Advertisement

Molecular Neurobiology

, Volume 55, Issue 9, pp 7366–7376 | Cite as

Rare Risk Variants Identification by Identity-by-Descent Mapping and Whole-Exome Sequencing Implicates Neuronal Development Pathways in Schizophrenia and Bipolar Disorder

  • C. Salvoro
  • S. Bortoluzzi
  • A. Coppe
  • G. Valle
  • E. Feltrin
  • M. L. Mostacciuolo
  • G. VazzaEmail author
Article

Abstract

Schizophrenia (SCZ) and bipolar disorder (BPD) are highly heritable disorders with an estimated co-heritability of 68%. Hundreds of common alleles have been implicated, but recently a role for rare, high-penetrant variants has been also suggested in both disorders. This study investigated a familial cohort of SCZ and BPD patients from a closed population sample, where the high recurrence of the disorders and the homogenous genetic background indicate a possible enrichment in rare risk alleles. A total of 230 subjects (161 cases, 22 unaffected relatives, and 47 controls) were genetically investigated through an innovative strategy that integrates identity-by-descent (IBD) mapping and whole-exome sequencing (WES). IBD analysis allowed to track high-risk haplotypes (IBDrisk) shared exclusively by multiple patients from different families and possibly carrying the most penetrant alleles. A total of 444 non-synonymous sequence variants, of which 137 disruptive, were identified in IBDrisk haplotypes by WES. Interestingly, gene sets previously implicated in SCZ (i.e., post-synaptic density (PSD) proteins, voltage-gated calcium channels (VGCCs), and fragile X mental retardation protein (FMRP) targets) were found significantly enriched in genes carrying IBDrisk variants. Further, IBDrisk variants were preferentially affecting genes involved in the extracellular matrix (ECM) biology and axon guidance processes which appeared to be functionally connected in the pathway-derived meta-network analysis. Results thus confirm rare risk variants as key factors in SCZ and BPD pathogenesis and highlight a role for the development of neuronal connectivity in the etiology of both disorders.

Keywords

schizophrenia bipolar disorder rare variants whole-exome sequencing identity-by-descent development of neuronal connectivity 

Notes

Acknowledgements

We thank all patients participating in the study, Dr. A. Pocklington for providing details on gene sets and A. Binatti for his help in network analysis. This study was partially supported by Telethon-Italy Foundation (Grant GGP07219).

Compliance with Ethical Standards

All participants provided signed consent and the study has been approved by the local Medical Ethic Committee of Chioggia.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_922_MOESM1_ESM.docx (816 kb)
ESM 1 (DOCX 815 kb)

References

  1. 1.
    Cardno AG, Owen MJ (2014) Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 40(3):504–515.  https://doi.org/10.1093/schbul/sbu016 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ripke S, Neale BM, Corvin A et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427.  https://doi.org/10.1038/nature13595 CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lee SH, Ripke S, Neale BM et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994.  https://doi.org/10.1038/ng.2711 CrossRefPubMedGoogle Scholar
  4. 4.
    Lee SH, DeCandia TR, Ripke S et al (2012) Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 44(3):247–250.  https://doi.org/10.1038/ng.1108 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gratten J, Wray NR, Keller MC, Visscher PM (2014) Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci 17(6):782–790.  https://doi.org/10.1038/nn.3708 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O’Dushlaine C, Chambert K et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487):185–190.  https://doi.org/10.1038/nature12975 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179–184.  https://doi.org/10.1038/nature12929 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, Moran JL, Purcell SM et al (2016) Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 19(11):1433–1441.  https://doi.org/10.1038/nn.4402 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McCarthy NS, Melton PE, Ward SV, Allan SM, Dragovic M, Clark ML, Morar B, Rubio JP et al (2016) Exome array analysis suggests an increased variant burden in families with schizophrenia. Schizophr Res 185:9–16.  https://doi.org/10.1016/j.schres.2016.12.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, Shekhtman T, Badner JA et al (2015) Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 112(11):3576–3581.  https://doi.org/10.1073/pnas.1424958112
  11. 11.
    Lescai F, Als TD, Li Q, Nyegaard M, Andorsdottir G, Biskopstø M, Hedemand A, Fiorentino A et al (2017) Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder. Transl Psychiatry 7(2):e1034.  https://doi.org/10.1038/tp.2017.3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gessoni G, Valverde S, Canistro R, Manoni F (2010) Factor V Leiden in Chioggia: A prevalence study in patients with venous thrombosis, their blood relatives and the general population. Blood Transfus 8(3):193–195.  https://doi.org/10.2450/2010.0157-09 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Barrai I, Rodriguez-Larralde A, Mamolini E, Scapoli C (1999) Isonymy and isolation by distance in Italy. Hum Biol 71(6):947–961PubMedGoogle Scholar
  14. 14.
    Dipierri J, Rodríguez-Larralde A, Barrai I, Camelo JL, Redomero EG, Rodríguez CA, Ramallo V, Bronberg R et al (2014) Random inbreeding, isonymy, and population isolates in Argentina. J Community Genet 5(3):241–248.  https://doi.org/10.1007/s12687-013-0181-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cavalli-Sforza LL, Moroni A, Zei G (2004) Consanguinity, inbreeding, and genetic drift. Princeton University Press, PrincetonGoogle Scholar
  16. 16.
    Lorenzon A, Pilichou K, Rigato I, Vazza G, de Bortoli M, Calore M, Occhi G, Carturan E, Lazzarini E, Cason M, Mazzotti E, Poloni G, Mostacciuolo ML, Daliento L, Thiene G, Corrado D, Basso C, Bauce B, Rampazzo A (2015) Homozygous Desmocollin-2 mutations and Arrhythmogenic cardiomyopathy. Am J Cardiol 116:1245–1251. doi:  https://doi.org/10.1016/j.amjcard.2015.07.037, 8
  17. 17.
    Vazza G, Bertolin C, Scudellaro E, Vettori A, Boaretto F, Rampinelli S, de Sanctis G, Perini G, Peruzzi P, Mostacciuolo ML (2007) Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26. Mol Psychiatry 12:87–93. doi:  https://doi.org/10.1038/sj.mp.4001895, 1
  18. 18.
    Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33(3):266–274.  https://doi.org/10.1002/gepi.20378 CrossRefPubMedGoogle Scholar
  19. 19.
    Corvin A, Morris DW (2014) Genome-wide association studies: Findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry 75(4):276–283.  https://doi.org/10.1016/j.biopsych.2013.09.018 CrossRefPubMedGoogle Scholar
  20. 20.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13.  https://doi.org/10.1093/nar/gkn923 CrossRefGoogle Scholar
  21. 21.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  22. 22.
    Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA et al (2012) De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 44(12):1365–1369.  https://doi.org/10.1038/ng.2446 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D et al (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43(9):860–863.  https://doi.org/10.1038/ng.886 CrossRefPubMedGoogle Scholar
  24. 24.
    Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H et al (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154(3):518–529.  https://doi.org/10.1016/j.cell.2013.06.049
  25. 25.
    Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142–153.  https://doi.org/10.1038/mp.2011.154 CrossRefPubMedGoogle Scholar
  26. 26.
    Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261.  https://doi.org/10.1016/j.cell.2011.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  28. 28.
    Coppe A, Andersson EI, Binatti A, Gasparini VR, Bortoluzzi S, Clemente M, Herling M, Maciejewski J et al (2017) Genomic landscape characterization of large granular lymphocyte leukemia with a systems genetics approach. Leukemia 31(5):1243–1246.  https://doi.org/10.1038/leu.2017.49 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sales G, Calura E, Martini P, Romualdi C (2013) Graphite web: Web tool for gene set analysis exploiting pathway topology. Nucleic Acids Res 41(W1):W89–W97.  https://doi.org/10.1093/nar/gkt386 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cruceanu C, Ambalavanan A, Spiegelman D, Gauthier J, Lafrenière RG, Dion PA, Alda M, Turecki G et al (2013) Family-based exome-sequencing approach identifies rare susceptibility variants for lithium-responsive bipolar disorder. Genome 56(10):634–640.  https://doi.org/10.1139/gen-2013-0081 CrossRefPubMedGoogle Scholar
  31. 31.
    Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, Brown C, Egeland JA et al (2014) Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet 10(3):e1004229.  https://doi.org/10.1371/journal.pgen.1004229 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P (2016) Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 8(5):1083–1101.  https://doi.org/10.18632/aging.100924 CrossRefGoogle Scholar
  33. 33.
    Cichon S, Mühleisen TW, Degenhardt FA, Mattheisen M, Miró X, Strohmaier J, Steffens M, Meesters C et al (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 88(3):372–381.  https://doi.org/10.1016/j.ajhg.2011.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Berretta S (2012) Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62(3):1584–1597.  https://doi.org/10.1016/j.neuropharm.2011.08.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Kerrisk ME, Cingolani LA, Koleske AJ (2014) ECM receptors in neuronal structure, synaptic plasticity, and behavior. p 101–131Google Scholar
  36. 36.
    Myers JP, Santiago-Medina M, Gomez TM (2011) Regulation of axonal outgrowth and pathfinding by integrin-ecm interactions. Dev Neurobiol 71(11):901–923.  https://doi.org/10.1002/dneu.20931 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lubbers BR, Smit AB, Spijker S, van den Oever MC (2014) Neural ECM in addiction, schizophrenia, and mood disorder. Prog Brain Res 214:263–284.  https://doi.org/10.1016/B978-0-444-63486-3.00012-8 CrossRefPubMedGoogle Scholar
  38. 38.
    Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S (2017) Decreased numbers of Somatostatin-expressing neurons in the amygdala of subjects with bipolar disorder or schizophrenia: Relationship to circadian rhythms. Biol Psychiatry 81(6):536–547.  https://doi.org/10.1016/j.biopsych.2016.04.006 CrossRefPubMedGoogle Scholar
  39. 39.
    Ferreira MAR, O’Donovan MC, Meng YA et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40(9):1056–1058.  https://doi.org/10.1038/ng.209 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Smoller JW, Kendler KS, Craddock N et al (2013) Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 381(9875):1371–1379.  https://doi.org/10.1016/S0140-6736(12)62129-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PadovaPadovaItaly
  2. 2.Department of Molecular MedicineUniversity of PadovaPadovaItaly

Personalised recommendations