Molecular Neurobiology

, Volume 55, Issue 8, pp 6965–6983 | Cite as

Neural Crest Stem-Like Cells Non-genetically Induced from Human Gingiva-Derived Mesenchymal Stem Cells Promote Facial Nerve Regeneration in Rats

  • Qunzhou Zhang
  • Phuong D. Nguyen
  • Shihong Shi
  • Justin C. Burrell
  • Qilin Xu
  • Kacy D. Cullen
  • Anh D. Le


Non-genetic induction of somatic cells into neural crest stem-like cells (NCSCs) is promising for potential cell-based therapies for post-traumatic peripheral nerve regeneration. Here, we report that human gingiva-derived mesenchymal stem cells (GMSCs) could be reproducibly and readily induced into NCSCs via non-genetic approaches. Compared to parental GMSCs, induced NCSC population had increased expression in NCSC-related genes and displayed robust differentiation into neuronal and Schwann-like cells. Knockdown of the expression of Yes-associated protein 1 (YAP1), a critical mechanosensor and mechanotransducer, attenuated the expression of NCSC-related genes; specific blocking of RhoA/ROCK activity and non-muscle myosin II (NM II)-dependent contraction suppressed YAP1 and NCSC-related genes and concurrently abolished neural spheroid formation in NCSCs. Using a rat model of facial nerve defect, implantation of NCSC-laden nerve conduits promoted functional regeneration of the injured nerve. These promising findings demonstrate that induced NCSCs derived from GMSCs represent an easily accessible and promising source of neural stem-like cells for peripheral nerve regeneration.


Neural crest stem cells Gingiva-derived mesenchymal stem cells YAP1 RhoA/ROCK Facial nerve regeneration 


Author Contributions

Qunzhou Zhang: Conception and Design, Collection and/or assembly of data, Data analysis and interpretation, Manuscript writing. Phuong D. Nguyen: Collection and/or assembly of data. Shihong Shi: Collection and/or assembly of data. Justin C. Burrell: Collection and/or assembly of data. Kacy D. Cullen: Conception and Design, Manuscript writing. Anh D. Le: Conception and Design, Manuscript writing, Final approval of manuscript.

Funding Information

This work was supported by the National Institute of Health Research Grant, R01DE 019932 (to A. L.), the Osteo Science Foundation (OSF) (to Q. Z. Z., and A. L.), Oral and Maxillofacial Surgery Foundation (OMSF) Research Support Grant (to Q. Z. Z. and A. L.), the Schoenleber Funding Support (A. L.), and the US Department of Defense, W81XWH-16-1-0796 & W81XWH-15-1-0466 (to D. K. C.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22. CrossRefPubMedGoogle Scholar
  2. 2.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. CrossRefPubMedGoogle Scholar
  3. 3.
    Mandrycky C, Wang Z, Kim K et al. (2015) 3D bioprinting for engineering complex tissues. Biotechnol AdvGoogle Scholar
  4. 4.
    Hsieh FY, Hsu SH (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 0Google Scholar
  5. 5.
    Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK (2017) Biomaterials and cells for neural tissue engineering: current choices. Mater Sci Eng C Mater Biol Appl 77:1302–1315. CrossRefPubMedGoogle Scholar
  6. 6.
    Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T (2016) Human neural tissue construct fabrication based on scaffold-free tissue engineering. Adv Healthcare Mater 5(15):1931–1938. CrossRefGoogle Scholar
  7. 7.
    Euler de Souza Lucena E, Guzen FP, Lopes de Paiva Cavalcanti JR, Galvão Barboza CA, Silva do Nascimento Júnior E, Cavalcante JS (2014) Experimental considerations concerning the use of stem cells and tissue engineering for facial nerve regeneration: a systematic review. J Oral Maxillofac Surg 72(5):1001–1012. CrossRefPubMedGoogle Scholar
  8. 8.
    Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156. CrossRefPubMedGoogle Scholar
  9. 9.
    Bhangra KS, Busuttil F, Phillips JB et al (2016) Using stem cells to grow artificial tissue for peripheral nerve repair. Stem Cells Int 2016:7502178CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Picard-Riera N, Nait-Oumesmar B, Baron-Van EA (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76(2):223–231. CrossRefPubMedGoogle Scholar
  12. 12.
    Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472. CrossRefPubMedGoogle Scholar
  15. 15.
    Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thier M, Worsdorfer P, Lakes YB et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. CrossRefPubMedGoogle Scholar
  17. 17.
    Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G (2014) Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15(4):497–506. CrossRefPubMedGoogle Scholar
  18. 18.
    Yu KR, Shin JH, Kim JJ et al. (2015) Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell RepGoogle Scholar
  19. 19.
    Su G, Zhao Y, Wei J, Xiao Z, Chen B, Han J, Chen L, Guan J et al (2013) Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials 34(24):5897–5906. CrossRefPubMedGoogle Scholar
  20. 20.
    Feng N, Han Q, Li J, Wang S, Li H, Yao X, Zhao RC (2014) Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev 23(5):515–529. CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W et al (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24(6):665–679. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dupin E, Coelho-Aguiar JM (2013) Isolation and differentiation properties of neural crest stem cells. Cytometry A 83:38–47CrossRefPubMedGoogle Scholar
  23. 23.
    Kaltschmidt B, Kaltschmidt C, Widera D (2012) Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev 8(3):658–671. CrossRefPubMedGoogle Scholar
  24. 24.
    Boddupally K, Wang G, Chen Y, Kobielak A (2016) Lgr5 marks neural crest derived multipotent oral stromal stem cells. Stem Cells 34(3):720–731. CrossRefPubMedGoogle Scholar
  25. 25.
    Abe S, Yamaguchi S, Sato Y, Harada K (2016) Sphere-derived multipotent progenitor cells obtained from human oral mucosa are enriched in neural crest cells. Stem Cells Transl Med 5(1):117–128. CrossRefPubMedGoogle Scholar
  26. 26.
    Xu X, Chen C, Akiyama K, Chai Y, AD LE, Wang Z, Shi S (2013) Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J Dent Res 92(9):825–832. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fournier BP, Loison-Robert LS, Ferre FC et al (2016) Characterisation of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures. Eur Cell Mater. 31:40–58. CrossRefPubMedGoogle Scholar
  28. 28.
    Morikawa S, Ouchi T, Shibata S et al (2016) Applications of mesenchymal stem cells and neural crest cells in craniofacial skeletal research. Stem Cells Int 2016:2849879CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wislet-Gendebien S, Laudet E, Neirinckx V, Alix P, Leprince P, Glejzer A, Poulet C, Hennuy B et al (2012) Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cell Mol Life Sci 69(15):2593–2608. CrossRefPubMedGoogle Scholar
  30. 30.
    Coste C, Neirinckx V, Sharma A, Agirman G, Rogister B, Foguenne J, Lallemend F, Gothot A et al (2017) Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues. PLoS One 12(7):e0177962. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tseng TC, Hsieh FY, Dai NT, Hsu S (2016) Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials 102:148–161. CrossRefPubMedGoogle Scholar
  32. 32.
    La Noce M, Mele L, Tirino V et al (2014) Neural crest stem cell population in craniomaxillofacial development and tissue repair. Eur Cell Mater 28:348–357. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, AD LE (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Q, Nguyen P, Xu Q, Park W, Lee S, Furuhashi A, AD LE (2017) Neural progenitor-like cells induced from human gingiva-derived mesenchymal stem cells regulate myelination of Schwann cells in rat sciatic nerve regeneration. Stem Cells Transl Med 6(2):458–470. CrossRefPubMedGoogle Scholar
  35. 35.
    Peltier J, Ormerod BK, Schaffer DV (2010) Isolation of adult hippocampal neural progenitors. Methods Mol Biol 621:57–63. CrossRefPubMedGoogle Scholar
  36. 36.
    Siebzehnrubl FA, Steindler DA (2013) Isolating and culturing of precursor cells from the adult human brain. Methods Mol Biol 1059:79–86. CrossRefPubMedGoogle Scholar
  37. 37.
    Struckhoff AP, Del Valle L (2013) Neurospheres and glial cell cultures: immunocytochemistry for cell phenotyping. Methods Mol Biol 1078:119–132. CrossRefPubMedGoogle Scholar
  38. 38.
    Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A 76(1):514–517. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barnes D, Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22(3):649–655. CrossRefPubMedGoogle Scholar
  40. 40.
    Tomita K, Madura T, Sakai Y, Yano K, Terenghi G, Hosokawa K (2013) Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience 236:55–65. CrossRefPubMedGoogle Scholar
  41. 41.
    Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28(4):1634–1643. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cao J, Xiao Z, Jin W, Chen B, Meng D, Ding W, Han S, Hou X et al (2013) Induction of rat facial nerve regeneration by functional collagen scaffolds. Biomaterials 34(4):1302–1310. CrossRefPubMedGoogle Scholar
  43. 43.
    Sasaki R, Matsumine H, Watanabe Y, Takeuchi Y, Yamato M, Okano T, Miyata M, Ando T (2014) Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats. Plast Reconstr Surg 134(5):970–978. CrossRefPubMedGoogle Scholar
  44. 44.
    Matsumine H, Takeuchi Y, Sasaki R, Kazama T, Kano K, Matsumoto T, Sakurai H, Miyata M et al (2014) Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model. Plast Reconstr Surg 134(4):686–697. CrossRefPubMedGoogle Scholar
  45. 45.
    Degistirici O, Jaquiery C, Schonebeck B et al (2008) Defining properties of neural crest-derived progenitor cells from the apex of human developing tooth. Tissue Eng A 14(2):317–330. CrossRefGoogle Scholar
  46. 46.
    Davies LC, Locke M, Webb RD et al (2010) A multipotent neural crest-derived progenitor cell population is resident within the oral mucosa lamina propria. Stem Cells Dev 19(6):819–830. CrossRefPubMedGoogle Scholar
  47. 47.
    Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23(6):727–737. CrossRefPubMedGoogle Scholar
  48. 48.
    Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y et al (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2(4):392–403. CrossRefPubMedGoogle Scholar
  49. 49.
    Menendez L, Yatskievych TA, Antin PB, Dalton S (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 108(48):19240–19245. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13(9):591–600. CrossRefPubMedGoogle Scholar
  51. 51.
    Serinagaoglu Y, Pare J, Giovannini M et al (2015) Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol 398(1):97–109. CrossRefPubMedGoogle Scholar
  52. 52.
    Ding R, Weynans K, Bossing T et al. (2016) The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun 7Google Scholar
  53. 53.
    Hindley CJ, Condurat AL, Menon V, Thomas R, Azmitia LM, Davis JA, Pruszak J (2016) The hippo pathway member YAP enhances human neural crest cell fate and migration. Sci Rep 6(1):23208. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yee HF Jr, Melton AC, Tran BN (2001) RhoA/rho-associated kinase mediates fibroblast contractile force generation. Biochem Biophys Res Commun 280(5):1340–1345. CrossRefPubMedGoogle Scholar
  55. 55.
    Sandquist JC, Swenson KI, Demali KA et al (2006) Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem 281(47):35873–35883. CrossRefPubMedGoogle Scholar
  56. 56.
    Kovacs M, Toth J, Hetenyi C et al (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279(34):35557–35563. CrossRefPubMedGoogle Scholar
  57. 57.
    Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M (2011) Human epidermal neural crest stem cells (hEPI-NCSC)—characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Rev 7(4):799–814. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Biernaskie J (2010) Human hair follicles: “bulging” with neural crest-like stem cells. J Investig Dermatol 130(5):1202–1204. CrossRefPubMedGoogle Scholar
  59. 59.
    Krejci E, Grim M (2010) Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol 56(4):149–157Google Scholar
  60. 60.
    Hara S, Hayashi R, Soma T, Kageyama T, Duncan T, Tsujikawa M, Nishida K (2014) Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev 23(18):2190–2201. CrossRefPubMedGoogle Scholar
  61. 61.
    Hauser S, Widera D, Qunneis F, Müller J, Zander C, Greiner J, Strauss C, Lüningschrör P et al (2012) Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells Dev 21(5):742–756. CrossRefPubMedGoogle Scholar
  62. 62.
    Pelaez D, Huang CY, Cheung HS (2013) Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment. Stem Cells Dev 22(21):2906–2914. CrossRefPubMedGoogle Scholar
  63. 63.
    Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45:36–45. CrossRefPubMedGoogle Scholar
  64. 64.
    Hsu SH, Huang GS, Lin SY et al (2012) Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng A 18(1-2):67–79. CrossRefGoogle Scholar
  65. 65.
    Huang GS, Dai LG, Yen BL, Hsu S (2011) Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 32(29):6929–6945. CrossRefPubMedGoogle Scholar
  66. 66.
    Boyle ST, Samuel MS (2016) Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases 7(3):139–146. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646. CrossRefPubMedGoogle Scholar
  68. 68.
    Volk GF, Pantel M, Guntinas-Lichius O (2010) Modern concepts in facial nerve reconstruction. Head Face Med 6(1):25. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M (2014) Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 23(7):741–754. CrossRefPubMedGoogle Scholar
  70. 70.
    Guo ZY, Sun X, Xu XL, Zhao Q, Peng J, Wang Y (2015) Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res 10(4):651–658. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I et al (2015) Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev 24(3):296–311. CrossRefPubMedGoogle Scholar
  72. 72.
    Yamamoto T, Osako Y, Ito M et al. (2015) Trophic effects of dental pulp stem cells on Schwann Cells in peripheral nerve regeneration. cell transplantationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Surgery and PharmacologyUniversity of Pennsylvania School of Dental MedicinePhiladelphiaUSA
  2. 2.Division of Plastic and Reconstructive SurgeryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  3. 3.Department of NeurosurgeryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  4. 4.Department of Oral and Maxillofacial SurgeryPenn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced MedicinePhiladelphiaUSA

Personalised recommendations