Molecular Neurobiology

, Volume 55, Issue 10, pp 7669–7676 | Cite as

The Metabolic Disturbances of Motoneurons Exposed to Glutamate

  • Blandine Madji Hounoum
  • Hélène Blasco
  • Emmanuelle Coque
  • Patrick Vourc’h
  • Patrick Emond
  • Philippe Corcia
  • Christian R. Andres
  • Cédric Raoul
  • Sylvie Mavel


Glutamate-induced excitotoxicity is considered as one of the major pathophysiological factors of motoneuron death in amyotrophic lateral sclerosis and other motoneuron diseases. In order to expand our knowledge on mechanisms of glutamate-induced excitotoxicity, the present study proposes to determine the metabolic consequences of glutamate and astrocytes in primary enriched motoneuron culture. Using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we showed that the presence of astrocytes and glutamate profoundly modified the metabolic profile of motoneurons. Our study highlights for the first time that crosstalk between astrocytes and enriched motoneuron culture induced alterations in phenylalanine, tryptophan, purine, arginine, proline, aspartate, and glutamate metabolism in motoneurons. We observed that astrocytes modulate the sensitivity of motoneurons to glutamate, since metabolites altered by glutamate in motoneurons cultured alone were different (except 5-hydroxylysine) from those altered in co-cultured motoneurons. Our findings provide new insight into the metabolic alterations associated to astrocytes and glutamate in motoneurons and provide opportunities to identify novel therapeutic targets.


Fingerprinting Excitotoxicity Metabolomics Amyotrophic lateral sclerosis ALS Primary motoneuron cultures Astrocytes Metabolites 



We thank the staff of the Programme Pluri-Formation “Analyze des Systèmes Biologiques” (PPF ASB) platform of the University François-Rabelais in Tours, France, Céline Salsac, and Antoine Lefèvre for technical assistance.

Author Contributions

B. MH, H. B, E. C, P. V, P. E, P. C, C. R. A, C. R, and S. M designed of the experiments and wrote the manuscript. H. B and S. M managed the project. B. MH, E. C, C. R, and S. M performed experiments and/or contributed to the interpretation of data.


This work was supported by grants from the institut national de la santé et de la recherche médicale (INSERM), the association française pour la recherche sur la SLA (ARSLA), ANR-14-RARE-0006 E-RARE “FasSMALS” and ANR “GliALS”. E.C. received a grant from the association française contre les myopathies (AFM) and B. MH received a grant from “La Région Centre” (2013–10).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_945_MOESM1_ESM.docx (592 kb)
ESM 1 (DOCX 591 kb)


  1. 1.
    Dong X-x, Wang Y, Qin Z-h (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC (2016) Excitotoxicity in ALS: Overstimulation, or overreaction? Exp Neurol 275(Part 1):162–171. CrossRefPubMedGoogle Scholar
  3. 3.
    Blasco H, Mavel S, Corcia P, Gordon PH (2014) The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem 21(31):3551–3575. CrossRefPubMedGoogle Scholar
  4. 4.
    Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26(4):438–458. CrossRefPubMedGoogle Scholar
  5. 5.
    Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W (2000) Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 180(1–2):29–34. CrossRefGoogle Scholar
  6. 6.
    Madji Hounoum B, Vourc'h P, Felix R, Corcia P, Patin F, Gueguinou M, Potier-Cartereau M, Vandier C et al (2016) NSC-34 motor neuron-like cells are unsuitable as experimental model for glutamate-mediated excitotoxicity. Front Cell Neurosci 10:118. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47(2):165–174. CrossRefPubMedGoogle Scholar
  8. 8.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853CrossRefPubMedGoogle Scholar
  9. 9.
    Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL et al (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28(1):18–25. CrossRefPubMedGoogle Scholar
  10. 10.
    Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38(1):73–84. CrossRefPubMedGoogle Scholar
  11. 11.
    Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, Rizzi M, Rattray M et al (2001) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79(4):737–746CrossRefPubMedGoogle Scholar
  12. 12.
    Madji Hounoum B, Mavel S, Coque E, Patin F, Vourc'h P, Marouillat S, Nadal-Desbarats L, Emond P et al (2017) Wildtype motoneurons, ALS-linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. Glia 65(4):592–605. CrossRefPubMedGoogle Scholar
  13. 13.
    Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B (2002) Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35(6):1067–1083. CrossRefPubMedGoogle Scholar
  14. 14.
    Duong FHT, Warter JM, Poindron P, Passilly P (1999) Effect of the nonpeptide neurotrophic compound SR 57746A on the phenotypic survival of purified mouse motoneurons. Br J Pharmacol 128(7):1385–1392. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang H, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ (2006) Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 26(33):8622–8632. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang W, Qi B, Lv H, Wu F, Liu L, Wang W, Wang Q, Hu L et al (2017) A new method of isolating spinal motor neurons from fetal mouse. J Neurosci Methods 288:57–61. CrossRefPubMedGoogle Scholar
  17. 17.
    Madji Hounoum B, Blasco H, Nadal-Desbarats L, Diémé B, Montigny F, Andres CR, Emond P, Mavel S (2015) Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem 407(29):8861–8872. CrossRefPubMedGoogle Scholar
  18. 18.
    Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthelemy C, Montigny F, Sarda P, Laumonnier F et al (2013) 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta 114:95–102. CrossRefPubMedGoogle Scholar
  19. 19.
    Xia J, Wishart DS (2016) Using metaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14.10.11–14.10.91. CrossRefGoogle Scholar
  20. 20.
    Dong-Ruyl L, Sawada M, Nakano K (1998) Tryptophan and its metabolite, kynurenine, stimulate expression of nerve growth factor in cultured mouse astroglial cells. Neurosci Lett 244(1):17–20. CrossRefPubMedGoogle Scholar
  21. 21.
    Moroni F (1999) Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur J Pharmacol 375(1–3):87–100. CrossRefPubMedGoogle Scholar
  22. 22.
    Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916CrossRefPubMedGoogle Scholar
  23. 23.
    Prebil M, Jensen J, Zorec R, Kreft M (2011) Astrocytes and energy metabolism. Arch Physiol Biochem 117(2):64–69. CrossRefPubMedGoogle Scholar
  24. 24.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686. CrossRefPubMedGoogle Scholar
  25. 25.
    Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: Astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. CrossRefPubMedGoogle Scholar
  26. 26.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci 22(5):208–215. CrossRefPubMedGoogle Scholar
  27. 27.
    Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M Jr et al (2017) Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 127(3):843–856. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sako W, Abe T, Izumi Y, Harada M, Kaji R (2016) The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis. J Clin Neurosci 27:110–113. CrossRefPubMedGoogle Scholar
  29. 29.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2):89–131. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baslow MH (2010) Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": How NAA metabolism supports meaningful intercellular frequency-encoded communications. Amino Acids 39(5):1139–1145. CrossRefPubMedGoogle Scholar
  31. 31.
    Gerardo-Nava J, Mayorenko II, Grehl T, Steinbusch HW, Weis J, Brook GA (2013) Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity. J Chem Neuroanat 53:11–17. CrossRefPubMedGoogle Scholar
  32. 32.
    Do-Ha D, Buskila Y, Ooi L (2017) Impairments in motor neurons, interneurons and astrocytes contribute to Hyperexcitability in ALS: Underlying mechanisms and paths to therapy. Mol Neurobiol.
  33. 33.
    Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90(3):875S–880S. CrossRefPubMedGoogle Scholar
  34. 34.
    Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 55(12):1251–1262. CrossRefPubMedGoogle Scholar
  35. 35.
    Pellerin L, Magistretti PJ (2005) Ampakine CX546 bolsters energetic response of astrocytes: A novel target for cognitive-enhancing drugs acting as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators. J Neurochem 92(3):668–677. CrossRefPubMedGoogle Scholar
  36. 36.
    Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. CrossRefPubMedGoogle Scholar
  37. 37.
    Ullian EM, Harris BT, Wu A, Chan JR, Barres BA (2004) Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25(2):241–251. CrossRefPubMedGoogle Scholar
  38. 38.
    Arumugam S, Garcera A, Soler RM, Tabares L (2017) Smn-deficiency increases the intrinsic excitability of motoneurons. Front Cell Neurosci 11(269).
  39. 39.
    Urushitani M, Shimohama S, Kihara T, Sawada H, Akaike A, Ibi M, Inoue R, Kitamura Y et al (1998) Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: Involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection. Ann Neurol 44(5):796–807. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Blandine Madji Hounoum
    • 1
  • Hélène Blasco
    • 1
    • 2
  • Emmanuelle Coque
    • 3
  • Patrick Vourc’h
    • 1
    • 2
  • Patrick Emond
    • 1
  • Philippe Corcia
    • 1
    • 4
  • Christian R. Andres
    • 1
    • 2
  • Cédric Raoul
    • 3
  • Sylvie Mavel
    • 1
    • 5
  1. 1.INSERM U930 “Imagerie et Cerveau,” CHRU de ToursUniversité François-RabelaisToursFrance
  2. 2.Laboratoire de Biochimie et de Biologie MoléculaireHôpital Bretonneau, CHRU de ToursToursFrance
  3. 3.The Institute for Neurosciences of Montpellier, Inserm UMR1051Univ Montpellier, Saint Eloi HospitalMontpellierFrance
  4. 4.Centre SLA, Service de Neurologie, CHRU de ToursToursFrance
  5. 5.UFR PharmacieToursFrance

Personalised recommendations