Skip to main content

Advertisement

Log in

Brain Photobiomodulation Therapy: a Narrative Review

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson’s disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hennessy M, Hamblin MR (2016) Photobiomodulation and the brain: A new paradigm. J Opt 19(1):013003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hamblin MR, de Sousa MVP, Agrawal T (2016) Handbook of low-level laser therapy. Pan Stanford Publishing Pte. Ltd, Singapore

    Book  Google Scholar 

  3. Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U (2006) Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed Laser Ther 24(4):458–466

    Article  Google Scholar 

  5. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):9–27

    Article  Google Scholar 

  6. McCarthy TJ, De Taboada L, Hildebrandt PK, Ziemer EL, Richieri SP, Streeter J (2010) Long-term safety of single and multiple infrared transcranial laser treatments in Sprague–Dawley rats. Photomed Laser Surg 28(5):663–667

    Article  PubMed  Google Scholar 

  7. Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988

    Article  PubMed  Google Scholar 

  8. Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB, Huang Y-Y, Wu Q et al (2011) Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6(10):e26212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yip K, Lo S, Leung M, So K, Tang C, Poon D (2011) The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia. Neuroscience 190:301–306

    Article  PubMed  CAS  Google Scholar 

  10. De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T, Streeter J, Kindy MS (2011) Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis 23(3):521–535

    Article  PubMed  CAS  Google Scholar 

  11. Oueslati A, Lovisa B, Perrin J, Wagnières G, van den Bergh H, Tardy Y, Lashuel HA (2015) Photobiomodulation suppresses alpha-synuclein-induced toxicity in an AAV-based rat genetic model of Parkinson’s disease. PLoS One 10(10):e0140880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salehpour F, Rasta SH (2017) The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 28(4):441–453

    Article  PubMed  CAS  Google Scholar 

  14. Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S (2017) Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 58:140–150

    Article  PubMed  CAS  Google Scholar 

  15. Michalikova S, Ennaceur A, van Rensburg R, Chazot P (2008) Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light. Neurobiol Learn Mem 89(4):480–488

    Article  PubMed  CAS  Google Scholar 

  16. Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez KE, Reyes H (2016) “Quantum leap” in photobiomodulation therapy ushers in a new generation of light-based treatments for cancer and other complex diseases: Perspective and mini-review. Photomed Laser Surg 34(3):93–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen Y, De Taboada L, O’Connor M, Delapp S, Zivin JA (2013) Thermal effects of transcranial near-infrared laser irradiation on rabbit cortex. Neurosci Lett 553:99–103

    Article  PubMed  CAS  Google Scholar 

  18. Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis 32(3):741–752

    Article  PubMed  CAS  Google Scholar 

  19. Tian F, Hase SN, Gonzalez-Lima F, Liu H (2016) Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med 48(4):343–349

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nawashiro H, Wada K, Nakai K, Sato S (2012) Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state. Photomed Laser Surg 30(4):231–233

    Article  PubMed  CAS  Google Scholar 

  21. Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, Zhu L, Liu TC-Y et al (2017) Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 49:165–182

    Article  PubMed  CAS  Google Scholar 

  22. Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J (2014) Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models. Alzheimers Res Ther 6(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Quirk BJ, Torbey M, Buchmann E, Verma S, Whelan HT (2012) Near-infrared photobiomodulation in an animal model of traumatic brain injury: Improvements at the behavioral and biochemical levels. Photomed Laser Surg 30(9):523–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Liang H, Whelan H, Eells J, Meng H, Buchmann E, Lerch-Gaggl A, Wong-Riley M (2006) Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience 139(2):639–649

    Article  PubMed  CAS  Google Scholar 

  25. Lee HI, Park JH, Park MY, Kim NG, Park K-J, Choi BT, Shin Y-I, Shin HK (2016) Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor Neurol Neurosci 34(2):201–214

    PubMed  CAS  Google Scholar 

  26. Moreira MS, Velasco IT, Ferreira LS, Ariga SKK, Barbeiro DF, Meneguzzo DT, Abatepaulo F, Marques MM (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B Biol 97(3):145–151

    Article  CAS  Google Scholar 

  27. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8(6):502–511

    Article  PubMed  CAS  Google Scholar 

  28. Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J et al (2017) Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 32(1):169–180

    Article  PubMed  Google Scholar 

  29. Xuan W, Huang L, Hamblin MR (2016) Repeated transcranial low-level laser therapy for traumatic brain injury in mice: Biphasic dose response and long-term treatment outcome. J Biophotonics 9(11–12):1263–1272

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, Zhang G, Yang L et al (2016) Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol 54(6):4551–4559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP III et al (2014) Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. J Neurotrauma 31(11):1008–1017

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Biomed opt, Int Soc Optics Photon 6140(61001):1–12

    Google Scholar 

  33. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6(10):829–838

    PubMed  CAS  Google Scholar 

  34. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA (2011) Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: Two case reports. Photomed Laser Surg 29(5):351–358

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karu T (1988) Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci 2(1):53–74

    Google Scholar 

  36. Hill BC (1994) Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J Biol Chem 269(4):2419–2425

    PubMed  CAS  Google Scholar 

  37. Karu T, Kolyakov S (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Ther 23(4):355–361

    Article  CAS  Google Scholar 

  38. Ball KA, Castello PR, Poyton RO (2011) Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J Photochem Photobiol B Biol 102(3):182–191

    Article  CAS  Google Scholar 

  39. Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez K (2010) Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed Laser Surg 28(S1):41–52

    Article  CAS  Google Scholar 

  40. Hamblin MR (2008) The role of nitric oxide in low level light therapy. In: Biomedical Optics (BiOS). International Society for Optics and Photonics, Vol. 6846, pp. 684602–1

  41. Karu TI (2000) Mechanisms of low-power laser light action on cellular level. In: EOS/SPIE European Biomedical Optics Week. International Society for Optics and Photonics, pp 1–17

  42. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364

    Article  CAS  Google Scholar 

  43. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Sub 1861(2):441–449

    Article  CAS  Google Scholar 

  45. Barrett D, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23

    Article  PubMed  CAS  Google Scholar 

  46. Blanco NJ, Maddox WT, Gonzalez-Lima F (2015) Improving executive function using transcranial infrared laser stimulation. J Neuropsychol 11(1):14–25

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hwang J, Castelli DM, Gonzalez-Lima F (2016) Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med Sci 31(6):1151–1160

    Article  PubMed  Google Scholar 

  48. Duggett NA, Chazot PL (2014) Low-intensity light therapy (1068 nm) protects CAD neuroblastoma cells from [Beta]-amyloid-mediated cell death. Biol Med 6(3):1

    Google Scholar 

  49. Dougal G, Lee S (2013) Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 38(7):713–718

    PubMed  CAS  Google Scholar 

  50. Grillo S, Duggett N, Ennaceur A, Chazot P (2013) Non-invasive infra-red therapy (1072nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. J Photochem Photobiol B Biol 123:13–22

    Article  CAS  Google Scholar 

  51. Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37(12):3789–3802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bradford A, Barlow A, Chazot PL (2005) Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: Evidence of selective cytoprotection by IR1072. J Photochem Photobiol B Biol 81(1):9–14

    Article  CAS  Google Scholar 

  54. Tsai S-R, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207

    Article  CAS  Google Scholar 

  55. Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J et al (2014) Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6:238ra269

    Article  CAS  Google Scholar 

  56. Buscone S, Mardaryev AN, Raafs B, Bikker JW, Sticht C, Gretz N, Farjo N, Uzunbajakava NE et al (2017) A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle. Lasers Surg Med 49(7):705–718

    Article  PubMed  Google Scholar 

  57. Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86(4):447–457

    Article  PubMed  CAS  Google Scholar 

  58. Lapchak PA (2010) Taking a light approach to treating acute ischemic stroke patients: Transcranial near-infrared laser therapy translational science. Ann Med 42(8):576–586

    Article  PubMed  Google Scholar 

  59. Liu Y, Lai P, Ma C, Xu X, Grabar AA, Wang LV (2015) Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat Commun 6:5904

    Article  PubMed  CAS  Google Scholar 

  60. Sagar V, Atluri V, Tomitaka A, Shah P, Nagasetti A, Pilakka-Kanthikeel S, El-Hage N, McGoron A et al (2016) Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain. Sci Rep 6:29792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D et al (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10(1):1060–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yue L, Humayun MS (2015) Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J Biomed Opt 20(8):088001

    Article  Google Scholar 

  63. Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain. Neuropsychiatr Dis Treat 11:2191–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, Beute GN, van Vugt JP et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol 12(1):37–44

    Article  PubMed  Google Scholar 

  66. DiMauro TM, Attawia M, Holy C, Lilienfeld S, Sutton JK, Ward M (2007) Red light implant for treating Parkinson's disease. Google Patents,

  67. Darlot F, Moro C, Massri N, Chabrol C, Johnstone DM, Reinhart F, Agay D, Torres N et al (2016) Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann Neurol 79(1):59–75

    Article  PubMed  Google Scholar 

  68. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Pitzschke A, Lovisa B, Seydoux O, Zellweger M, Pfleiderer M, Tardy Y, Wagnières G (2015) Red and NIR light dosimetry in the human deep brain. Phys Med Biol 60(7):2921

    Article  PubMed  CAS  Google Scholar 

  70. Johnstone D, El Massri N, Moro C, Spana S, Wang X, Torres N, Chabrol C, De Jaeger X et al (2014) Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—an abscopal neuroprotective effect. Neuroscience 274:93–101

    Article  PubMed  CAS  Google Scholar 

  71. Moro C, Massri NE, Torres N, Ratel D, De Jaeger X, Chabrol C, Perraut F, Bourgerette A et al (2014) Photobiomodulation inside the brain: A novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice: Laboratory investigation. J Neurosurg 120(3):670–683

    Article  PubMed  Google Scholar 

  72. Johnstone D, Coleman K, Moro C, Torres N, Eells J, Baker G, Ashkan K, Stone J et al (2014) The potential of light therapy in Parkinson’s disease. Chrono Physiol Ther 4:1–14

    CAS  Google Scholar 

  73. Lapchak PA (2012) Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Devices 9(1):71–83

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L (2017) Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal Photobiomodulation: Case series report. Photomed Laser Surg 35(8):432–441

    Article  PubMed  PubMed Central  Google Scholar 

  75. Burchman MA (2011) Using photobiomodulation on a severe Parkinson’s patient to enable extractions, root canal treatment, and partial denture fabrication. J Laser Dent 19:297–300

    Google Scholar 

  76. Zhao G, Guo K, Dan J 36 case analysis of Parkinson’s disease treated by endonasal low energy He-Ne laser. Acta Acad Med Qingdao Univ 39:398

  77. Lim L (2013) The potential of intranasal light therapy for brain stimulation. In: Presented, NAALTA Conference, Palm Beach Gardens, Florida.

  78. Sun L, Peräkylä J, Kovalainen A, Ogawa KH, Karhunen PJ, Hartikainen KM (2016) Human brain reacts to transcranial extraocular light. PLoS One 11(2):e0149525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Timonen M, Nissilä J, Liettu A, Jokelainen J, Jurvelin H, Aunio A, Räsänen P, Takala T (2012) Can transcranial brain-targeted bright light treatment via ear canals be effective in relieving symptoms in seasonal affective disorder?—A pilot study. Med Hypotheses 78(4):511–515

    Article  PubMed  Google Scholar 

  80. Jurvelin H, Takala T, Nissilä J, Timonen M, Rüger M, Jokelainen J, Räsänen P (2014) Transcranial bright light treatment via the ear canals in seasonal affective disorder: A randomized, double-blind dose-response study. BMC Psychiatry 14(1):288

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533

    Article  PubMed  Google Scholar 

  82. Hamblin MR (2016) Shining light on the head: Photobiomodulation for brain disorders. BBA Clin 6:113–124

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cui X, Bray S, Bryant DM, Glover GH, Reiss AL (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54(4):2808–2821

    Article  PubMed  Google Scholar 

  84. Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis A-C, Fallgatter AJ (2011) Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: Implications for optical neuroimaging. PLoS One 6(10):e26377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Strangman GE, Zhang Q, Li Z (2014) Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. NeuroImage 85:136–149

    Article  PubMed  Google Scholar 

  86. White D, Widdowson E, Woodard H, Dickerson J (1991) The composition of body tissues.(II) Fetus to young adult. Br J Radiol 64(758):149–159

    Article  PubMed  CAS  Google Scholar 

  87. Firbank M, Hiraoka M, Essenpreis M, Delpy D (1993) Measurement of the optical properties of the skull in the wavelength range 650-950 nm. Phys Med Biol 38(4):503

    Article  PubMed  CAS  Google Scholar 

  88. Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S (2016) Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers Surg Med 48(7):695–705

    Article  PubMed  Google Scholar 

  89. Lapchak PA, Boitano PD, Butte PV, Fisher DJ, Hölscher T, Ley EJ, Nuño M, Voie AH et al (2015) Transcranial near-infrared laser transmission (NILT) profiles (800 nm): Systematic comparison in four common research species. PLoS One 10(6):e0127580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Jagdeo JR, Adams LE, Brody NI, Siegel DM (2012) Transcranial red and near infrared light transmission in a cadaveric model. PLoS One 7(10):e47460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lapchak PA, Boitano PD (2016) Transcranial near-infrared laser therapy for stroke: How to recover from futility in the NEST-3 clinical trial. Acta Neurochir Suppl 121:7–12

    Article  PubMed  Google Scholar 

  92. Aulakh K, Zakaib S, Willmore WG, Winnie NY (2016) Transcranial light-tissue interaction analysis. In: SPIE BiOS, International Society for Optics and Photonics 9706:97061–97065

  93. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W et al (2009) Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40(4):1359–1364

    Article  PubMed  Google Scholar 

  94. Yaroslavsky A, Schulze P, Yaroslavsky I, Schober R, Ulrich F, Schwarzmaier H (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47(12):2059

    Article  PubMed  CAS  Google Scholar 

  95. Hart NS, Fitzgerald M (2016) A new perspective on delivery of red-near-infrared light therapy for disorders of the brain. Discov Med 22(120):147–156

    PubMed  Google Scholar 

  96. Karu TI (2003) Cellular mechanism of low power laser therapy: New questions. Lasers Med Dent 3:79–100

    Google Scholar 

  97. Hode T, Duncan D, Kirkpatrick S, Jenkins P, Hode L (2009) The importance of coherence in phototherapy. In: SPIE BiOS Biomedical Optics, International Society for Optics and Photonics 7165:716507

  98. Litscher D, Litscher G (2014) Laser therapy and dementia: A database analysis and future aspects on LED-based systems. Int J Photoenergy doi:https://doi.org/10.1155/2014/268354

  99. Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, Ando T, Xu T et al (2013) Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: Effect of treatment repetition regimen. PLoS One 8(1):e53454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S et al (2012) Low-level laser therapy for closed-head traumatic brain injury in mice: Effect of different wavelengths. Lasers Surg Med 44(3):218–226

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021

    Article  PubMed  CAS  Google Scholar 

  103. Nunnari J, Suomalainen A (2012) Mitochondria: In sickness and in health. Cell 148(6):1145–1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B Biol 140:344–358

    Article  CAS  Google Scholar 

  105. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6):a011304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771

    Article  PubMed  CAS  Google Scholar 

  107. Wong-Riley MT, Bai X, Buchmann E, Whelan HT (2001) Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 12(14):3033–3037

    Article  PubMed  CAS  Google Scholar 

  108. Rojas JC, Lee J, John JM, Gonzalez-Lima F (2008) Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci 28(50):13511–13521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ying R, Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone-and MPP+−induced neurotoxicity. Brain Res 1243:167–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Sommer AP, Bieschke J, Friedrich RP, Zhu D, Wanker EE, Fecht HJ, Mereles D, Hunstein W (2012) 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: Basis for treatment of Alzheimer’s disease? Photomed Laser Surg 30(1):54–60

    Article  PubMed  Google Scholar 

  111. Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U (2009) Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener 4(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K (2002) Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett 323(3):207–210

    Article  PubMed  CAS  Google Scholar 

  113. Lapchak PA, Boitano PD (2016) A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 1646:125–131

    Article  PubMed  CAS  Google Scholar 

  114. Lapchak PA, De Taboada L (2010) Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res 1306:100–105

    Article  PubMed  CAS  Google Scholar 

  115. Dong T, Zhang Q, Hamblin MR, Wu MX (2015) Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab 35(9):1435–1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Oron U, Ilic S, De Taboada L, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182

    Article  PubMed  CAS  Google Scholar 

  117. Ferraresi C, Kaippert B, Avci P, Huang YY, Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91(2):411–416

    Article  PubMed  CAS  Google Scholar 

  118. Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ (2017) Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy. Photomed Laser Surg 35(8):395–400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Rodell AB, O’Keefe G, Rowe CC, Villemagne VL, Gjedde A (2016) Cerebral blood flow and Aβ-amyloid estimates by WARM analysis of [11C] PiB uptake distinguish among and between neurodegenerative disorders and aging. Front Aging Neurosci 8:321

    PubMed  Google Scholar 

  120. Borghammer P, Cumming P, Østergaard K, Gjedde A, Rodell A, Bailey CJ, Vafaee MS (2012) Cerebral oxygen metabolism in patients with early Parkinson’s disease. J Neurol Sci 313(1):123–128

    Article  PubMed  CAS  Google Scholar 

  121. Nagafusa Y, Okamoto N, Sakamoto K, Yamashita F, Kawaguchi A, Higuchi T, Matsuda H (2012) Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder. J Affect Disord 140(3):296–299

    Article  PubMed  Google Scholar 

  122. Sadigh-Eteghad S, Mahmoudi J, Babri S, Talebi M (2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30(11):736–742

    Article  PubMed  Google Scholar 

  123. Litscher G, Min L, Passegger CA, Litscher D, Li M, Wang M, Ghaffari-Tabrizi-Wizsy N, Stelzer I et al (2015) Transcranial yellow, red, and infrared laser and LED stimulation: Changes of vascular parameters in a Chick embryo model. Integr Med Int 2(1–2):80–89

    Article  Google Scholar 

  124. Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M (2010) Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med 42(6):566–576

    Article  PubMed  Google Scholar 

  125. Lee HI, Lee S-W, Kim SY, Kim NG, Park K-J, Choi BT, Shin Y-I, Shin HK (2017) Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem Biophys Res Commun 486(4):945–950

    Article  PubMed  CAS  Google Scholar 

  126. Salgado AS, Zângaro RA, Parreira RB, Kerppers II (2015) The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. J Lasers Med Sci 30(1):339–346

    Article  Google Scholar 

  127. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  PubMed  CAS  Google Scholar 

  128. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. https://doi.org/10.1155/2013/316523

  129. Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F, Carrillo-Vico A (2014) Oxidative stress in traumatic brain injury. Curr Med Chem 21(10):1201–1211

    Article  PubMed  CAS  Google Scholar 

  130. Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int 62(5):712–718

    Article  PubMed  CAS  Google Scholar 

  131. Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS, Sethi S, Zeni M et al (2016) The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 65:134–144

    Article  CAS  Google Scholar 

  132. Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) Role of reactive oxygen species in low level light therapy. In: SPIE BiOS: Biomedical Optics, International Society for Optics and Photonics 716502–716511

  133. Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D et al (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Tafur J, Mills PJ (2008) Low-intensity light therapy: Exploring the role of redox mechanisms. Photomed Laser Surg 26(4):323–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB, Wu X, Chakrabarti K et al (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B Biol 86(3):252–261

    Article  CAS  Google Scholar 

  136. Wang F, Xing D, Chen T-S (2006) High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells. In: Fourth International Conference on Photonics and Imaging in Biology and Medicine, International Society for Optics and Photonics 6047:60473–60476

  137. Yang X, Askarova S, Sheng W, Chen J, Sun AY, Sun GY, Yao G, Lee J-M (2010) Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience 171(3):859–868

    Article  PubMed  CAS  Google Scholar 

  138. Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone-and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153(4):963–974

    Article  PubMed  CAS  Google Scholar 

  139. Yu Z, Li Z, Liu N, Jizhang Y, McCarthy TJ, Tedford CE, Lo EH, Wang X (2015) Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metab Brain Dis 30(3):829–837

    Article  PubMed  CAS  Google Scholar 

  140. Fukuzaki Y, Sugawara H, Yamanoha B, Kogure S (2013) 532 nm low-power laser irradiation recovers γ-secretase inhibitor-mediated cell growth suppression and promotes cell proliferation via Akt signaling. PLoS One 8(8):e70737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Fukuzaki Y, Shin H, Kawai HD, Yamanoha B, Kogure S (2015) 532 nm low-power laser irradiation facilitates the migration of GABAergic neural stem/progenitor cells in mouse neocortex. PLoS One 10(4):e0123833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Duan R, Zhu L, Liu TCY, Li Y, Liu J, Jiao J, Xu X, Yao L et al (2003) Light emitting diode irradiation protect against the amyloid beta 25–35 induced apoptosis of PC12 cell in vitro. Lasers Surg Med 33(3):199–203

    Article  PubMed  Google Scholar 

  143. Liang J, Liu L, Xing D (2012) Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med 53(7):1459–1467

    Article  PubMed  CAS  Google Scholar 

  144. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease. J Neurosci 33(33):13505–13517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  145. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calzà L (2009) Low infra red laser light irradiation on cultured neural cells: Effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med 9(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Choi D-H, Lee K-H, Kim J-H, Kim MY, Lim JH, Lee J (2012) Effect of 710nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult. Biochem Biophys Res Commun 422(2):274–279

    Article  PubMed  CAS  Google Scholar 

  147. Leung MC, Lo SC, Siu FK, So KF (2002) Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 31(4):283–288

    Article  PubMed  Google Scholar 

  148. Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W, Wannanon P, Tong-un T (2013) Laser acupuncture improves memory impairment in an animal model of Alzheimer’s disease. J Acupunct Meridian Stud 6(5):247–251

    Article  PubMed  Google Scholar 

  149. Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SE, Talebi M (2016) Astrocytic and microglial nicotinic acetylcholine receptors: An overlooked issue in Alzheimer’s disease. J Neural Transm 123(12):1359–1367

    Article  PubMed  CAS  Google Scholar 

  150. Lim W, Kim J, Kim S, Karna S, Won J, Jeon SM, Kim SY, Choi Y et al (2013) Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells. Photochem Photobiol 89(1):199–207

    Article  PubMed  CAS  Google Scholar 

  151. Meredith GE, Sonsalla PK, Chesselet M-F (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115(4):385–398

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gloire G, Legrand-Poels S, Piette J (2006) NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  PubMed  CAS  Google Scholar 

  153. Chen AC-H, Huang Y-Y, Sharma SK, Hamblin MR (2011) Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomed Laser Surg 29(6):383–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361

    Article  PubMed  PubMed Central  Google Scholar 

  155. Choi D-H, Lim JH, Lee K-H, Kim MY, Kim HY, Shin CY, Han S-H, Lee J (2012) Effect of 710-nm visible light irradiation on neuroprotection and immune function after stroke. Neuroimmunomodulation 19(5):267–276

    Article  PubMed  CAS  Google Scholar 

  156. Zhang Q, Zhou C, Hamblin MR, Wu MX (2014) Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. J Cereb Blood Flow Metab 34(8):1391–1401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK (2017) Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J Biophotonics 10(11):1502–1513

    Article  PubMed  CAS  Google Scholar 

  158. Pourmemar E, Majdi A, Haramshahi M, Talebi M, Karimi P, Sadigh-Eteghad S (2017) Intranasal Cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp Gerontol 87:16–22

    Article  PubMed  CAS  Google Scholar 

  159. Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39(12):2301–2312

    Article  PubMed  CAS  Google Scholar 

  160. Da Costa CA, Checler F (2011) Apoptosis in Parkinson’s disease: Is p53 the missing link between genetic and sporadic parkinsonism? Cell Signal 23(6):963–968

    Article  CAS  Google Scholar 

  161. Desagher S, Martinou J-C (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377

    Article  PubMed  CAS  Google Scholar 

  162. Gronbeck KR, Rodrigues CM, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA (2016) Application of tauroursodeoxycholic acid for treatment of neurological and non-neurological diseases: Is there a potential for treating traumatic brain injury? Neurocrit Care 25(1):153–166

    Article  PubMed  CAS  Google Scholar 

  163. Majdi A, Mahmoudi J, Sadigh-Eteghad S, Golzari SE, Sabermarouf B, Reyhani-Rad S (2016) Permissive role of cytosolic pH acidification in neurodegeneration: A closer look at its causes and consequences. J Neurosci Res 94(10):879–887

    Article  PubMed  CAS  Google Scholar 

  164. Qian Y-f, Wang H, Yao W-b, Gao X-d (2008) Aqueous extract of the Chinese medicine, Danggui-Shaoyao-san, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Cell Biol Int 32(2):304–311

    PubMed  Google Scholar 

  165. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(7):1461–1469

    PubMed  CAS  Google Scholar 

  166. Wong-Riley M, Whelan H, Dhokalia A, Das R, Hammamieh R, Liang H, Eells J, Jett M cDNA microarray analysis of the visual cortex exposed to light-emitting diode treatment in monocularly enucleated rats. Soc Neurosci Abstr 131:20

  167. Ghanbari A, Ghareghani M, Zibara K, Delaviz H, Ebadi E, Jahantab M (2017) Light-emitting diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats. Biomed Pharmacother 89:1320

    Article  PubMed  CAS  Google Scholar 

  168. Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35(5):369–376

    Article  PubMed  Google Scholar 

  169. Musashi M, Ota S, Shiroshita N (2000) The role of protein kinase C isoforms in cell proliferation and apoptosis. Int J Hematol 72(1):12–19

    PubMed  CAS  Google Scholar 

  170. Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18(12):1471–1473

    Article  PubMed  CAS  Google Scholar 

  171. Zhang L, Xing D, Zhu D, Chen Q (2008) Low-power laser irradiation inhibiting Aβ25-35-induced PC12 cell apoptosis via PKC activation. Cell Physiol Biochem 22(1–4):215–222

    Article  PubMed  CAS  Google Scholar 

  172. Zhang L, Zhang Y, Xing D (2010) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3β-inactivation mechanism. J Cell Physiol 224(1):218–228

    PubMed  CAS  Google Scholar 

  173. Zhang H, Wu S, Xing D (2012) Inhibition of Aβ 25–35-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cell Signal 24(1):224–232

    Article  PubMed  CAS  Google Scholar 

  174. Xuan W, Vatansever F, Huang L, Hamblin MR (2014) Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt 19(10):108003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Telerman A, Lapter S, Sharabi A, Zinger H, Mozes E (2011) Induction of hippocampal neurogenesis by a tolerogenic peptide that ameliorates lupus manifestations. J Neuroimmunol 232(1):151–157

    Article  PubMed  CAS  Google Scholar 

  176. El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid A-L et al (2017) Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: Changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 235(6):1861–1874

    Article  PubMed  CAS  Google Scholar 

  177. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, Lampl Y, Streeter J et al (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37(10):2620–2624

    Article  PubMed  Google Scholar 

  178. Yun Y-C, Jang D, Yoon S-B, Kim D, Choi D-H, Kwon O, Lee Y-M, Youn D (2017) Laser acupuncture exerts neuroprotective effects via regulation of Creb, Bdnf, Bcl-2, and Bax gene expressions in the hippocampus. Evid Based Complement Alternat Med. https://doi.org/10.1155/2017/7181637

  179. Campbell S, MacQueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29(6):417–426

    PubMed  PubMed Central  Google Scholar 

  180. Mueller SG, Schuff N, Yaffe K, Madison C, Miller B, Weiner MW (2010) Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp 31(9):1339–1347

    Article  PubMed  PubMed Central  Google Scholar 

  181. Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Yee MK, Zafonte R et al (2016) Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomed Laser Surg 34(12):610–626

    Article  PubMed  CAS  Google Scholar 

  182. Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247–262

    PubMed  PubMed Central  Google Scholar 

  183. Park H-J, Friston K (2013) Structural and functional brain networks: From connections to cognition. Science 342(6158):1238411

    Article  PubMed  CAS  Google Scholar 

  184. Xiao H, Yang Y, Xi J-h, Chen Z-q (2015) Structural and functional connectivity in traumatic brain injury. Neural Regen Res 10(12):2062–2071

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kringelbach ML, Green AL, Aziz TZ (2011) Balancing the brain: Resting state networks and deep brain stimulation. Front Integr Neurosci 5:8

    Article  PubMed  PubMed Central  Google Scholar 

  186. de la Plata CDM, Garces J, Kojori ES, Grinnan J, Krishnan K, Pidikiti R, Spence J, Devous MD et al (2011) Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Arch Neurol 68(1):74–84

    Google Scholar 

  187. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S (2012) Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. NeuroImage 59(1):511–518

    Article  PubMed  Google Scholar 

  188. Naeser M, Ho M, Martin P, Treglia E, Krengel M, Hamblin M, Baker E (2012) Improved language after scalp application of red/near-infrared light-emitting diodes: Pilot study supporting a new, noninvasive treatment for chronic aphasia. Procedia Soc Behav Sci 61:138–139

    Article  Google Scholar 

  189. Johnstone DM, Mitrofanis J, Stone J (2015) Targeting the body to protect the brain: Inducing neuroprotection with remotely-applied near infrared light. Neural Regen Res 10(3):349

    Article  PubMed  PubMed Central  Google Scholar 

  190. Petrie SR, Hamblin MR, Ionescu DF, Cusin C, Yeung A, Cassano P (2016) Photobiomodulation in patients with low back pain: A case control series for the effect on depression. Qual Prim Care 24(1):33–38

    Google Scholar 

  191. Zalewska-Kaszubska J, Obzejta D (2004) Use of low-energy laser as adjunct treatment of alcohol addiction. Lasers Med Sci 19(2):100–104

    Article  PubMed  Google Scholar 

  192. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185

    Article  PubMed  Google Scholar 

  193. Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons J-A (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 7(1):e30655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Sommer AP, Trelles MA (2014) Photomed. Laser Surg. Mary Ann Liebert, Inc. 140 Huguenot street, 3rd floor New Rochelle, NY 10801 USA,

  195. Tuby H, Maltz L, Oron U (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med 43(5):401–409

    Article  PubMed  Google Scholar 

  196. Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin 24(1):59–64

    Article  CAS  Google Scholar 

  197. Oron A, Oron U (2016) Low-level laser therapy to the bone marrow ameliorates neurodegenerative disease progression in a mouse model of Alzheimer’s disease: A minireview. Photomed Laser Surg 34(12):627–630

    Article  PubMed  CAS  Google Scholar 

  198. Farfara D, Tuby H, Trudler D, Doron-Mandel E, Maltz L, Vassar RJ, Frenkel D, Oron U (2015) Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer’s disease. J Mol Neurosci 55(2):430–436

    Article  PubMed  CAS  Google Scholar 

  199. Romeo S, Vitale F, Viaggi C, di Marco S, Aloisi G, Fasciani I, Pardini C, Pietrantoni I et al (2017) Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not. Brain Res 1662:87–101

    Article  PubMed  CAS  Google Scholar 

  200. Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: A comprehensive review. Lasers Surg Med 45(6):349–357

    Article  PubMed  PubMed Central  Google Scholar 

  201. Paolillo FR, Borghi-Silva A, Arena R, Parizotto NA, Kurachi C, Bagnato VS (2017) Effects of phototherapy plus physical training on metabolic profile and quality of life in postmenopausal women. J Cosmet Laser Ther 19(6):364–372

    Article  PubMed  Google Scholar 

  202. Mohammed HS (2016) Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci 31(8):1651–1656

    Article  PubMed  Google Scholar 

  203. Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR (2013) Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med 45(10):648–653

    Article  PubMed  Google Scholar 

  204. Chaieb L, Antal A, Masurat F, Paulus W (2015) Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Front Behav Neurosci 9:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Blanco NJ, Saucedo CL, Gonzalez-Lima F (2017) Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans. Neurobiol Learn Mem 139:69–75

    Article  PubMed  Google Scholar 

  206. Grover F Jr, Weston J, Weston M (2017) Acute effects of near infrared light therapy on brain state in healthy subjects as quantified by qEEG measures. Photomed Laser Surg 35(3):136–141

    Article  PubMed  Google Scholar 

  207. Moghadam HS, Nazari MA, Jahan A, Mahmoudi J, Salimi MM (2017) Beneficial effects of transcranial light emitting diode (LED) therapy on attentional performance: An experimental design. Iran Red Crescent Med J. https://doi.org/10.5812/ircmj.44513

  208. Hesse S, Werner C, Byhahn M (2015) Transcranial low-level laser therapy may improve alertness and awareness in traumatic brain injured subjects with severe disorders of consciousness: A case series. Int Arch Med 6:1

    Google Scholar 

  209. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B et al (2007) Infrared laser therapy for ischemic stroke: A new treatment strategy. Stroke 38(6):1843–1849

    Article  PubMed  Google Scholar 

  210. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A et al (2014) Transcranial laser therapy in acute stroke treatment. Stroke 45(11):3187–3193

    Article  PubMed  Google Scholar 

  211. Ab Boonswang N, Chicchi M, Lukachek A, Curtiss D (2012) A new treatment protocol using photobiomodulation and muscle/bone/joint recovery techniques having a dramatic effect on a stroke patient's recovery: A new weapon for clinicians. BMJ Case Rep. https://doi.org/10.1136/bcr.08.2011.4689

  212. Maksimovich IV (2015) Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer’s disease. World J Neurosci 5(3):189

    Article  Google Scholar 

  213. Berman MH, Halper JP, Nichols TW (2017) Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. J Neurol Neurosci 8(1):176

    Article  PubMed  PubMed Central  Google Scholar 

  214. Vargas E, Barrett DW, Saucedo CL, Huang L-D, Abraham JA, Tanaka H, Haley AP, Gonzalez-Lima F (2017) Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med Sci 32(5):1153–1162

    Article  PubMed  PubMed Central  Google Scholar 

  215. Maloney R, Shanks S, Maloney J (2010) The application of low-level laser therapy for the symptomatic care of late stage Parkinson's disease: A non-controlled, non-randomized study. Lasers Surg Med 185:61

    Google Scholar 

  216. Cassano P, Cusin C, Mischoulon D, Hamblin MR, De Taboada L, Pisoni A, Chang T, Yeung A et al (2015) Near-infrared transcranial radiation for major depressive disorder: Proof of concept study. Psychiatr J. https://doi.org/10.1155/2015/352979

  217. Disner SG, Beevers CG, Gonzalez-Lima F (2016) Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul 9(5):780–787

    Article  PubMed  PubMed Central  Google Scholar 

  218. Werner C, Byhahn M, Hesse S (2016) Non-invasive brain stimulation to promote alertness and awareness in chronic patients with disorders of consciousness: Low-level, near-infrared laser stimulation vs. focused shock wave therapy. Restor Neurol Neurosci 34(4):561–56925

    PubMed  Google Scholar 

  219. Duch W, Oentaryo RJ, Pasquier M (2008) Cognitive architectures: Where do we go from here? AGI 171:122–136

    Google Scholar 

  220. Newson RS, Kemps EB, Luszcz MA (2003) Cognitive mechanisms underlying decrements in mental synthesis in older adults. Aging Neuropsychol Cogn 10(1):28–43

    Article  Google Scholar 

  221. Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88(4):584–593

    Article  PubMed  CAS  Google Scholar 

  222. Jack C (2017) Treating cognitive impairment with transcranial low level laser therapy. J Photochem Photobiol B Biol 168:149–155

    Article  CAS  Google Scholar 

  223. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787

    Article  PubMed  Google Scholar 

  224. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B Biol 81(2):98–106

    Article  CAS  Google Scholar 

  225. Purushothuman S, Johnstone DM, Nandasena C, van Eersel J, Ittner LM, Mitrofanis J, Stone J (2015) Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neurosci Lett 591:155–159

    Article  PubMed  CAS  Google Scholar 

  226. da Luz Eltchechem C, Salgado ASI, Zângaro RA, da Silva Pereira MC, Kerppers II, da Silva LA, Parreira RB (2017) Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers Med Sci 32(4):749–756

    Article  PubMed  Google Scholar 

  227. Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J (2010) Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J Comp Neurol 518(1):25–40

    Article  PubMed  CAS  Google Scholar 

  228. Peoples C, Spana S, Ashkan K, Benabid A-L, Stone J, Baker GE, Mitrofanis J (2012) Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord 18(5):469–476

    Article  PubMed  Google Scholar 

  229. Shaw VE, Peoples C, Spana S, Ashkan K, Benabid A-L, Stone J, Baker GE, Mitrofanis J (2012) Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-treated mice. Park Dis. https://doi.org/10.1155/2012/296875

  230. Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, Mitrofanis J, Benabid A-L (2013) Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: Evidence from two mouse strains. BMC Neurosci 14(1):40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Reinhart F, El Massri N, Darlot F, Torres N, Johnstone DM, Chabrol C, Costecalde T, Stone J et al (2015) 810nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci Res 92:86–90

    Article  PubMed  Google Scholar 

  232. El Massri N, Moro C, Torres N, Darlot F, Agay D, Chabrol C, Johnstone DM, Stone J et al (2016) Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Exp Brain Res 234(11):3225–3232

    Article  PubMed  Google Scholar 

  233. Moro C, El Massri N, Darlot F, Torres N, Chabrol C, Agay D, Auboiroux V, Johnstone DM et al (2016) Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson's disease. Brain Res 1648:19–26

    Article  PubMed  CAS  Google Scholar 

  234. Reinhart F, Massri NE, Chabrol C, Cretallaz C, Johnstone DM, Torres N, Darlot F, Costecalde T et al (2016) Intracranial application of near-infrared light in a hemi-parkinsonian rat model: The impact on behavior and cell survival. J Neurosurg 124(6):1829–1841

    Article  PubMed  Google Scholar 

  235. Reinhart F, El Massri N, Johnstone DM, Stone J, Mitrofanis J, Benabid A-L, Moro C (2016) Near-infrared light (670 nm) reduces MPTP-induced parkinsonism within a broad therapeutic time window. Exp Brain Res 234(7):1787–1794

    Article  PubMed  Google Scholar 

  236. Reinhart F, El Massri N, Torres N, Chabrol C, Molet J, Johnstone DM, Stone J, Benabid A-L et al (2016) The behavioural and neuroprotective outcomes when 670nm and 810nm near infrared light are applied together in MPTP-treated mice. Neurosci Res 117:42–47

    Article  PubMed  CAS  Google Scholar 

  237. DeTaboada L, Ilic S, Leichliter-Martha S, Oron U, Oron A, Streeter J (2006) Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med 38(1):70–73

    Article  PubMed  Google Scholar 

  238. Lapchak P, Salgado K, Chao C, Zivin J (2007) Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: An extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148(4):907–914

    Article  PubMed  CAS  Google Scholar 

  239. Lapchak PA, Han M-K, Salgado KF, Streeter J, Zivin JA (2008) Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke 39(11):3073–3078

    Article  PubMed  CAS  Google Scholar 

  240. Huisa BN, Chen Y, Meyer BC, Tafreshi GM, Zivin JA (2013) Incremental treatments with laser therapy augments good behavioral outcome in the rabbit small clot embolic stroke model. Lasers Med Sci 28(4):1085–1089

    Article  PubMed  Google Scholar 

  241. Meyer DM, Chen Y, Zivin JA (2016) Dose-finding study of phototherapy on stroke outcome in a rabbit model of ischemic stroke. Neurosci Lett 630:254–258

    Article  PubMed  CAS  Google Scholar 

  242. Oron A, Oron U, Streeter J, Taboada LD, Alexandrovich A, Trembovler V, Shohami E (2007) Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24(4):651–656

    Article  PubMed  Google Scholar 

  243. Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ (2012) Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 29(2):408–417

    Article  PubMed  PubMed Central  Google Scholar 

  244. Wu X, Alberico SL, Moges H, De Taboada L, Tedford CE, Anders JJ (2012) Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med 44(3):227–232

    Article  PubMed  Google Scholar 

  245. Vos M, Lovisa B, Geens A, Morais VA, Wagnières G, Van Den Bergh H, Ginggen A, De Strooper B et al (2013) Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS One 8(11):e78562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels. Sci Rep 6:33719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch - Eur J Physiol 461(5):499–506

    Article  CAS  Google Scholar 

  248. Litscher D, Litscher G (2013) Laser therapy and stroke: Quantification of methodological requirements in consideration of yellow laser. Int J Photoenergy. https://doi.org/10.1155/2013/575798

  249. Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV (2016) Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3(3):031404

    Article  PubMed  PubMed Central  Google Scholar 

  250. Qu C, Cao W, Fan Y, Lin Y (2010) Near-infrared light protect the photoreceptor from light-induced damage in rats. In: Retinal degenerative diseases. Springer, Berlin pp 365–374

  251. Chu-Tan JA, Rutar M, Saxena K, Wu Y, Howitt L, Valter K, Provis J, Natoli R (2016) Efficacy of 670 nm light therapy to protect against photoreceptor cell death is dependent on the severity of damage. Int J Photoenergy. https://doi.org/10.1155/2016/2734139

  252. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, Mathys H, Seo J et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540(7632):230–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD, Hamblin MR (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42(6):450–466

    Article  PubMed  PubMed Central  Google Scholar 

  254. Mantsch HH (2015) The evolution of biomedical vibrational spectroscopy: A personal perspective. Biomed Spectrosc Imaging 4(4):315–329. https://doi.org/10.3233/BSI-150118

    Article  Google Scholar 

  255. Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: Implications for spike-timing dependent synaptic plasticity. J Physiol 556(2):337–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Barolet D, Boucher A, Bjerring P (2005) In vivo human dermal collagen production following LED-based therapy: The importance of treatment parameters. Lasers Surg Med 36:76

    Google Scholar 

  257. Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH, Hamblin MR (2007) Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg Med 39(6):543–550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Michael R Hamblin was supported by US NIH grants R01AI050875 and R21AI121700, Air Force Office of Scientific Research grant FA9550-13-1-0068, US Army Medical Research Acquisition Activity grant W81XWH-09-1-0514, and US Army Medical Research and Materiel Command grant W81XWH-13-2-0067.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Salehpour or Michael R Hamblin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehpour, F., Mahmoudi, J., Kamari, F. et al. Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 55, 6601–6636 (2018). https://doi.org/10.1007/s12035-017-0852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0852-4

Keywords

Navigation