, delay, and stop the disease. Gut microbiome and neuroinflammation are closely related with nervous system diseases, although the specific mechanism is not clear. This review introduces the relationship between neuroinflammation, gut microbiome, and AD.

Keywords

Alzheimer’s disease Gut microbiome Neuroinflammation 

Notes

Acknowledgements

Supported by grants from the National Natural Science Foundation of China (grant nos. 81322020 and 81230032 to L.J.Z.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, Hager K, Andreasen N et al (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378(4):321–330CrossRefGoogle Scholar
  2. 2.
    Mitchell SL (2015) CLINICAL PRACTICE. Advanced dementia. N Engl J Med 372(26):2533–2540CrossRefGoogle Scholar
  3. 3.
    Association A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332–384CrossRefGoogle Scholar
  4. 4.
    Association A (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509CrossRefGoogle Scholar
  5. 5.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608CrossRefGoogle Scholar
  6. 6.
    Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720CrossRefGoogle Scholar
  7. 7.
    Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M et al (2018) Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing 15:8CrossRefGoogle Scholar
  8. 8.
    Varley J, Brooks DJ, Edison P (2015) Imaging neuroinflammation in Alzheimer’s disease and other dementias: recent advances and future directions. Alzheimers Dement 11(9):1110–1120CrossRefGoogle Scholar
  9. 9.
    Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G et al (2018) Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 22(2):1148–1166PubMedGoogle Scholar
  10. 10.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555CrossRefGoogle Scholar
  11. 11.
    Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25(36):8240–8249CrossRefGoogle Scholar
  12. 12.
    Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci U S A 104(25):10601–10606CrossRefGoogle Scholar
  13. 13.
    Minter MR, Taylor JM, Crack PJ (2016) The contribution of neuro-inflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136(3):457–474CrossRefGoogle Scholar
  14. 14.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405CrossRefGoogle Scholar
  15. 15.
    Lee CY, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna) 117(8):949–960CrossRefGoogle Scholar
  16. 16.
    Swanson A, Wolf T, Sitzmann A (2018) Neuroinflammation in Alzheimer’s disease: pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res S0166-4328(17):31862–31864Google Scholar
  17. 17.
    Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A et al (2014) Microglial derived tumor necrosis factor-alpha drives Alzheimer’s disease-related neuronal cell cycle events. Neurobiol Dis 62:273–285CrossRefGoogle Scholar
  18. 18.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774CrossRefGoogle Scholar
  19. 19.
    Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360CrossRefGoogle Scholar
  20. 20.
    Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115(8):E1896–E1905CrossRefGoogle Scholar
  21. 21.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35CrossRefGoogle Scholar
  22. 22.
    Rodriguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35(1):15–23CrossRefGoogle Scholar
  23. 23.
    Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193CrossRefGoogle Scholar
  24. 24.
    Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C et al (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4):578–590CrossRefGoogle Scholar
  25. 25.
    Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I, Fernandez-Carballo L, de Munain EL et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. Brain 136(8):2510–2526CrossRefGoogle Scholar
  26. 26.
    Schwab C, Klegeris A, McGeer PL (2010) Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta 1802(10):889–902CrossRefGoogle Scholar
  27. 27.
    Batarseh YS, Duong QV, Mousa YM, Al Rihani SB, Elfakhri K, Kaddoumi A (2016) Amyloid-β and astrocytes interplay in amyloid-β related disorders. Int J Mol Sci 17(3):338CrossRefGoogle Scholar
  28. 28.
    Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC (2011) Astrocytes: Implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80CrossRefGoogle Scholar
  29. 29.
    Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG (2000) Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 96(1):195–203CrossRefGoogle Scholar
  30. 30.
    Zou C, Shi Y, Ohli J, Schuller U, Dorostkar MM, Herms J (2016) Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease. Acta Neuropathol 131(2):235–246CrossRefGoogle Scholar
  31. 31.
    González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L (2017) Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10:427CrossRefGoogle Scholar
  32. 32.
    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25(39):8843–8853CrossRefGoogle Scholar
  33. 33.
    Saha RN, Pahan K (2006) Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 49(2):154–163CrossRefGoogle Scholar
  34. 34.
    Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419CrossRefGoogle Scholar
  35. 35.
    Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46CrossRefGoogle Scholar
  36. 36.
    Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P et al (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49(9):1414–1421CrossRefGoogle Scholar
  37. 37.
    Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C, Ince PG, Nicoll JA et al (2016) Microglial immunophenotype in dementia with Alzheimer’s pathology. J Neuroinflammation 13(1):1–10CrossRefGoogle Scholar
  38. 38.
    Ching AS, Kuhnast B, Damont A, Roeda D, Tavitian B, Dolle F (2012) Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging 3(1):111–119CrossRefGoogle Scholar
  39. 39.
    Jacobs AH, Tavitian B (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32(7):1393–1415CrossRefGoogle Scholar
  40. 40.
    Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA (2009) Carbon 11-labeled Pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66(1):60–67CrossRefGoogle Scholar
  41. 41.
    Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H et al (2016) Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139(Pt 4):1252–1264CrossRefGoogle Scholar
  42. 42.
    Imbimbo BP, Solfrizzi V, Panza F (2010) Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci 2:19PubMedPubMedCentralGoogle Scholar
  43. 43.
    Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632CrossRefGoogle Scholar
  44. 44.
    McGeer PL, Rogers J, McGeer EG (2016) Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis 54(3):853–857CrossRefGoogle Scholar
  45. 45.
    Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County study. Neurology 59(6):880–886CrossRefGoogle Scholar
  46. 46.
    Yip AG, Green RC, Huyck M, Cupples LA, Farrer LA (2005) Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease risk: the MIRAGE study. BMC Geriatr 5:2CrossRefGoogle Scholar
  47. 47.
    Szekely CA, Green RC, Breitner JC, Østbye T, Beiser AS, Corrada MM, Dodge HH, Ganguli M et al (2008) No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology 70(24):2291–2298CrossRefGoogle Scholar
  48. 48.
    Szekely CA, Thorne JE, Zandi PP, Ek M, Messias E, Breitner JC, Goodman SN (2004) Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: a systematic review. Neuroepidemiology 23(4):159–169CrossRefGoogle Scholar
  49. 49.
    Szekely CA, Breitner JC, Fitzpatrick AL, Rea TD, Psaty BM, Kuller LH, Zandi PP (2008) NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology 70(1):17–24CrossRefGoogle Scholar
  50. 50.
    Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, Cheung TH, Zhang B et al (2016) IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A 113(19):E2705–E2713CrossRefGoogle Scholar
  51. 51.
    Hill JM, Bhattacharjee S, Pogue AI, Lukiw WJ (2014) The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front Neurol 5:43CrossRefGoogle Scholar
  52. 52.
    Kim BS, Jeon YS, Chun J (2013) Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr 16(2):71–79CrossRefGoogle Scholar
  53. 53.
    Wang HX, Wang YP (2016) Gut microbiota-brain axis. Chin Med J 129(19):2373–2380CrossRefGoogle Scholar
  54. 54.
    Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain Axis. Nutrients 8(1)CrossRefGoogle Scholar
  55. 55.
    Schmidt C (2015) Mental health: thinking from the gut. Nature 518(7540):S12–S15CrossRefGoogle Scholar
  56. 56.
    Smith PA (2015) The tantalizing links between gut microbes and the brain. Nature 526(75573):312–314CrossRefGoogle Scholar
  57. 57.
    Mayer EA, Knight R, Mazmanian SK, Cryan JF (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496CrossRefGoogle Scholar
  58. 58.
    Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, Martin FP, Cominetti O et al (2017) Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology 153(2):448–459CrossRefGoogle Scholar
  59. 59.
    Tillisch K, Mayer E, Gupta A, Gill Z, Brazeilles R, Le Nevé B, van Hylckama Vlieg JET, Guyonnet D et al (2017) Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom Med 79(8):905–913CrossRefGoogle Scholar
  60. 60.
    Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The central nervous system and the gut microbiome. Cell 167(4):915–932CrossRefGoogle Scholar
  61. 61.
    Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O'Leary OF (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 78(4):e7–e9CrossRefGoogle Scholar
  62. 62.
    Luczynski P, Whelan SO, O'Sullivan C, Clarke G, Shanahan F, Dinan TG, Cryan JF (2016) Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci 44(9):2654–2666CrossRefGoogle Scholar
  63. 63.
    Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977CrossRefGoogle Scholar
  64. 64.
    Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353(6301):aad8670CrossRefGoogle Scholar
  65. 65.
    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158CrossRefGoogle Scholar
  66. 66.
    O'Brien SM, Scott LV, Dinan TG (2004) Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol 19(6):397–403CrossRefGoogle Scholar
  67. 67.
    Dinan TG, Borre YE, Cryan JF (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19(12):1252–1257CrossRefGoogle Scholar
  68. 68.
    Nemani K, Hosseini Ghomi R, McCormick B, Fan X (2015) Schizophrenia and the gut-brain axis. Prog Neuro-Psychopharmacol Biol Psychiatry 56:155–160CrossRefGoogle Scholar
  69. 69.
    Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21(6):738–748CrossRefGoogle Scholar
  70. 70.
    Neufeld KA, Foster JA (2009) Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatry Neurosci 34(3):230–231PubMedPubMedCentralGoogle Scholar
  71. 71.
    Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94CrossRefGoogle Scholar
  72. 72.
    Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62(1):381–396CrossRefGoogle Scholar
  73. 73.
    Gareau MG (2016) Cognitive function and the microbiome. Int Rev Neurobiol 131:227–246CrossRefGoogle Scholar
  74. 74.
    Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Macqueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317CrossRefGoogle Scholar
  75. 75.
    Savignac HM, Kiely B, Dinan TG, Cryan JF (2014) Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26(11):1615–1627CrossRefGoogle Scholar
  76. 76.
    Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38(9):1738–1747CrossRefGoogle Scholar
  77. 77.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401 1401.e1–4CrossRefGoogle Scholar
  78. 78.
    Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764CrossRefGoogle Scholar
  79. 79.
    Maheshwari P, Eslick GD (2015) Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 43(3):957–966CrossRefGoogle Scholar
  80. 80.
    Agostini S, Clerici M, Mancuso R (2014) How plausible is a link between HSV-1 infection and Alzheimer’s disease? Expert Rev Anti-Infect Ther 12(3):275–278CrossRefGoogle Scholar
  81. 81.
    Alonso R, Pisa D, Marina AI, Morato E, Rabano A, Carrasco L (2014) Fungal infection in patients with Alzheimer’s disease. J Alzheimers Dis 41(1):301–311CrossRefGoogle Scholar
  82. 82.
    Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Rodal I, Carrasco L (2015) Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci 11(5):546–558CrossRefGoogle Scholar
  83. 83.
    Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher JJ, Fåk F et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802CrossRefGoogle Scholar
  84. 84.
    Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U, Comi C (2013) Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 2(2):89–107PubMedPubMedCentralGoogle Scholar
  85. 85.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934CrossRefGoogle Scholar
  86. 86.
    Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J Neuroinflammation 5:8CrossRefGoogle Scholar
  87. 87.
    McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45CrossRefGoogle Scholar
  88. 88.
    Zhao Y, Lukiw WJ (2015) Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J Nat Sci 1(7)Google Scholar
  89. 89.
    Zhao Y, Dua P, Lukiw WJ (2015) Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer’s disease (AD). J Alzheimers Dis Parkinsonism 5(1):177PubMedPubMedCentralGoogle Scholar
  90. 90.
    Köhler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt KL, Carvalho AF (2016) The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des 22(40):6152–6166CrossRefGoogle Scholar
  91. 91.
    Lukiw WJ (2016) Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer’s disease. Front Microbiol 7:1544CrossRefGoogle Scholar
  92. 92.
    Schwartz K, Boles BR (2013) Microbial amyloids—functions and interactions within the host. Curr Opin Microbiol 16(1):93–99CrossRefGoogle Scholar
  93. 93.
    Hufnagel DA, Tukel C, Chapman MR (2013) Disease to dirt: the biology of microbial amyloids. PLoS Pathog 9(11):e1003740CrossRefGoogle Scholar
  94. 94.
    Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45(2):349–362CrossRefGoogle Scholar
  95. 95.
    Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, Jagadapillai R, Liu R et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Imaging, Jinling HospitalMedical School of Nanjing UniversityNanjingChina

Personalised recommendations