The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity

  • Hanna Kim
  • Carles Calatayud
  • Sangib Guha
  • Irene Fernández-Carasa
  • Laura Berkowitz
  • Iria Carballo-Carbajal
  • Mario Ezquerra
  • Rubén Fernández-Santiago
  • Pankaj Kapahi
  • Ángel Raya
  • Antonio Miranda-Vizuete
  • Jose Miguel Lizcano
  • Miquel Vila
  • Kim A. Caldwell
  • Guy A. Caldwell
  • Antonella Consiglio
  • Esther Dalfo


Parkinson’s disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson’s disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson’s disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson’s disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson’s disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson’s disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.


Parkinson’s disease Dopaminergic neurons Alpha-synuclein accumulation Autophagy impairment RAC1/ced-10 



The genetic strain BR3579 was kindly provided by Dr. Ralf Baumeister (Albert-Ludwing University, Freiburg/Brisgau, Germany). Plasmids Rac1-GFP WT and Rac1-GFP (CA) HYM772 were kindly provided by Dr. Francisco Sánchez-Madrid (Spanish National Center for Cardiovascular Research (CNIC), Madrid, Spain). The construct Pced-10::CFP::CED-10 was a generous gift provided by Erik Lundquist (University of Kansas, Lawrence, KS, USA). Human neuroblastoma cell line BE(2)-M17 over-expressing wild type α-SYN was provided by Dr. B. Wolozin (Boston University School of Medicine).

Compliance with Ethical Standards

All experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) of the University of Barcelona. All procedures adhered to internal and EU guidelines for research involving derivation of pluripotent cell lines. All subjects gave informed consent for the study using forms approved by the Ethical Committee on the Use of Human Subjects in Research at Hospital Clinic in Barcelona, Spain. Generation of iPSC lines was approved by the Advisory Committee for Human Tissue and Cell Donation and Use, by the Commission on Guarantees concerning the Donation and Use of Human Tissues and Cells of the Carlos III Health Institute, Madrid, Spain. All procedures were done in accordance with institutional guidelines following the Spanish legislation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_881_MOESM1_ESM.pdf (421 kb)
ESM 1 (PDF 421 kb)
12035_2018_881_MOESM2_ESM.pdf (201 kb)
ESM 2 (PDF 200 kb)
12035_2018_881_MOESM3_ESM.avi (78 mb)
Video 1 (AVI 256315 kb)


  1. 1.
    Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691. CrossRefPubMedGoogle Scholar
  2. 2.
    Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW et al (2015) Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14(8):855–866.
  3. 3.
    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715. CrossRefPubMedGoogle Scholar
  4. 4.
    Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, Rohan de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475. CrossRefPubMedGoogle Scholar
  5. 5.
    Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23(2):1–13. CrossRefPubMedGoogle Scholar
  6. 6.
    Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199.
  7. 7.
    Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2(2):a001818. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Musilli M, Ciotti MT, Pieri M, Martino A, Borrelli S, Dinallo V, Diana G (2016) Therapeutic effects of the Rho GTPase modulator CNF1 in a model of Parkinson’s disease. Neuropharmacology 109:357–365. CrossRefPubMedGoogle Scholar
  9. 9.
    Schnack C, Danzer KM, Hengerer B, Gillardon F (2008) Protein array analysis of oligomerization-induced changes in alpha-synuclein protein-protein interactions points to an interference with Cdc42 effector proteins. Neuroscience 154(4):1450–1457. CrossRefPubMedGoogle Scholar
  10. 10.
    Koch JC, Bitow F, Haack J, d'Hedouville Z, Zhang JN, Tönges L, Michel U, Oliveira LMA et al (2015) Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 6(7):e1811.
  11. 11.
    Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Böhm KJ, Winner B (2013) α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kinchen JM, Cabello J, Klingele D, Wong K, Feichtinger R, Schnabel H, Schnabel R, Hengartner MO (2005) Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434(7029):93–99. CrossRefPubMedGoogle Scholar
  13. 13.
    Hou ST, Jiang SX, Smith RA (2008) Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 267:125–181. CrossRefPubMedGoogle Scholar
  14. 14.
    Cabello J et al (2014) PDR-1/hParkin negatively regulates the phagocytosis of apoptotic cell corpses in Caenorhabditis elegans. Cell Death Dis 5Google Scholar
  15. 15.
    Paisán-Ruíz C et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600. CrossRefPubMedGoogle Scholar
  16. 16.
    Chan D, Citro A, Cordy JM, Shen GC, Wolozin B (2011) Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2). J Biol Chem 286(18):16140–16149. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pesaresi MG, Amori I, Giorgi C, Ferri A, Fiorenzo P, Gabanella F, Salvatore AM, Giorgio M et al (2011) Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Hum Mol Genet 20(21):4196–4208.
  18. 18.
    Philippens IH et al (2013) Oral treatment with the NADPH oxidase antagonist apocynin mitigates clinical and pathological features of parkinsonism in the MPTP marmoset model. J NeuroImmune Pharmacol 8(3):715–726. CrossRefPubMedGoogle Scholar
  19. 19.
    Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283(35):23542–23556. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I, Jiménez-Delgado S, Caig C, Mora S, di Guglielmo C, Ezquerra M et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4(5):380–395.
  21. 21.
    Zavodszky E et al (2014) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun 5:3828CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang Y, Chegini F, Chua G, Murphy K, Gai W, Halliday GM (2012) Macroautophagy in sporadic and the genetic form of Parkinson’s disease with the A53T α-synuclein mutation. Transl Neurodegener 1(1):2. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191.
  24. 24.
    Schapira AH (2015) Glucocerebrosidase and Parkinson disease: recent advances. Mol Cell Neurosci 66(Pt A):37–42CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946. CrossRefPubMedGoogle Scholar
  26. 26.
    Li W, Zou W, Yang Y, Chai Y, Chen B, Cheng S, Tian D, Wang X et al (2012) Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J Cell Biol 197(1):27–35.
  27. 27.
    Cheng S, Wu Y, Lu Q, Yan J, Zhang H, Wang X (2013) Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 9(12):2022–2032. CrossRefPubMedGoogle Scholar
  28. 28.
    Reddien PW, Horvitz HR (2000) CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2(3):131–136. CrossRefPubMedGoogle Scholar
  29. 29.
    Shakir MA, Gill JS, Lundquist EA (2006) Interactions of UNC-34 enabled with Rac GTPases and the NIK kinase MIG-15 in Caenorhabditis elegans axon pathfinding and neuronal migration. Genetics 172(2):893–913. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR (2011) Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J 30(6):1110–1122. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hills T, Brockie PJ, Maricq AV (2004) Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 24(5):1217–1225. CrossRefPubMedGoogle Scholar
  32. 32.
    Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC et al (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 23(2):473–482.
  33. 33.
    Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631. CrossRefPubMedGoogle Scholar
  34. 34.
    Lee J, Jee C, McIntire SL (2009) Ethanol preference in C. elegans. Genes Brain Behav 8(6):578–585. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn 239(5):1282–1295. PubMedGoogle Scholar
  37. 37.
    Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163(2):215–226. CrossRefPubMedGoogle Scholar
  38. 38.
    Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25(15):3801–3812. CrossRefPubMedGoogle Scholar
  39. 39.
    Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oczypok EA, Oury TD, Chu CT (2013) It’s a cell-eat-cell world: autophagy and phagocytosis. Am J Pathol 182(3):612–622. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3):e1000027. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Martinez BA, Kim H, Ray A, Caldwell GA, Caldwell KA (2015) A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. Cell Death Dis 6(10):e1908. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    van der Goot AT, Zhu W, Vazquez-Manrique RP, Seinstra RI, Dettmer K, Michels H, Farina F, Krijnen J et al (2012) Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc Natl Acad Sci U S A 109(37):14912–14917.
  44. 44.
    Gidalevitz T, Krupinski T, Garcia S, Morimoto RI (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5(3):e1000399. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kuwahara T, Tonegawa R, Ito G, Mitani S, Iwatsubo T (2012) Phosphorylation of α-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem 287(10):7098–7109. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295. CrossRefPubMedGoogle Scholar
  47. 47.
    Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, Carmona-Gutierrez D, Eisenberg T et al (2014) Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908.
  48. 48.
    Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovács AL, Kumsta C, Lapierre LR et al (2015) Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11(1):9–27.
  49. 49.
    Guo B, Huang X, Zhang P, Qi L, Liang Q, Zhang X, Huang J, Fang B et al (2014) Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep 15(6):705–713.
  50. 50.
    Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141(6):1042–1055.
  51. 51.
    Jiang P, Gan M, Ebrahim A, Lin WL, Melrose HL, Yen SHC (2010) ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegener 5(1):56. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Raiss CC, Braun TS, Konings IBM, Grabmayr H, Hassink GC, Sidhu A, le Feber J, Bausch AR et al (2016) Functionally different α-synuclein inclusions yield insight into Parkinson’s disease pathology. Sci Rep 6(1):23116.
  53. 53.
    MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4):587–593. CrossRefPubMedGoogle Scholar
  54. 54.
    Fernández-Santiago R et al (2015) Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. EMBO Mol Med 7(12):1529–1546. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Johnson MA, Weick JP, Pearce RA, Zhang SC (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27(12):3069–3077. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A et al (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30(20):6930–6943.
  57. 57.
    Lorenzetto E, Ettorre M, Pontelli V, Bolomini-Vittori M, Bolognin S, Zorzan S, Laudanna C, Buffelli M (2013) Rac1 selective activation improves retina ganglion cell survival and regeneration. PLoS One 8(5):e64350. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kanekura K, Hashimoto Y, Kita Y, Sasabe J, Aiso S, Nishimoto I, Matsuoka M (2005) A Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J Biol Chem 280(6):4532–4543. CrossRefPubMedGoogle Scholar
  59. 59.
    Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nichols AL et al (2016) The apoptotic engulfment machinery regulates axonal degeneration in C. elegans neurons. Cell Rep 14(7):1673–1683. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang B, Zhang Y, Shacter E (2004) Rac1 inhibits apoptosis in human lymphoma cells by stimulating bad phosphorylation on Ser-75. Mol Cell Biol 24(14):6205–6214.
  62. 62.
    Cheng C, Kong X, Wang H, Gan H, Hao Y, Zou W, Wu J, Chi Y et al (2009) Trihydrophobin 1 interacts with PAK1 and regulates ERK/MAPK activation and cell migration. J Biol Chem 284(13):8786–8796.
  63. 63.
    Cicenas J (2008) The potential role of Akt phosphorylation in human cancers. Int J Biol Markers 23(1):1–9. CrossRefPubMedGoogle Scholar
  64. 64.
    Nagarajan A, Ning Y, Reisner K, Buraei Z, Larsen JP, Hobert O, Doitsidou M (2014) Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death. J Neurosci 34(17):5738–5746. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule dynamics. Curr Biol 25(15):R677–R691. CrossRefPubMedGoogle Scholar
  66. 66.
    Chia JX, Efimova N, Svitkina TM (2016) Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors. Mol Biol Cell 27(23):3695–3704. CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dubey J, Ratnakaran N, Koushika SP (2015) Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci 9:343CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CCJ, Whitworth AJ et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245.
  69. 69.
    Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL (2008) The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 86(8):1711–1720. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Okada T, Hirai C, Badawy SMM, Zhang L, Kajimoto T, Nakamura Si (2016) Impairment of PDGF-induced chemotaxis by extracellular α-synuclein through selective inhibition of Rac1 activation. Sci Rep 6(1):37810. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sousa VL, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009) {alpha}-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 20(16):3725–3739. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5(2):e9313.
  73. 73.
    Mak SK, McCormack AL, Manning-Boğ AB, Cuervo AM, di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285(18):13621–13629. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Vijayakumaran S, Wong M, Antony H, Pountney D (2015) Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. Biomol Ther 5(3):1697–1716. Google Scholar
  75. 75.
    Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM, Savitt JM (2012) Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy. J Neurosci 32(46):16503–16509. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J Neurosci 31(41):14508–14520. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037.
  78. 78.
    Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406.
  79. 79.
    Alegre-Abarrategui J, Christian H, Lufino MMP, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18(21):4022–4034. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Saha S, Liu-Yesucevitz L, Wolozin B (2014) Regulation of autophagy by LRRK2 in Caenorhabditis elegans. Neurodegener Dis 13(2–3):110–113. PubMedGoogle Scholar
  81. 81.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30(4):313–321. CrossRefPubMedGoogle Scholar
  83. 83.
    Nollen EA et al (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101(17):6403–6408. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Palmisano NJ, Meléndez A (2016) Detection of autophagy in Caenorhabditis elegans. Cold Spring Harb Protoc 2016(2):pdb.top070466. CrossRefPubMedGoogle Scholar
  86. 86.
    Lapierre LR et al (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267PubMedGoogle Scholar
  87. 87.
    Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH, Vescovi AL, Naldini L (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci U S A 101(41):14835–14840. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hanna Kim
    • 1
  • Carles Calatayud
    • 2
    • 3
    • 4
  • Sangib Guha
    • 5
  • Irene Fernández-Carasa
    • 2
    • 3
  • Laura Berkowitz
    • 1
  • Iria Carballo-Carbajal
    • 6
  • Mario Ezquerra
    • 7
  • Rubén Fernández-Santiago
    • 7
  • Pankaj Kapahi
    • 5
  • Ángel Raya
    • 4
    • 8
  • Antonio Miranda-Vizuete
    • 9
  • Jose Miguel Lizcano
    • 10
  • Miquel Vila
    • 6
    • 8
    • 10
  • Kim A. Caldwell
    • 1
  • Guy A. Caldwell
    • 1
  • Antonella Consiglio
    • 2
    • 3
    • 11
  • Esther Dalfo
    • 10
    • 12
  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA
  2. 2.Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELLL’Hospitalet de LlobregatSpain
  3. 3.Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
  4. 4.Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i ReynalsL’Hospitalet de LlobregatSpain
  5. 5.Buck Institute for Research on AgingNovatoUSA
  6. 6.Neurodegenerative Diseases Research GroupVall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)BarcelonaSpain
  7. 7.Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental ResearchIDIBAPS – Hospital Clínic de BarcelonaBarcelonaSpain
  8. 8.Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
  9. 9.Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/ Universidad de SevillaSevillaSpain
  10. 10.Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
  11. 11.Department of Molecular and Translational MedicineUniversity of BresciaBresciaSpain
  12. 12.Faculty of MedicineUniversity of Vic-Central University of Catalonia (UVic-UCC)VicSpain

Personalised recommendations