Molecular Neurobiology

, Volume 55, Issue 8, pp 6601–6636 | Cite as

Brain Photobiomodulation Therapy: a Narrative Review

  • Farzad Salehpour
  • Javad Mahmoudi
  • Farzin Kamari
  • Saeed Sadigh-Eteghad
  • Seyed Hossein Rasta
  • Michael R Hamblin


Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson’s disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.


Photobiomodulation therapy Low-level laser therapy Brain function Cortical neurons Traumatic brain injury Stroke Dementia Depression 



Michael R Hamblin was supported by US NIH grants R01AI050875 and R21AI121700, Air Force Office of Scientific Research grant FA9550-13-1-0068, US Army Medical Research Acquisition Activity grant W81XWH-09-1-0514, and US Army Medical Research and Materiel Command grant W81XWH-13-2-0067.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hennessy M, Hamblin MR (2016) Photobiomodulation and the brain: A new paradigm. J Opt 19(1):013003PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hamblin MR, de Sousa MVP, Agrawal T (2016) Handbook of low-level laser therapy. Pan Stanford Publishing Pte. Ltd, SingaporeCrossRefGoogle Scholar
  3. 3.
    Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR (2011) Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 43(8):851–859PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U (2006) Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed Laser Ther 24(4):458–466CrossRefGoogle Scholar
  5. 5.
    Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7(4):9–27CrossRefGoogle Scholar
  6. 6.
    McCarthy TJ, De Taboada L, Hildebrandt PK, Ziemer EL, Richieri SP, Streeter J (2010) Long-term safety of single and multiple infrared transcranial laser treatments in Sprague–Dawley rats. Photomed Laser Surg 28(5):663–667PubMedCrossRefGoogle Scholar
  7. 7.
    Lapchak PA, Wei J, Zivin JA (2004) Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35(8):1985–1988PubMedCrossRefGoogle Scholar
  8. 8.
    Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB, Huang Y-Y, Wu Q et al (2011) Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One 6(10):e26212PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yip K, Lo S, Leung M, So K, Tang C, Poon D (2011) The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia. Neuroscience 190:301–306PubMedCrossRefGoogle Scholar
  10. 10.
    De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T, Streeter J, Kindy MS (2011) Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis 23(3):521–535PubMedCrossRefGoogle Scholar
  11. 11.
    Oueslati A, Lovisa B, Perrin J, Wagnières G, van den Bergh H, Tardy Y, Lashuel HA (2015) Photobiomodulation suppresses alpha-synuclein-induced toxicity in an AAV-based rat genetic model of Parkinson’s disease. PLoS One 10(10):e0140880PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5(1):46PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Salehpour F, Rasta SH (2017) The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 28(4):441–453PubMedCrossRefGoogle Scholar
  14. 14.
    Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S (2017) Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 58:140–150PubMedCrossRefGoogle Scholar
  15. 15.
    Michalikova S, Ennaceur A, van Rensburg R, Chazot P (2008) Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light. Neurobiol Learn Mem 89(4):480–488PubMedCrossRefGoogle Scholar
  16. 16.
    Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez KE, Reyes H (2016) “Quantum leap” in photobiomodulation therapy ushers in a new generation of light-based treatments for cancer and other complex diseases: Perspective and mini-review. Photomed Laser Surg 34(3):93–101PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chen Y, De Taboada L, O’Connor M, Delapp S, Zivin JA (2013) Thermal effects of transcranial near-infrared laser irradiation on rabbit cortex. Neurosci Lett 553:99–103PubMedCrossRefGoogle Scholar
  18. 18.
    Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis 32(3):741–752PubMedCrossRefGoogle Scholar
  19. 19.
    Tian F, Hase SN, Gonzalez-Lima F, Liu H (2016) Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med 48(4):343–349PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nawashiro H, Wada K, Nakai K, Sato S (2012) Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state. Photomed Laser Surg 30(4):231–233PubMedCrossRefGoogle Scholar
  21. 21.
    Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, Zhu L, Liu TC-Y et al (2017) Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 49:165–182PubMedCrossRefGoogle Scholar
  22. 22.
    Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J (2014) Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models. Alzheimers Res Ther 6(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Quirk BJ, Torbey M, Buchmann E, Verma S, Whelan HT (2012) Near-infrared photobiomodulation in an animal model of traumatic brain injury: Improvements at the behavioral and biochemical levels. Photomed Laser Surg 30(9):523–529PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Liang H, Whelan H, Eells J, Meng H, Buchmann E, Lerch-Gaggl A, Wong-Riley M (2006) Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience 139(2):639–649PubMedCrossRefGoogle Scholar
  25. 25.
    Lee HI, Park JH, Park MY, Kim NG, Park K-J, Choi BT, Shin Y-I, Shin HK (2016) Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor Neurol Neurosci 34(2):201–214PubMedGoogle Scholar
  26. 26.
    Moreira MS, Velasco IT, Ferreira LS, Ariga SKK, Barbeiro DF, Meneguzzo DT, Abatepaulo F, Marques MM (2009) Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B Biol 97(3):145–151CrossRefGoogle Scholar
  27. 27.
    Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8(6):502–511PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Yan X, Liu J, Zhang Z, Li W, Sun S, Zhao J, Dong X, Qian J et al (2017) Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 32(1):169–180PubMedCrossRefGoogle Scholar
  29. 29.
    Xuan W, Huang L, Hamblin MR (2016) Repeated transcranial low-level laser therapy for traumatic brain injury in mice: Biphasic dose response and long-term treatment outcome. J Biophotonics 9(11–12):1263–1272PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, Zhang G, Yang L et al (2016) Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol 54(6):4551–4559PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP III et al (2014) Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. J Neurotrauma 31(11):1008–1017PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Biomed opt, Int Soc Optics Photon 6140(61001):1–12Google Scholar
  33. 33.
    Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6(10):829–838PubMedGoogle Scholar
  34. 34.
    Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA (2011) Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: Two case reports. Photomed Laser Surg 29(5):351–358PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Karu T (1988) Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci 2(1):53–74Google Scholar
  36. 36.
    Hill BC (1994) Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J Biol Chem 269(4):2419–2425PubMedGoogle Scholar
  37. 37.
    Karu T, Kolyakov S (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Ther 23(4):355–361CrossRefGoogle Scholar
  38. 38.
    Ball KA, Castello PR, Poyton RO (2011) Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J Photochem Photobiol B Biol 102(3):182–191CrossRefGoogle Scholar
  39. 39.
    Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez K (2010) Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed Laser Surg 28(S1):41–52CrossRefGoogle Scholar
  40. 40.
    Hamblin MR (2008) The role of nitric oxide in low level light therapy. In: Biomedical Optics (BiOS). International Society for Optics and Photonics, Vol. 6846, pp. 684602–1Google Scholar
  41. 41.
    Karu TI (2000) Mechanisms of low-power laser light action on cellular level. In: EOS/SPIE European Biomedical Optics Week. International Society for Optics and Photonics, pp 1–17Google Scholar
  42. 42.
    de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364CrossRefGoogle Scholar
  43. 43.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Sub 1861(2):441–449CrossRefGoogle Scholar
  45. 45.
    Barrett D, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23PubMedCrossRefGoogle Scholar
  46. 46.
    Blanco NJ, Maddox WT, Gonzalez-Lima F (2015) Improving executive function using transcranial infrared laser stimulation. J Neuropsychol 11(1):14–25PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hwang J, Castelli DM, Gonzalez-Lima F (2016) Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med Sci 31(6):1151–1160PubMedCrossRefGoogle Scholar
  48. 48.
    Duggett NA, Chazot PL (2014) Low-intensity light therapy (1068 nm) protects CAD neuroblastoma cells from [Beta]-amyloid-mediated cell death. Biol Med 6(3):1Google Scholar
  49. 49.
    Dougal G, Lee S (2013) Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 38(7):713–718PubMedGoogle Scholar
  50. 50.
    Grillo S, Duggett N, Ennaceur A, Chazot P (2013) Non-invasive infra-red therapy (1072nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. J Photochem Photobiol B Biol 123:13–22CrossRefGoogle Scholar
  51. 51.
    Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37(12):3789–3802PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bradford A, Barlow A, Chazot PL (2005) Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: Evidence of selective cytoprotection by IR1072. J Photochem Photobiol B Biol 81(1):9–14CrossRefGoogle Scholar
  54. 54.
    Tsai S-R, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207CrossRefGoogle Scholar
  55. 55.
    Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J et al (2014) Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6:238ra269CrossRefGoogle Scholar
  56. 56.
    Buscone S, Mardaryev AN, Raafs B, Bikker JW, Sticht C, Gretz N, Farjo N, Uzunbajakava NE et al (2017) A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle. Lasers Surg Med 49(7):705–718PubMedCrossRefGoogle Scholar
  57. 57.
    Rojas JC, Gonzalez-Lima F (2013) Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol 86(4):447–457PubMedCrossRefGoogle Scholar
  58. 58.
    Lapchak PA (2010) Taking a light approach to treating acute ischemic stroke patients: Transcranial near-infrared laser therapy translational science. Ann Med 42(8):576–586PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Liu Y, Lai P, Ma C, Xu X, Grabar AA, Wang LV (2015) Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat Commun 6:5904PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sagar V, Atluri V, Tomitaka A, Shah P, Nagasetti A, Pilakka-Kanthikeel S, El-Hage N, McGoron A et al (2016) Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain. Sci Rep 6:29792PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D et al (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10(1):1060–1066PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yue L, Humayun MS (2015) Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J Biomed Opt 20(8):088001CrossRefGoogle Scholar
  63. 63.
    Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain. Neuropsychiatr Dis Treat 11:2191–2208PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175PubMedPubMedCentralGoogle Scholar
  65. 65.
    Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, Beute GN, van Vugt JP et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol 12(1):37–44PubMedCrossRefGoogle Scholar
  66. 66.
    DiMauro TM, Attawia M, Holy C, Lilienfeld S, Sutton JK, Ward M (2007) Red light implant for treating Parkinson's disease. Google Patents,Google Scholar
  67. 67.
    Darlot F, Moro C, Massri N, Chabrol C, Johnstone DM, Reinhart F, Agay D, Torres N et al (2016) Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann Neurol 79(1):59–75PubMedCrossRefGoogle Scholar
  68. 68.
    Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266PubMedCrossRefGoogle Scholar
  69. 69.
    Pitzschke A, Lovisa B, Seydoux O, Zellweger M, Pfleiderer M, Tardy Y, Wagnières G (2015) Red and NIR light dosimetry in the human deep brain. Phys Med Biol 60(7):2921PubMedCrossRefGoogle Scholar
  70. 70.
    Johnstone D, El Massri N, Moro C, Spana S, Wang X, Torres N, Chabrol C, De Jaeger X et al (2014) Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—an abscopal neuroprotective effect. Neuroscience 274:93–101PubMedCrossRefGoogle Scholar
  71. 71.
    Moro C, Massri NE, Torres N, Ratel D, De Jaeger X, Chabrol C, Perraut F, Bourgerette A et al (2014) Photobiomodulation inside the brain: A novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice: Laboratory investigation. J Neurosurg 120(3):670–683PubMedCrossRefGoogle Scholar
  72. 72.
    Johnstone D, Coleman K, Moro C, Torres N, Eells J, Baker G, Ashkan K, Stone J et al (2014) The potential of light therapy in Parkinson’s disease. Chrono Physiol Ther 4:1–14Google Scholar
  73. 73.
    Lapchak PA (2012) Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Devices 9(1):71–83PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L (2017) Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal Photobiomodulation: Case series report. Photomed Laser Surg 35(8):432–441PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Burchman MA (2011) Using photobiomodulation on a severe Parkinson’s patient to enable extractions, root canal treatment, and partial denture fabrication. J Laser Dent 19:297–300Google Scholar
  76. 76.
    Zhao G, Guo K, Dan J 36 case analysis of Parkinson’s disease treated by endonasal low energy He-Ne laser. Acta Acad Med Qingdao Univ 39:398Google Scholar
  77. 77.
    Lim L (2013) The potential of intranasal light therapy for brain stimulation. In: Presented, NAALTA Conference, Palm Beach Gardens, Florida.Google Scholar
  78. 78.
    Sun L, Peräkylä J, Kovalainen A, Ogawa KH, Karhunen PJ, Hartikainen KM (2016) Human brain reacts to transcranial extraocular light. PLoS One 11(2):e0149525PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Timonen M, Nissilä J, Liettu A, Jokelainen J, Jurvelin H, Aunio A, Räsänen P, Takala T (2012) Can transcranial brain-targeted bright light treatment via ear canals be effective in relieving symptoms in seasonal affective disorder?—A pilot study. Med Hypotheses 78(4):511–515PubMedCrossRefGoogle Scholar
  80. 80.
    Jurvelin H, Takala T, Nissilä J, Timonen M, Rüger M, Jokelainen J, Räsänen P (2014) Transcranial bright light treatment via the ear canals in seasonal affective disorder: A randomized, double-blind dose-response study. BMC Psychiatry 14(1):288PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533PubMedCrossRefGoogle Scholar
  82. 82.
    Hamblin MR (2016) Shining light on the head: Photobiomodulation for brain disorders. BBA Clin 6:113–124PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cui X, Bray S, Bryant DM, Glover GH, Reiss AL (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54(4):2808–2821PubMedCrossRefGoogle Scholar
  84. 84.
    Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis A-C, Fallgatter AJ (2011) Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: Implications for optical neuroimaging. PLoS One 6(10):e26377PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Strangman GE, Zhang Q, Li Z (2014) Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. NeuroImage 85:136–149PubMedCrossRefGoogle Scholar
  86. 86.
    White D, Widdowson E, Woodard H, Dickerson J (1991) The composition of body tissues.(II) Fetus to young adult. Br J Radiol 64(758):149–159PubMedCrossRefGoogle Scholar
  87. 87.
    Firbank M, Hiraoka M, Essenpreis M, Delpy D (1993) Measurement of the optical properties of the skull in the wavelength range 650-950 nm. Phys Med Biol 38(4):503PubMedCrossRefGoogle Scholar
  88. 88.
    Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S (2016) Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers Surg Med 48(7):695–705PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lapchak PA, Boitano PD, Butte PV, Fisher DJ, Hölscher T, Ley EJ, Nuño M, Voie AH et al (2015) Transcranial near-infrared laser transmission (NILT) profiles (800 nm): Systematic comparison in four common research species. PLoS One 10(6):e0127580PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jagdeo JR, Adams LE, Brody NI, Siegel DM (2012) Transcranial red and near infrared light transmission in a cadaveric model. PLoS One 7(10):e47460PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lapchak PA, Boitano PD (2016) Transcranial near-infrared laser therapy for stroke: How to recover from futility in the NEST-3 clinical trial. Acta Neurochir Suppl 121:7–12PubMedCrossRefGoogle Scholar
  92. 92.
    Aulakh K, Zakaib S, Willmore WG, Winnie NY (2016) Transcranial light-tissue interaction analysis. In: SPIE BiOS, International Society for Optics and Photonics 9706:97061–97065Google Scholar
  93. 93.
    Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W et al (2009) Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40(4):1359–1364PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yaroslavsky A, Schulze P, Yaroslavsky I, Schober R, Ulrich F, Schwarzmaier H (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47(12):2059PubMedCrossRefGoogle Scholar
  95. 95.
    Hart NS, Fitzgerald M (2016) A new perspective on delivery of red-near-infrared light therapy for disorders of the brain. Discov Med 22(120):147–156PubMedGoogle Scholar
  96. 96.
    Karu TI (2003) Cellular mechanism of low power laser therapy: New questions. Lasers Med Dent 3:79–100Google Scholar
  97. 97.
    Hode T, Duncan D, Kirkpatrick S, Jenkins P, Hode L (2009) The importance of coherence in phototherapy. In: SPIE BiOS Biomedical Optics, International Society for Optics and Photonics 7165:716507Google Scholar
  98. 98.
    Litscher D, Litscher G (2014) Laser therapy and dementia: A database analysis and future aspects on LED-based systems. Int J Photoenergy doi:
  99. 99.
    Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, Ando T, Xu T et al (2013) Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: Effect of treatment repetition regimen. PLoS One 8(1):e53454PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang YY, Dai T, Dhital S et al (2012) Low-level laser therapy for closed-head traumatic brain injury in mice: Effect of different wavelengths. Lasers Surg Med 44(3):218–226PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021PubMedCrossRefGoogle Scholar
  103. 103.
    Nunnari J, Suomalainen A (2012) Mitochondria: In sickness and in health. Cell 148(6):1145–1159PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B Biol 140:344–358CrossRefGoogle Scholar
  105. 105.
    Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6):a011304PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins role of cytochrome c oxidase. J Biol Chem 280(6):4761–4771PubMedCrossRefGoogle Scholar
  107. 107.
    Wong-Riley MT, Bai X, Buchmann E, Whelan HT (2001) Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 12(14):3033–3037PubMedCrossRefGoogle Scholar
  108. 108.
    Rojas JC, Lee J, John JM, Gonzalez-Lima F (2008) Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci 28(50):13511–13521PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ying R, Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone-and MPP+−induced neurotoxicity. Brain Res 1243:167–173PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sommer AP, Bieschke J, Friedrich RP, Zhu D, Wanker EE, Fecht HJ, Mereles D, Hunstein W (2012) 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: Basis for treatment of Alzheimer’s disease? Photomed Laser Surg 30(1):54–60PubMedCrossRefGoogle Scholar
  111. 111.
    Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U (2009) Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener 4(1):26PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K (2002) Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett 323(3):207–210PubMedCrossRefGoogle Scholar
  113. 113.
    Lapchak PA, Boitano PD (2016) A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 1646:125–131PubMedCrossRefGoogle Scholar
  114. 114.
    Lapchak PA, De Taboada L (2010) Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res 1306:100–105PubMedCrossRefGoogle Scholar
  115. 115.
    Dong T, Zhang Q, Hamblin MR, Wu MX (2015) Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab 35(9):1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Oron U, Ilic S, De Taboada L, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182PubMedCrossRefGoogle Scholar
  117. 117.
    Ferraresi C, Kaippert B, Avci P, Huang YY, Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91(2):411–416PubMedCrossRefGoogle Scholar
  118. 118.
    Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ (2017) Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy. Photomed Laser Surg 35(8):395–400PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rodell AB, O’Keefe G, Rowe CC, Villemagne VL, Gjedde A (2016) Cerebral blood flow and Aβ-amyloid estimates by WARM analysis of [11C] PiB uptake distinguish among and between neurodegenerative disorders and aging. Front Aging Neurosci 8:321PubMedGoogle Scholar
  120. 120.
    Borghammer P, Cumming P, Østergaard K, Gjedde A, Rodell A, Bailey CJ, Vafaee MS (2012) Cerebral oxygen metabolism in patients with early Parkinson’s disease. J Neurol Sci 313(1):123–128PubMedCrossRefGoogle Scholar
  121. 121.
    Nagafusa Y, Okamoto N, Sakamoto K, Yamashita F, Kawaguchi A, Higuchi T, Matsuda H (2012) Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder. J Affect Disord 140(3):296–299PubMedCrossRefGoogle Scholar
  122. 122.
    Sadigh-Eteghad S, Mahmoudi J, Babri S, Talebi M (2015) Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 30(11):736–742PubMedCrossRefGoogle Scholar
  123. 123.
    Litscher G, Min L, Passegger CA, Litscher D, Li M, Wang M, Ghaffari-Tabrizi-Wizsy N, Stelzer I et al (2015) Transcranial yellow, red, and infrared laser and LED stimulation: Changes of vascular parameters in a Chick embryo model. Integr Med Int 2(1–2):80–89CrossRefGoogle Scholar
  124. 124.
    Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M (2010) Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med 42(6):566–576PubMedCrossRefGoogle Scholar
  125. 125.
    Lee HI, Lee S-W, Kim SY, Kim NG, Park K-J, Choi BT, Shin Y-I, Shin HK (2017) Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem Biophys Res Commun 486(4):945–950PubMedCrossRefGoogle Scholar
  126. 126.
    Salgado AS, Zângaro RA, Parreira RB, Kerppers II (2015) The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. J Lasers Med Sci 30(1):339–346CrossRefGoogle Scholar
  127. 127.
    Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110PubMedCrossRefGoogle Scholar
  128. 128.
    Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev.
  129. 129.
    Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F, Carrillo-Vico A (2014) Oxidative stress in traumatic brain injury. Curr Med Chem 21(10):1201–1211PubMedCrossRefGoogle Scholar
  130. 130.
    Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int 62(5):712–718PubMedCrossRefGoogle Scholar
  131. 131.
    Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS, Sethi S, Zeni M et al (2016) The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 65:134–144CrossRefGoogle Scholar
  132. 132.
    Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) Role of reactive oxygen species in low level light therapy. In: SPIE BiOS: Biomedical Optics, International Society for Optics and Photonics 716502–716511Google Scholar
  133. 133.
    Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D et al (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tafur J, Mills PJ (2008) Low-intensity light therapy: Exploring the role of redox mechanisms. Photomed Laser Surg 26(4):323–328PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB, Wu X, Chakrabarti K et al (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B Biol 86(3):252–261CrossRefGoogle Scholar
  136. 136.
    Wang F, Xing D, Chen T-S (2006) High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells. In: Fourth International Conference on Photonics and Imaging in Biology and Medicine, International Society for Optics and Photonics 6047:60473–60476Google Scholar
  137. 137.
    Yang X, Askarova S, Sheng W, Chen J, Sun AY, Sun GY, Yao G, Lee J-M (2010) Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience 171(3):859–868PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Liang HL, Whelan HT, Eells JT, Wong-Riley MT (2008) Near-infrared light via light-emitting diode treatment is therapeutic against rotenone-and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153(4):963–974PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Yu Z, Li Z, Liu N, Jizhang Y, McCarthy TJ, Tedford CE, Lo EH, Wang X (2015) Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro. Metab Brain Dis 30(3):829–837PubMedCrossRefGoogle Scholar
  140. 140.
    Fukuzaki Y, Sugawara H, Yamanoha B, Kogure S (2013) 532 nm low-power laser irradiation recovers γ-secretase inhibitor-mediated cell growth suppression and promotes cell proliferation via Akt signaling. PLoS One 8(8):e70737PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fukuzaki Y, Shin H, Kawai HD, Yamanoha B, Kogure S (2015) 532 nm low-power laser irradiation facilitates the migration of GABAergic neural stem/progenitor cells in mouse neocortex. PLoS One 10(4):e0123833PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Duan R, Zhu L, Liu TCY, Li Y, Liu J, Jiao J, Xu X, Yao L et al (2003) Light emitting diode irradiation protect against the amyloid beta 25–35 induced apoptosis of PC12 cell in vitro. Lasers Surg Med 33(3):199–203PubMedCrossRefGoogle Scholar
  143. 143.
    Liang J, Liu L, Xing D (2012) Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med 53(7):1459–1467PubMedCrossRefGoogle Scholar
  144. 144.
    Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease. J Neurosci 33(33):13505–13517PubMedCrossRefGoogle Scholar
  145. 145.
    Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calzà L (2009) Low infra red laser light irradiation on cultured neural cells: Effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med 9(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Choi D-H, Lee K-H, Kim J-H, Kim MY, Lim JH, Lee J (2012) Effect of 710nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult. Biochem Biophys Res Commun 422(2):274–279PubMedCrossRefGoogle Scholar
  147. 147.
    Leung MC, Lo SC, Siu FK, So KF (2002) Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 31(4):283–288PubMedCrossRefGoogle Scholar
  148. 148.
    Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W, Wannanon P, Tong-un T (2013) Laser acupuncture improves memory impairment in an animal model of Alzheimer’s disease. J Acupunct Meridian Stud 6(5):247–251PubMedCrossRefGoogle Scholar
  149. 149.
    Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SE, Talebi M (2016) Astrocytic and microglial nicotinic acetylcholine receptors: An overlooked issue in Alzheimer’s disease. J Neural Transm 123(12):1359–1367PubMedCrossRefGoogle Scholar
  150. 150.
    Lim W, Kim J, Kim S, Karna S, Won J, Jeon SM, Kim SY, Choi Y et al (2013) Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells. Photochem Photobiol 89(1):199–207PubMedCrossRefGoogle Scholar
  151. 151.
    Meredith GE, Sonsalla PK, Chesselet M-F (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115(4):385–398PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gloire G, Legrand-Poels S, Piette J (2006) NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol 72(11):1493–1505PubMedCrossRefGoogle Scholar
  153. 153.
    Chen AC-H, Huang Y-Y, Sharma SK, Hamblin MR (2011) Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomed Laser Surg 29(6):383–389PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Choi D-H, Lim JH, Lee K-H, Kim MY, Kim HY, Shin CY, Han S-H, Lee J (2012) Effect of 710-nm visible light irradiation on neuroprotection and immune function after stroke. Neuroimmunomodulation 19(5):267–276PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang Q, Zhou C, Hamblin MR, Wu MX (2014) Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. J Cereb Blood Flow Metab 34(8):1391–1401PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK (2017) Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J Biophotonics 10(11):1502–1513PubMedCrossRefGoogle Scholar
  158. 158.
    Pourmemar E, Majdi A, Haramshahi M, Talebi M, Karimi P, Sadigh-Eteghad S (2017) Intranasal Cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp Gerontol 87:16–22PubMedCrossRefGoogle Scholar
  159. 159.
    Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39(12):2301–2312PubMedCrossRefGoogle Scholar
  160. 160.
    Da Costa CA, Checler F (2011) Apoptosis in Parkinson’s disease: Is p53 the missing link between genetic and sporadic parkinsonism? Cell Signal 23(6):963–968CrossRefGoogle Scholar
  161. 161.
    Desagher S, Martinou J-C (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377PubMedCrossRefGoogle Scholar
  162. 162.
    Gronbeck KR, Rodrigues CM, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA (2016) Application of tauroursodeoxycholic acid for treatment of neurological and non-neurological diseases: Is there a potential for treating traumatic brain injury? Neurocrit Care 25(1):153–166PubMedCrossRefGoogle Scholar
  163. 163.
    Majdi A, Mahmoudi J, Sadigh-Eteghad S, Golzari SE, Sabermarouf B, Reyhani-Rad S (2016) Permissive role of cytosolic pH acidification in neurodegeneration: A closer look at its causes and consequences. J Neurosci Res 94(10):879–887PubMedCrossRefGoogle Scholar
  164. 164.
    Qian Y-f, Wang H, Yao W-b, Gao X-d (2008) Aqueous extract of the Chinese medicine, Danggui-Shaoyao-san, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Cell Biol Int 32(2):304–311PubMedGoogle Scholar
  165. 165.
    Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115(7):1461–1469PubMedPubMedCentralGoogle Scholar
  166. 166.
    Wong-Riley M, Whelan H, Dhokalia A, Das R, Hammamieh R, Liang H, Eells J, Jett M cDNA microarray analysis of the visual cortex exposed to light-emitting diode treatment in monocularly enucleated rats. Soc Neurosci Abstr 131:20Google Scholar
  167. 167.
    Ghanbari A, Ghareghani M, Zibara K, Delaviz H, Ebadi E, Jahantab M (2017) Light-emitting diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats. Biomed Pharmacother 89:1320PubMedCrossRefGoogle Scholar
  168. 168.
    Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35(5):369–376PubMedCrossRefGoogle Scholar
  169. 169.
    Musashi M, Ota S, Shiroshita N (2000) The role of protein kinase C isoforms in cell proliferation and apoptosis. Int J Hematol 72(1):12–19PubMedGoogle Scholar
  170. 170.
    Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18(12):1471–1473PubMedCrossRefGoogle Scholar
  171. 171.
    Zhang L, Xing D, Zhu D, Chen Q (2008) Low-power laser irradiation inhibiting Aβ25-35-induced PC12 cell apoptosis via PKC activation. Cell Physiol Biochem 22(1–4):215–222PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang L, Zhang Y, Xing D (2010) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3β-inactivation mechanism. J Cell Physiol 224(1):218–228PubMedGoogle Scholar
  173. 173.
    Zhang H, Wu S, Xing D (2012) Inhibition of Aβ 25–35-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cell Signal 24(1):224–232PubMedCrossRefGoogle Scholar
  174. 174.
    Xuan W, Vatansever F, Huang L, Hamblin MR (2014) Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt 19(10):108003PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Telerman A, Lapter S, Sharabi A, Zinger H, Mozes E (2011) Induction of hippocampal neurogenesis by a tolerogenic peptide that ameliorates lupus manifestations. J Neuroimmunol 232(1):151–157PubMedCrossRefGoogle Scholar
  176. 176.
    El Massri N, Lemgruber AP, Rowe IJ, Moro C, Torres N, Reinhart F, Chabrol C, Benabid A-L et al (2017) Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: Changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 235(6):1861–1874PubMedCrossRefGoogle Scholar
  177. 177.
    Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, Lampl Y, Streeter J et al (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37(10):2620–2624PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Yun Y-C, Jang D, Yoon S-B, Kim D, Choi D-H, Kwon O, Lee Y-M, Youn D (2017) Laser acupuncture exerts neuroprotective effects via regulation of Creb, Bdnf, Bcl-2, and Bax gene expressions in the hippocampus. Evid Based Complement Alternat Med.
  179. 179.
    Campbell S, MacQueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29(6):417–426PubMedPubMedCentralGoogle Scholar
  180. 180.
    Mueller SG, Schuff N, Yaffe K, Madison C, Miller B, Weiner MW (2010) Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp 31(9):1339–1347PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Yee MK, Zafonte R et al (2016) Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomed Laser Surg 34(12):610–626PubMedCrossRefGoogle Scholar
  182. 182.
    Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247–262PubMedPubMedCentralGoogle Scholar
  183. 183.
    Park H-J, Friston K (2013) Structural and functional brain networks: From connections to cognition. Science 342(6158):1238411PubMedCrossRefGoogle Scholar
  184. 184.
    Xiao H, Yang Y, Xi J-h, Chen Z-q (2015) Structural and functional connectivity in traumatic brain injury. Neural Regen Res 10(12):2062–2071PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Kringelbach ML, Green AL, Aziz TZ (2011) Balancing the brain: Resting state networks and deep brain stimulation. Front Integr Neurosci 5:8PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    de la Plata CDM, Garces J, Kojori ES, Grinnan J, Krishnan K, Pidikiti R, Spence J, Devous MD et al (2011) Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Arch Neurol 68(1):74–84Google Scholar
  187. 187.
    Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S (2012) Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. NeuroImage 59(1):511–518PubMedCrossRefGoogle Scholar
  188. 188.
    Naeser M, Ho M, Martin P, Treglia E, Krengel M, Hamblin M, Baker E (2012) Improved language after scalp application of red/near-infrared light-emitting diodes: Pilot study supporting a new, noninvasive treatment for chronic aphasia. Procedia Soc Behav Sci 61:138–139CrossRefGoogle Scholar
  189. 189.
    Johnstone DM, Mitrofanis J, Stone J (2015) Targeting the body to protect the brain: Inducing neuroprotection with remotely-applied near infrared light. Neural Regen Res 10(3):349PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Petrie SR, Hamblin MR, Ionescu DF, Cusin C, Yeung A, Cassano P (2016) Photobiomodulation in patients with low back pain: A case control series for the effect on depression. Qual Prim Care 24(1):33–38Google Scholar
  191. 191.
    Zalewska-Kaszubska J, Obzejta D (2004) Use of low-energy laser as adjunct treatment of alcohol addiction. Lasers Med Sci 19(2):100–104PubMedCrossRefGoogle Scholar
  192. 192.
    Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185PubMedCrossRefGoogle Scholar
  193. 193.
    Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons J-A (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 7(1):e30655PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sommer AP, Trelles MA (2014) Photomed. Laser Surg. Mary Ann Liebert, Inc. 140 Huguenot street, 3rd floor New Rochelle, NY 10801 USA,Google Scholar
  195. 195.
    Tuby H, Maltz L, Oron U (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg Med 43(5):401–409PubMedCrossRefGoogle Scholar
  196. 196.
    Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin 24(1):59–64CrossRefGoogle Scholar
  197. 197.
    Oron A, Oron U (2016) Low-level laser therapy to the bone marrow ameliorates neurodegenerative disease progression in a mouse model of Alzheimer’s disease: A minireview. Photomed Laser Surg 34(12):627–630PubMedCrossRefGoogle Scholar
  198. 198.
    Farfara D, Tuby H, Trudler D, Doron-Mandel E, Maltz L, Vassar RJ, Frenkel D, Oron U (2015) Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer’s disease. J Mol Neurosci 55(2):430–436PubMedCrossRefGoogle Scholar
  199. 199.
    Romeo S, Vitale F, Viaggi C, di Marco S, Aloisi G, Fasciani I, Pardini C, Pietrantoni I et al (2017) Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not. Brain Res 1662:87–101PubMedCrossRefGoogle Scholar
  200. 200.
    Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: A comprehensive review. Lasers Surg Med 45(6):349–357PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Paolillo FR, Borghi-Silva A, Arena R, Parizotto NA, Kurachi C, Bagnato VS (2017) Effects of phototherapy plus physical training on metabolic profile and quality of life in postmenopausal women. J Cosmet Laser Ther 19(6):364–372PubMedCrossRefGoogle Scholar
  202. 202.
    Mohammed HS (2016) Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci 31(8):1651–1656PubMedCrossRefGoogle Scholar
  203. 203.
    Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR (2013) Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med 45(10):648–653PubMedCrossRefGoogle Scholar
  204. 204.
    Chaieb L, Antal A, Masurat F, Paulus W (2015) Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Front Behav Neurosci 9:147PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Blanco NJ, Saucedo CL, Gonzalez-Lima F (2017) Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans. Neurobiol Learn Mem 139:69–75PubMedCrossRefGoogle Scholar
  206. 206.
    Grover F Jr, Weston J, Weston M (2017) Acute effects of near infrared light therapy on brain state in healthy subjects as quantified by qEEG measures. Photomed Laser Surg 35(3):136–141PubMedCrossRefGoogle Scholar
  207. 207.
    Moghadam HS, Nazari MA, Jahan A, Mahmoudi J, Salimi MM (2017) Beneficial effects of transcranial light emitting diode (LED) therapy on attentional performance: An experimental design. Iran Red Crescent Med J.
  208. 208.
    Hesse S, Werner C, Byhahn M (2015) Transcranial low-level laser therapy may improve alertness and awareness in traumatic brain injured subjects with severe disorders of consciousness: A case series. Int Arch Med 6:1Google Scholar
  209. 209.
    Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B et al (2007) Infrared laser therapy for ischemic stroke: A new treatment strategy. Stroke 38(6):1843–1849PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A et al (2014) Transcranial laser therapy in acute stroke treatment. Stroke 45(11):3187–3193PubMedCrossRefGoogle Scholar
  211. 211.
    Ab Boonswang N, Chicchi M, Lukachek A, Curtiss D (2012) A new treatment protocol using photobiomodulation and muscle/bone/joint recovery techniques having a dramatic effect on a stroke patient's recovery: A new weapon for clinicians. BMJ Case Rep.
  212. 212.
    Maksimovich IV (2015) Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer’s disease. World J Neurosci 5(3):189CrossRefGoogle Scholar
  213. 213.
    Berman MH, Halper JP, Nichols TW (2017) Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. J Neurol Neurosci 8(1):176PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Vargas E, Barrett DW, Saucedo CL, Huang L-D, Abraham JA, Tanaka H, Haley AP, Gonzalez-Lima F (2017) Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med Sci 32(5):1153–1162PubMedCrossRefGoogle Scholar
  215. 215.
    Maloney R, Shanks S, Maloney J (2010) The application of low-level laser therapy for the symptomatic care of late stage Parkinson's disease: A non-controlled, non-randomized study. Lasers Surg Med 185:61Google Scholar
  216. 216.
    Cassano P, Cusin C, Mischoulon D, Hamblin MR, De Taboada L, Pisoni A, Chang T, Yeung A et al (2015) Near-infrared transcranial radiation for major depressive disorder: Proof of concept study. Psychiatr J.
  217. 217.
    Disner SG, Beevers CG, Gonzalez-Lima F (2016) Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul 9(5):780–787PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Werner C, Byhahn M, Hesse S (2016) Non-invasive brain stimulation to promote alertness and awareness in chronic patients with disorders of consciousness: Low-level, near-infrared laser stimulation vs. focused shock wave therapy. Restor Neurol Neurosci 34(4):561–56925PubMedGoogle Scholar
  219. 219.
    Duch W, Oentaryo RJ, Pasquier M (2008) Cognitive architectures: Where do we go from here? AGI 171:122–136Google Scholar
  220. 220.
    Newson RS, Kemps EB, Luszcz MA (2003) Cognitive mechanisms underlying decrements in mental synthesis in older adults. Aging Neuropsychol Cogn 10(1):28–43CrossRefGoogle Scholar
  221. 221.
    Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88(4):584–593PubMedCrossRefGoogle Scholar
  222. 222.
    Jack C (2017) Treating cognitive impairment with transcranial low level laser therapy. J Photochem Photobiol B Biol 168:149–155CrossRefGoogle Scholar
  223. 223.
    Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787PubMedCrossRefGoogle Scholar
  224. 224.
    Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B Biol 81(2):98–106CrossRefGoogle Scholar
  225. 225.
    Purushothuman S, Johnstone DM, Nandasena C, van Eersel J, Ittner LM, Mitrofanis J, Stone J (2015) Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neurosci Lett 591:155–159PubMedCrossRefGoogle Scholar
  226. 226.
    da Luz Eltchechem C, Salgado ASI, Zângaro RA, da Silva Pereira MC, Kerppers II, da Silva LA, Parreira RB (2017) Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers Med Sci 32(4):749–756PubMedCrossRefGoogle Scholar
  227. 227.
    Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, Mitrofanis J (2010) Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J Comp Neurol 518(1):25–40PubMedCrossRefGoogle Scholar
  228. 228.
    Peoples C, Spana S, Ashkan K, Benabid A-L, Stone J, Baker GE, Mitrofanis J (2012) Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord 18(5):469–476PubMedCrossRefGoogle Scholar
  229. 229.
    Shaw VE, Peoples C, Spana S, Ashkan K, Benabid A-L, Stone J, Baker GE, Mitrofanis J (2012) Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-treated mice. Park Dis.
  230. 230.
    Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, Mitrofanis J, Benabid A-L (2013) Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: Evidence from two mouse strains. BMC Neurosci 14(1):40PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Reinhart F, El Massri N, Darlot F, Torres N, Johnstone DM, Chabrol C, Costecalde T, Stone J et al (2015) 810nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci Res 92:86–90PubMedCrossRefGoogle Scholar
  232. 232.
    El Massri N, Moro C, Torres N, Darlot F, Agay D, Chabrol C, Johnstone DM, Stone J et al (2016) Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Exp Brain Res 234(11):3225–3232PubMedCrossRefGoogle Scholar
  233. 233.
    Moro C, El Massri N, Darlot F, Torres N, Chabrol C, Agay D, Auboiroux V, Johnstone DM et al (2016) Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson's disease. Brain Res 1648:19–26PubMedCrossRefGoogle Scholar
  234. 234.
    Reinhart F, Massri NE, Chabrol C, Cretallaz C, Johnstone DM, Torres N, Darlot F, Costecalde T et al (2016) Intracranial application of near-infrared light in a hemi-parkinsonian rat model: The impact on behavior and cell survival. J Neurosurg 124(6):1829–1841PubMedCrossRefGoogle Scholar
  235. 235.
    Reinhart F, El Massri N, Johnstone DM, Stone J, Mitrofanis J, Benabid A-L, Moro C (2016) Near-infrared light (670 nm) reduces MPTP-induced parkinsonism within a broad therapeutic time window. Exp Brain Res 234(7):1787–1794PubMedCrossRefGoogle Scholar
  236. 236.
    Reinhart F, El Massri N, Torres N, Chabrol C, Molet J, Johnstone DM, Stone J, Benabid A-L et al (2016) The behavioural and neuroprotective outcomes when 670nm and 810nm near infrared light are applied together in MPTP-treated mice. Neurosci Res 117:42–47PubMedCrossRefGoogle Scholar
  237. 237.
    DeTaboada L, Ilic S, Leichliter-Martha S, Oron U, Oron A, Streeter J (2006) Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med 38(1):70–73PubMedCrossRefGoogle Scholar
  238. 238.
    Lapchak P, Salgado K, Chao C, Zivin J (2007) Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: An extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148(4):907–914PubMedCrossRefGoogle Scholar
  239. 239.
    Lapchak PA, Han M-K, Salgado KF, Streeter J, Zivin JA (2008) Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke 39(11):3073–3078PubMedCrossRefGoogle Scholar
  240. 240.
    Huisa BN, Chen Y, Meyer BC, Tafreshi GM, Zivin JA (2013) Incremental treatments with laser therapy augments good behavioral outcome in the rabbit small clot embolic stroke model. Lasers Med Sci 28(4):1085–1089PubMedCrossRefGoogle Scholar
  241. 241.
    Meyer DM, Chen Y, Zivin JA (2016) Dose-finding study of phototherapy on stroke outcome in a rabbit model of ischemic stroke. Neurosci Lett 630:254–258PubMedCrossRefGoogle Scholar
  242. 242.
    Oron A, Oron U, Streeter J, Taboada LD, Alexandrovich A, Trembovler V, Shohami E (2007) Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24(4):651–656PubMedCrossRefGoogle Scholar
  243. 243.
    Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ (2012) Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 29(2):408–417PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Wu X, Alberico SL, Moges H, De Taboada L, Tedford CE, Anders JJ (2012) Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med 44(3):227–232PubMedCrossRefGoogle Scholar
  245. 245.
    Vos M, Lovisa B, Geens A, Morais VA, Wagnières G, Van Den Bergh H, Ginggen A, De Strooper B et al (2013) Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS One 8(11):e78562PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels. Sci Rep 6:33719PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch - Eur J Physiol 461(5):499–506CrossRefGoogle Scholar
  248. 248.
    Litscher D, Litscher G (2013) Laser therapy and stroke: Quantification of methodological requirements in consideration of yellow laser. Int J Photoenergy.
  249. 249.
    Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV (2016) Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3(3):031404PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Qu C, Cao W, Fan Y, Lin Y (2010) Near-infrared light protect the photoreceptor from light-induced damage in rats. In: Retinal degenerative diseases. Springer, Berlin pp 365–374Google Scholar
  251. 251.
    Chu-Tan JA, Rutar M, Saxena K, Wu Y, Howitt L, Valter K, Provis J, Natoli R (2016) Efficacy of 670 nm light therapy to protect against photoreceptor cell death is dependent on the severity of damage. Int J Photoenergy.
  252. 252.
    Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, Mathys H, Seo J et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540(7632):230–235PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Hashmi JT, Huang YY, Sharma SK, Kurup DB, De Taboada L, Carroll JD, Hamblin MR (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42(6):450–466PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Mantsch HH (2015) The evolution of biomedical vibrational spectroscopy: A personal perspective. Biomed Spectrosc Imaging 4(4):315–329. CrossRefGoogle Scholar
  255. 255.
    Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: Implications for spike-timing dependent synaptic plasticity. J Physiol 556(2):337–345PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Barolet D, Boucher A, Bjerring P (2005) In vivo human dermal collagen production following LED-based therapy: The importance of treatment parameters. Lasers Surg Med 36:76Google Scholar
  257. 257.
    Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH, Hamblin MR (2007) Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg Med 39(6):543–550PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
  2. 2.Department of Medical PhysicsTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Medical BioengineeringTabriz University of Medical SciencesTabrizIran
  4. 4.School of Medical SciencesUniversity of AberdeenAberdeenUK
  5. 5.Wellman Center for Photomedicine, Massachusetts General HospitalBostonUSA
  6. 6.Department of DermatologyHarvard Medical SchoolBostonUSA
  7. 7.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations