Advertisement

Molecular Neurobiology

, Volume 55, Issue 8, pp 6956–6964 | Cite as

Prospects of Cannabidiol for Easing Status Epilepticus-Induced Epileptogenesis and Related Comorbidities

  • Dinesh Upadhya
  • Olagide W. Castro
  • Raghavendra Upadhya
  • Ashok K. ShettyEmail author
Article

Abstract

The hippocampus is one of the most susceptible regions in the brain to be distraught with status epilepticus (SE) induced injury. SE can occur from numerous causes and is more frequent in children and the elderly population. Administration of a combination of antiepileptic drugs can abolish acute seizures in most instances of SE but cannot prevent the morbidity typically seen in survivors of SE such as cognitive and mood impairments and spontaneous recurrent seizures. This is primarily due to the inefficiency of antiepileptic drugs to modify the evolution of SE-induced initial precipitating injury into a series of epileptogenic changes followed by a state of chronic epilepsy. Chronic epilepsy is typified by spontaneous recurrent seizures, cognitive dysfunction, and depression, which are associated with persistent inflammation, significantly waned neurogenesis, and abnormal synaptic reorganization. Thus, alternative approaches that are efficient not only for curtailing SE-induced initial brain injury, neuroinflammation, aberrant neurogenesis, and abnormal synaptic reorganization but also for thwarting or restraining the progression of SE into a chronic epileptic state are needed. In this review, we confer the promise of cannabidiol, an active ingredient of Cannabis sativa, for preventing or easing SE-induced neurodegeneration, neuroinflammation, cognitive and mood impairments, and the spontaneous recurrent seizures.

Keywords

Cannabidiol Cognitive dysfunction Chronic epilepsy Depression Memory Mossy fiber sprouting Spontaneous seizures Status epilepticus 

Notes

Acknowledgments

The authors are supported by grants from the Department of Defense (CDMRP W81XWH-14-1-0558 to A.K.S.) and the Department of Veterans Affairs (VA Merit Award grant I01BX000883 and VA-BLR&D Research Career Scientist award, 1IK6BX003612 to A.K.S.). Olagide W Castro was supported by a Visiting Scientist Award from CAPES Foundation, Ministry of Education, Government of Brazil (O.W.C).

References

  1. 1.
    Trinka E, Kalviainen R (2017) 25 years of advances in the definition, classification and treatment of status epilepticus. Seizure 44:65–73.  https://doi.org/10.1016/j.seizure.2016.11.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Fountain NB (2000) Status epilepticus: risk factors and complications. Epilepsia 41(s2):S23–S30.  https://doi.org/10.1111/j.1528-1157.2000.tb01521.x PubMedCrossRefGoogle Scholar
  3. 3.
    Hesdorffer DC, Logroscino G, Cascino G, Annegers JF, Hauser WA (1998) Incidence of status epilepticus in Rochester, Minnesota, 1965-1984. Neurology 50(3):735–741.  https://doi.org/10.1212/WNL.50.3.735 PubMedCrossRefGoogle Scholar
  4. 4.
    Menon R, Radhakrishnan A, Radhakrishnan K (2013) Status epilepticus. J Assoc Physicians India 61(8 Suppl):58–63PubMedGoogle Scholar
  5. 5.
    Betjemann JP, Lowenstein DH (2015) Status epilepticus in adults. Lancet Neurol 14(6):615–624.  https://doi.org/10.1016/S1474-4422(15)00042-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Sanchez S, Rincon F (2016) Status epilepticus: epidemiology and public health needs. J Clin Med 5(8):71.  https://doi.org/10.3390/jcm5080071 PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Trinka E, Brigo F, Shorvon S (2016) Recent advances in status epilepticus. Curr Opin Neurol 29:189–198PubMedCrossRefGoogle Scholar
  8. 8.
    Loscher W (2017) The search for new screening models of pharmacoresistant epilepsy: is induction of acute seizures in epileptic rodents a suitable approach? Neurochem Res 42(7):1926–1938.  https://doi.org/10.1007/s11064-016-2025-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Hattiangady B, Kuruba R, Shetty AK (2011) Acute seizures in old age leads to a greater loss of CA1 pyramidal neurons, an increased propensity for developing chronic TLE and a severe cognitive dysfunction. Aging Dis 2:1–17PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5(17807)Google Scholar
  11. 11.
    Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17(10):3727–3738PubMedCrossRefGoogle Scholar
  12. 12.
    Pauletti A, Terrone G, Shekh-AhmadT SA, Ravizza T, Rizzi M et al (2017) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 140(7):1885–1899.  https://doi.org/10.1093/brain/awx117 PubMedCrossRefGoogle Scholar
  13. 13.
    Rao MS, Hattiangady B, Reddy DS, Shetty AK (2006) Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J Neurosci Res 83(6):1088–1105.  https://doi.org/10.1002/jnr.20802 PubMedCrossRefGoogle Scholar
  14. 14.
    Rao MS, Hattiangady B, Shetty AK (2008) Status epilepticus during old age is not associated with enhanced hippocampal neurogenesis. Hippocampus 18(9):931–944.  https://doi.org/10.1002/hipo.20449 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pitkänen A, Engel J Jr (2014) Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11:231–241PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17(3):473–490.  https://doi.org/10.1016/j.nbd.2004.08.008 PubMedCrossRefGoogle Scholar
  17. 17.
    Hattiangady B, Shetty AK (2010) Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus 20(1):97–112.  https://doi.org/10.1002/hipo.20594 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rotheneichner P, Marschallinger J, Couillard-Despres S, Aigner L (2013) Neurogenesis and neuronal regeneration in status epilepticus. Epilepsia 54:40–42.  https://doi.org/10.1111/epi.12274 PubMedCrossRefGoogle Scholar
  19. 19.
    Scharfman HE, Gray WP (2007) Relevance of seizure-induced neurogenesis in animal models of epilepsy to the etiology of temporal lobe epilepsy. Epilepsia 48(s2):33–41.  https://doi.org/10.1111/j.1528-1167.2007.01065.x PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shetty AK (2014) Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection? Epilepsy Behav 38:117–124.  https://doi.org/10.1016/j.yebeh.2013.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Buckmaster PS (2014) Does mossy fiber sprouting give rise to the epileptic state? Adv Exp Med Biol 813:161–168.  https://doi.org/10.1007/978-94-017-8914-1_13 PubMedCrossRefGoogle Scholar
  22. 22.
    Koyama R (2016) Dentate circuitry as a model to study epileptogenesis. Biol Pharm Bull 39(6):891–896.  https://doi.org/10.1248/bpb.b16-00125 PubMedCrossRefGoogle Scholar
  23. 23.
    Shetty AK, Zaman V, Hattiangady B (2005) Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci 25:8391–8401PubMedCrossRefGoogle Scholar
  24. 24.
    Shetty AK, Turner DA (1997) Fetal hippocampal cells grafted to kainate-lesioned CA3 region of adult hippocampus suppress aberrant supragranular sprouting of host mossy fibers. Exp Neurol 143(2):231–245.  https://doi.org/10.1006/exnr.1996.6363 PubMedCrossRefGoogle Scholar
  25. 25.
    Shetty AK, Turner DA (1999) Aging impairs axonal sprouting response of dentate granule cells following target loss and partial deafferentation. J Comp Neurol 414(2):238–254.  https://doi.org/10.1002/(SICI)1096-9861(19991115)414:2<238::AID-CNE7>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  26. 26.
    Shetty AK, Turner DA (2000) Fetal hippocampal grafts containing CA3 cells restore host hippocampal glutamate decarboxylase-positive interneuron numbers in a rat model of temporal lobe epilepsy. J Neurosci 20(23):8788–8801PubMedCrossRefGoogle Scholar
  27. 27.
    Shetty AK, Hattiangady B, Rao MS (2009) Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. J Cell Mol Med 13:2408–2423PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Marx M, Haas CA, Haussler U (2013) Differential vulnerability of interneurons in the epileptic hippocampus. Front Cell Neurosci 7(167).  https://doi.org/10.3389/fncel.2013.00167
  29. 29.
    Buckmaster PS, Abrams E, Wen X (2017) Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 525:2592–2610PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62:S21–S38PubMedGoogle Scholar
  31. 31.
    Scharfman HE, Brooks-Kayal AR (2014) Is plasticity of GABAergic mechanisms relevant to epileptogenesis? Adv Exp Med Biol 813:133–150.  https://doi.org/10.1007/978-94-017-8914-1_11 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Qian F, Tang FR (2016) Metabotropic glutamate receptors and interacting proteins in epileptogenesis. Curr Neuropharmacol 14(5):551–562.  https://doi.org/10.2174/1570159X14666160331142228 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Coulter DA, Steinhauser C (2015) Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med 5(3):a022434.  https://doi.org/10.1101/cshperspect.a022434 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131.  https://doi.org/10.1016/j.freeradbiomed.2013.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40.  https://doi.org/10.1038/nrneurol.2010.178 PubMedCrossRefGoogle Scholar
  36. 36.
    Vezzani A, Lang B, Aronica E (2015) Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 6:a022699PubMedCrossRefGoogle Scholar
  37. 37.
    Orcinha C, Munzner G, Gerlach J, Kilias A, Follo M, Egert U, Haas CA (2016) Seizure-induced motility of differentiated dentate granule cells is prevented by the central Reelin fragment. Front Cell Neurosci 10:183PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54(7):1315–1329.  https://doi.org/10.1111/epi.12220 PubMedCrossRefGoogle Scholar
  39. 39.
    Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, di Marzo V et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55(6):791–802.  https://doi.org/10.1111/epi.12631 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Peixoto-Santos JE, Velasco TR, Galvis-Alonso OY, Araujo D, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC et al (2015) Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: extracellular matrix molecules are important for the maintenance of hippocampal volume. Epilepsia 56(10):1562–1570.  https://doi.org/10.1111/epi.13082 PubMedCrossRefGoogle Scholar
  41. 41.
    Rodrigues GR, Kandratavicius L, Peixoto-Santos JE, Monteiro MR, Gargaro AC, Geraldi Cde V, Velasco TR, Leite JP (2015) Increased frequency of hippocampal sclerosis ILAE type 2 in patients with mesial temporal lobe epilepsy with normal episodic memory. Brain 138(6):e359.  https://doi.org/10.1093/brain/awu340 PubMedCrossRefGoogle Scholar
  42. 42.
    Abel EL (1980) Marihuana: the first twelve thousand years. Plenum Press, New York.  https://doi.org/10.1007/978-1-4899-2189-5 CrossRefGoogle Scholar
  43. 43.
    Brill H (1981) Marihuana: the first twelve thousand years. J Psychoactive Drugs 13(4):397–398.  https://doi.org/10.1080/02791072.1981.10471902 PubMedCrossRefGoogle Scholar
  44. 44.
    Solimini R, Rotolo MC, Pichini S, Pacifici R (2017) Neurological disorders in medical use of cannabis: an update. CNS Neurol Disord Drug Targets 16(5):527–533.  https://doi.org/10.2174/1871527316666170413105421 PubMedCrossRefGoogle Scholar
  45. 45.
    Steenkamp MM, Blessing EM, Galatzer-Levy IR, Hollahan LC, Anderson WT (2017) Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: a literature review. Depress Anxiety 34(3):207–216.  https://doi.org/10.1002/da.22596 PubMedCrossRefGoogle Scholar
  46. 46.
    Tkaczyk M, Florek E, Piekoszewski W (2012) Marihuana and cannobinoids as medicaments. Przegl Lek 69:1095–1097PubMedGoogle Scholar
  47. 47.
    ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36.  https://doi.org/10.1007/978-3-319-45541-9_1 PubMedCrossRefGoogle Scholar
  48. 48.
    Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78(5):539–548.  https://doi.org/10.1016/j.lfs.2005.09.011 PubMedCrossRefGoogle Scholar
  49. 49.
    Nickels K (2017) Cannabidiol in patients with intractable epilepsy due to TSC: a possible medication but not a miracle. Epilepsy Curr 17(2):91–92.  https://doi.org/10.5698/1535-7511.17.2.91 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613PubMedGoogle Scholar
  51. 51.
    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936.  https://doi.org/10.1073/pnas.87.5.1932 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lupica CR, Hu Y, Devinsky O, Hoffman AF (2017) Cannabinoids as hippocampal network administrators. Neuropharmacology 124:25–37.  https://doi.org/10.1016/j.neuropharm.2017.04.003 PubMedCrossRefGoogle Scholar
  53. 53.
    Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29(7):2053–2063.  https://doi.org/10.1523/JNEUROSCI.4212-08.2009 PubMedCrossRefGoogle Scholar
  54. 54.
    Chesher GB, Jackson DM, Malor RM (1975) Interaction of delta 9-tetrahydrocannabinol and cannabidiol with phenobarbitone in protecting mice from electrically induced convulsions. J Pharm Pharmacol 27(8):608–609.  https://doi.org/10.1111/j.2042-7158.1975.tb09515.x PubMedCrossRefGoogle Scholar
  55. 55.
    Consroe P, Benedito MA, Leite JR, Carlini EA, Mechoulam R (1982) Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol 83(3-4):293–298.  https://doi.org/10.1016/0014-2999(82)90264-3 PubMedCrossRefGoogle Scholar
  56. 56.
    Hosseinzadeh M, Nikseresht S, Khodagholi F, Naderi N, Maghsoudi N (2016) Cannabidiol post-treatment alleviates rat epileptic-related behaviors and activates hippocampal cell autophagy pathway along with antioxidant defense in chronic phase of pilocarpine-induced seizure. J Mol Neurosci 58:432–440PubMedCrossRefGoogle Scholar
  57. 57.
    Izquierdo I, Orsingher OA, Berardi AC (1973) Effect of cannabidiol and of other cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 28(1):95–102.  https://doi.org/10.1007/BF00413961 PubMedCrossRefGoogle Scholar
  58. 58.
    Jones NA, Glyn SE, Akiyama S, Hill TD, Hill AJ, Weston SE (2012) Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21(5):344–352.  https://doi.org/10.1016/j.seizure.2012.03.001 PubMedCrossRefGoogle Scholar
  59. 59.
    Rosenberg EC, Patra PH, Whalley BJ (2017) Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav 70(Pt B):319–327.  https://doi.org/10.1016/j.yebeh.2016.11.006 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mao K, You C, Lei D, Zhang H (2015) High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect. Int J Clin Exp Med 15:8820–8827Google Scholar
  61. 61.
    Kaplan JS, Stella N, Catterall WA, Westenbroek RE (2017) Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 114(42):11229–11234.  https://doi.org/10.1073/pnas.1711351114 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Alvarez FJ, Lafuente H, Rey-Santano MC, Mielgo VE, Gastiasoro E, Rueda M (2008) Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res 64(6):653–658.  https://doi.org/10.1203/PDR.0b013e318186e5dd PubMedCrossRefGoogle Scholar
  63. 63.
    Do Val-da Silva RA, Peixoto-Santos JE, Kandratavicius L, De Ross JB, Esteves I, De Martinis BS, Alves MNR, Scandiuzzi RC et al (2017) Protective effects of cannabidiol against seizures and neuronal death in a rat model of mesial temporal lobe epilepsy. Front Pharmacol 8(131)Google Scholar
  64. 64.
    Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29(3):574–577.  https://doi.org/10.1016/j.yebeh.2013.08.037 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, Hung P, Lerner JT et al (2015) Perceived efficacy of cannabidiol-enriched cannabis extracts fortreatment of pediatric epilepsy: a potential role for infantile spasms andLennox-Gastaut syndrome. Epilepsy Behav 47:138–141.  https://doi.org/10.1016/j.yebeh.2015.04.009 PubMedCrossRefGoogle Scholar
  66. 66.
    Press CA, Knupp KG, Chapman KE (2015) Parental reporting of response to oralcannabis extracts for treatment of refractory epilepsy. Epilepsy Behav 45:49–52.  https://doi.org/10.1016/j.yebeh.2015.02.043 PubMedCrossRefGoogle Scholar
  67. 67.
    Tzadok M, Uliel-Siboni S, Linder I, Kramer U, Epstein O, Menascu S, Nissenkorn A, Yosef OB et al (2016) CBD-enriched medical cannabis for intractable pediatric epilepsy: the current Israeli experience. Seizure 35:41–44.  https://doi.org/10.1016/j.seizure.2016.01.004 PubMedCrossRefGoogle Scholar
  68. 68.
    Aguirre-Velázquez CG (2017) Report from a survey of parents regarding the use of cannabidiol (Medicinal cannabis) in Mexican children with refractory epilepsy. Neurol Res Int 2017(2985729):1–5.  https://doi.org/10.1155/2017/2985729 CrossRefGoogle Scholar
  69. 69.
    Suraev AS, Todd L, Bowen MT, Allsop DJ, McGregor IS, Ireland C, Lintzeris N (2017) An Australian nationwide survey on medicinal cannabis use for epilepsy: history of antiepileptic drug treatment predicts medicinal cannabis use. Epilepsy Behav 70(Pt B):334–340.  https://doi.org/10.1016/j.yebeh.2017.02.005 PubMedCrossRefGoogle Scholar
  70. 70.
    Treat L, Chapman KE, Colborn KL, Knupp KG (2017) Duration of use of oral cannabis extract in a cohort of pediatric epilepsy patients. Epilepsia 58(1):123–127.  https://doi.org/10.1111/epi.13617 PubMedCrossRefGoogle Scholar
  71. 71.
    Mathern GW, Beninsig L, Nehlig A (2015) Fewer specialists support using medical marijuana and CBD in treating epilepsy patients compared with other medical professionals and patients: result of Epilepsia’s survey. Epilepsia 56:1–6PubMedCrossRefGoogle Scholar
  72. 72.
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, Miller I, Flamini R et al (2016) Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15(3):270–278.  https://doi.org/10.1016/S1474-4422(15)00379-8 PubMedCrossRefGoogle Scholar
  73. 73.
    Hess EJ, Moody KA, Geffrey AL, Pollack SF, Skirvin LA, Bruno PL, Paolini JL, Thiele EA (2016) Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia 57(10):1617–1624.  https://doi.org/10.1111/epi.13499 PubMedCrossRefGoogle Scholar
  74. 74.
    Kaplan EH, Offermann EA, Sievers JW, Comi AM (2017) Cannabidiol treatment for refractory seizures in Sturge-Weber syndrome. Pediatr Neurol 71:18–23.  https://doi.org/10.1016/j.pediatrneurol.2017.02.009 PubMedCrossRefGoogle Scholar
  75. 75.
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, Scheffer IE, Thiele EA et al (2017) Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 376(21):2011–2020.  https://doi.org/10.1056/NEJMoa1611618 PubMedCrossRefGoogle Scholar
  76. 76.
    Ridler C (2017) Epilepsy: cannabidiol reduces seizure frequency in Dravet syndrome. Nat Rev Neurol 13(7):383.  https://doi.org/10.1038/nrneurol.2017.86 PubMedCrossRefGoogle Scholar
  77. 77.
    O’Connell BK, Gloss D, Devinsky O (2017) Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav 70:341–348PubMedCrossRefGoogle Scholar
  78. 78.
    Warren PP, Bebin EM, Nabors LB, Szaflarski JP (2017) The use of cannabidiol for seizure management in patients with brain tumor-related epilepsy. Neurocase 23(5-6):287–291.  https://doi.org/10.1080/13554794.2017.1391294 PubMedCrossRefGoogle Scholar
  79. 79.
    Saade D, Joshi C (2015) Pure cannabidiol in the treatment of malignant migrating partial seizures in infancy: a case report. Pediatr Neurol 52:544–547PubMedCrossRefGoogle Scholar
  80. 80.
    Crippa JA, Crippa AC, Hallak JE, Martín-Santos R, Zuardi AW (2016) Δ9-THC intoxication by cannabidiol-enriched cannabis extract in two children with refractory epilepsy: full remission after switching to purified cannabidiol. Front Pharmacol 7(359).  https://doi.org/10.3389/fphar.2016.00359
  81. 81.
    Verrotti A, Carrozzino D, Milioni M, Minna M, Fulcheri M (2014) Epilepsy and its main psychiatric comorbidities in adults and children. J Neurol Sci 343:23–29PubMedCrossRefGoogle Scholar
  82. 82.
    Rao G, Mashkouri S, Aum D, Marcet P, Borlongan CV (2017) Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms. Neuropsychiatr Dis Treat 13:585–596PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rosenberg EC, Louik J, Conway E, Devinsky O, Friedman D (2017) Quality of life in childhood epilepsy in pediatric patients enrolled in a prospective, open-label clinical study with cannabidiol. Epilepsia 58:96–100CrossRefGoogle Scholar
  84. 84.
    Gomes FV, Resstel LB, Guimarães FS (2011) The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacology 213(2-3):465–473.  https://doi.org/10.1007/s00213-010-2036-z PubMedCrossRefGoogle Scholar
  85. 85.
    Klein BD, Jacobson CA, Metcalf CS, Smith MD, Wilcox KS, Hampson AJ, Kehne JH (2017) Evaluation of cannabidiol in animal seizure models by the Epilepsy Therapy Screening Program (ETSP). Neurochem Res 42(7):1939–1948.  https://doi.org/10.1007/s11064-017-2287-8 PubMedCrossRefGoogle Scholar
  86. 86.
    Gofshteyn JS, Wilfong A, Devinsky O, Bluvstein J, Charuta J, Ciliberto MA, Laux L, Marsh ED (2017) Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J Child Neurol 32(1):35–40.  https://doi.org/10.1177/0883073816669450 PubMedCrossRefGoogle Scholar
  87. 87.
    Geffrey AL, Pollack SF, Bruno PL, Thiele EA (2015) Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia 56:246–251CrossRefGoogle Scholar
  88. 88.
    Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP (2017) UAB CBD program interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia 58(9):1586–1592.  https://doi.org/10.1111/epi.13852 PubMedCrossRefGoogle Scholar
  89. 89.
    Rosenberg EC, Tsien RW, Whalley BJ, Devinsky O (2015) Cannabinoids and epilepsy. Neurotherapeutics 12(4):747–768.  https://doi.org/10.1007/s13311-015-0375-5 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90.  https://doi.org/10.1016/0006-2952(95)00109-D PubMedCrossRefGoogle Scholar
  91. 91.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215(1):89–97.  https://doi.org/10.1006/bbrc.1995.2437 PubMedCrossRefGoogle Scholar
  92. 92.
    Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L et al (2015) Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 290(14):8711–8721.  https://doi.org/10.1074/jbc.M114.618447 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Vilela LR, Lima IV, Kunsch ÉB, Pinto HPP, de Miranda AS, Vieira ÉLM, de Oliveira ACP, Moraes MFD et al (2017) Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav 75:29–35.  https://doi.org/10.1016/j.yebeh.2017.07.014 PubMedCrossRefGoogle Scholar
  94. 94.
    Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol 434(1):183–213.  https://doi.org/10.1113/jphysiol.1991.sp018465 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12(10):4122–4132PubMedCrossRefGoogle Scholar
  96. 96.
    Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14(9):923–930.  https://doi.org/10.1038/nm.f.1869 PubMedCrossRefGoogle Scholar
  97. 97.
    Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558PubMedCrossRefGoogle Scholar
  98. 98.
    Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24(1):53–62.  https://doi.org/10.1523/JNEUROSCI.4503-03.2004 PubMedCrossRefGoogle Scholar
  99. 99.
    Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26(11):2991–3001.  https://doi.org/10.1523/JNEUROSCI.4872-05.2006 PubMedCrossRefGoogle Scholar
  100. 100.
    Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29(3 Suppl):27–46Google Scholar
  101. 101.
    Jones NA, Hill AJ, Smith I, Bevan SA, Williams CM, Whalley BJ, Stephens GJ (2010) Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J Pharmacol Exp Ther 332(2):569–577.  https://doi.org/10.1124/jpet.109.159145 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285(1):285–292PubMedGoogle Scholar
  103. 103.
    Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 110(13):5193–5198.  https://doi.org/10.1073/pnas.1211204110 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shirazi-zand Z, Ahmad-Molaei L, Motamedi F, Naderi N (2013) The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole andmaximal electroshock models of seizure in mice. Epilepsy Behav 28(1):1–7.  https://doi.org/10.1016/j.yebeh.2013.03.009 PubMedCrossRefGoogle Scholar
  105. 105.
    Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR (2016) Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 139:2164–2181PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hill AJ, Jones NA, Smith I, Hill CL, Williams CM, Stephens GJ, Whalley BJ (2014) Voltage-gated sodium (NaV) channel blockade by plant cannabinoids does not confer anticonvulsant effects per se. Neurosci Lett 30:269–274CrossRefGoogle Scholar
  107. 107.
    Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E et al (2014) Non psychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 19:1131–1141CrossRefGoogle Scholar
  108. 108.
    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103(20):7895–7900.  https://doi.org/10.1073/pnas.0511232103 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pandolfo P, Silveirinha V, dos Santos-Rodrigues A, Venance L, Ledent C, Takahashi RN, Cunha RA, Kofalvi A (2011) Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 655(1-3):38–45.  https://doi.org/10.1016/j.ejphar.2011.01.013 PubMedCrossRefGoogle Scholar
  110. 110.
    De Petrocellis L, Di Marzo V (2010) Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J NeuroImmune Pharmacol 5(1):103–121.  https://doi.org/10.1007/s11481-009-9177-z PubMedCrossRefGoogle Scholar
  111. 111.
    Booz GW (2011) Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 51(5):1054–1061.  https://doi.org/10.1016/j.freeradbiomed.2011.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hayakawa K, Mishima K, Nozako M, Ogata A, Hazekawa M, Liu AX et al (2013) Repeated treatment with cannabidiol but not Delta9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance. Neuropharmacology 52:1079–1087CrossRefGoogle Scholar
  113. 113.
    Hill TD, Cascio MG, Romano B, Duncan M, Pertwee RG, Williams CM, Whalley BJ, Hill AJ (2013) Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 170(3):679–692.  https://doi.org/10.1111/bph.12321 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vilela LR, Gomides LF, David BA, Antunes MM, Diniz AB, Moreira Fde A, Menezes GB (2015) Cannabidiol rescues acute hepatic toxicity and seizure induced by cocaine. Mediat Inflamm.  https://doi.org/10.1155/2015/523418
  115. 115.
    Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S, Khan S, Khalifa Y (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 49(12):5526–5531.  https://doi.org/10.1167/iovs.08-2196 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mecha M, Torrao AS, Mestre L, Carrillo-Salinas FJ, Mechoulam R, Guaza C (2012) Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress. Cell Death Dis 28:e331CrossRefGoogle Scholar
  117. 117.
    Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24PubMedCrossRefGoogle Scholar
  118. 118.
    Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014:1–8.  https://doi.org/10.1155/2014/901902 CrossRefGoogle Scholar
  119. 119.
    Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV (2015) Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 46: 2616–2627Google Scholar
  120. 120.
    Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, Borlongan CV (2015) Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat 11:97–106.  https://doi.org/10.2147/NDT.S65815 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783.  https://doi.org/10.1126/science.aag2590 PubMedCrossRefGoogle Scholar
  122. 122.
    Long Q, Upadhya D, Kim DK, Hattiangady B, An SY, Prockop DJ, Shetty AK (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and preventabnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 114:E3536–E3545PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Rubio M, Valdeolivas S, Piscitelli F, Verde R, Satta V, Barroso E, Montolio M, Aras LM et al (2016) Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome. Pharmacol Res Perspect 4(00220):e00220.  https://doi.org/10.1002/prp2.220 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Gobira PH, Vilela LR, Gonçalves BD, Santos RP, de Oliveira AC, Vieira LB et al (2015) Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: Possible role of the mTOR pathway and reduction in glutamate release. Neurotoxicology 50:116–121.  https://doi.org/10.1016/j.neuro.2015.08.007 PubMedCrossRefGoogle Scholar
  125. 125.
    Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P et al (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151(8):1272–1279.  https://doi.org/10.1038/sj.bjp.0707337 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Rosemergy I, Adler J, Psirides A (2016) Cannabidiol oil in the treatment of super refractory status epilepticus. A case report. Seizure 35:56–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Regenerative Medicine and Department of Molecular and Cellular MedicineTexas A&M Health Science Center College of MedicineCollege StationUSA
  2. 2.Olin E. Teague Veterans’ Medical CenterCentral Texas Veterans Health Care SystemTempleUSA
  3. 3.Department of Anatomy, Kasturba Medical CollegeManipal Academy of Higher EducationManipalIndia
  4. 4.Institute of Biological Sciences and HealthFederal University of Alagoas (UFAL)MaceioBrazil

Personalised recommendations