Molecular Neurobiology

, Volume 55, Issue 8, pp 6319–6328 | Cite as

Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease

  • Kuo-Hsuan Chang
  • Mei-Ling Cheng
  • Hsiang-Yu Tang
  • Cheng-Yu Huang
  • Yih-Ru Wu
  • Chiung-Mei ChenEmail author


The pathogenesis of Parkinson’s disease (PD) remains to be elucidated. Metabolomic analysis has the potential to identify biochemical pathways and metabolic profiles that are involved in PD pathogenesis. Here, we performed a targeted metabolomics to quantify the plasma levels of 184 metabolites in a discovery cohort including 82 PD patients and 82 normal controls (NCs) and found two up-regulated (dopamine, putrescine/ornithine ratio) and four down-regulated (octadecadienylcarnitine C18:2, asymmetric dimethylarginine, tryptophan, and kynurenine (KYN)) metabolites in the plasma of PD patients. We then measured the plasma levels of a panel of metabolic products of KYN pathway in an independent validation cohort including 118 PD patients, 22 Huntington’s disease (HD) patients, and 37 NCs. Lower kynurenic acid (KA)/KYN ratio, higher quinolinic acid (QA) level, and QA/KA ratio were observed in PD patients compared to HD patients and NCs. PD patients at advanced stage (Hoehn-Yahr stage > 2) showed lower KA and KA/KYN ratio, as well as higher QA and QA/KA ratio compared to PD patients at early stage (Hoehn-Yahr stage ≤ 2) and NCs. Levels of KA and QA, as well as the ratios of KA/KYN and QA/KA between PD patients with and without psychiatric symptoms, dementia, or levodopa-induced dyskinesia in the advanced PD were similar. This metabolomic analyses demonstrate a number of plasma biomarker candidates for PD, suggesting a shift toward neurotoxic QA synthesis and away from neuroprotective KA production in KYN pathway.


Parkinson’s disease Biomarker Metabolomics Kynurenine pathway Kynurenic acid Quinolinic acid 



Alzheimer’s disease


cerebrospinal fluid




false discovery rate


gas chromatography-time-of-flight mass spectrometry


Huntington’s disease


high-performance liquid chromatography/mass spectrometry


kynurenic acid




liquid chromatography time-of-flight mass spectrometry


liquid chromatography coupled with electrochemical coulometric array detection


levodopa equivalent daily dose


levodopa-induced dyskinesia


normal control


orthogonal projection to latent structure discriminant analysis


Parkinson’s disease


quinolinic acid


receiver operating characteristic


ultrahigh-performance liquid chromatography/tandem mass spectrometry



The authors would like to thank the patients and controls for participating in this study. We also thank for the technical support from Metabolomics Core laboratory, Chang Gung University.

Author Contribution

Conceived and designed the experiments: K-HC, M-LC, and C-MC. Performed the experiments: H-YT and C-YH. Analyzed the data: K-HC, M-LC, and C-MC. Contributed reagents/materials/analysis tools: K-HC, Y-RW, and C-MC. Wrote the paper: K-HC, M-LC and C-MC.

Funding Information

This work was supported by CMRPG 3E142 and CMRPG 3F136 from Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339(15):1044–1053. CrossRefPubMedGoogle Scholar
  2. 2.
    Halbach OB, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73(3):151–177. CrossRefGoogle Scholar
  3. 3.
    Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144. CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmed SS, Santosh W, Kumar S, Christlet HTT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16(1):1–12. CrossRefGoogle Scholar
  5. 5.
    Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(2):389–396. CrossRefPubMedGoogle Scholar
  6. 6.
    Chan RB, Perotte AJ, Zhou B, Liong C, Shorr EJ, Marder KS, Kang UJ, Waters CH et al (2017) Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: a lipidomic analysis. PLoS One 12(2):e0172348. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N (2016) Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psychiatry 87(3):295–301. CrossRefPubMedGoogle Scholar
  8. 8.
    Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 142(5):756–766. CrossRefPubMedGoogle Scholar
  9. 9.
    Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4(10):e7551. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roede JR, Uppal K, Park Y, Lee K, Tran V, Walker D, Strobel FH, Rhodes SL et al (2013) Serum metabolomics of slow vs. rapid motor progression Parkinson’s disease: a pilot study. PLoS One 8(10):e77629. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J et al (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4(3):549–560. PubMedCrossRefGoogle Scholar
  12. 12.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442. CrossRefPubMedGoogle Scholar
  14. 14.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. CrossRefPubMedGoogle Scholar
  15. 15.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43(11):2412–2414. CrossRefPubMedGoogle Scholar
  17. 17.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72(6):971–983. CrossRefGoogle Scholar
  18. 18.
    Burté F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, Yu-Wai-Man P, Burn DJ et al (2017) Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 32(6):927–932. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng ML, Chang KH, Wu YR, Chen CM (2016) Metabolic disturbances in plasma as biomarkers for Huntington’s disease. J Nutr Biochem 31:38–44. CrossRefPubMedGoogle Scholar
  20. 20.
    Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55(2):204–211. CrossRefPubMedGoogle Scholar
  21. 21.
    Myint AM (2012) Kynurenines: from the perspective of major psychiatric disorders. FEBS J 279(8):1375–1385. CrossRefPubMedGoogle Scholar
  22. 22.
    Grégoire L, Rassoulpour A, Guidetti P, Samadi P, Bédard PJ, Izzo E, Schwarcz R, Di Paolo T (2008) Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res 186(2):161–167. CrossRefPubMedGoogle Scholar
  23. 23.
    Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17(3):455–461. CrossRefPubMedGoogle Scholar
  24. 24.
    Jauch D, Urbańska EM, Guidetti P, Bird ED, Vonsattel JPG, Whetsell WO Jr, Schwarcz R (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci 130(1):39–47. CrossRefPubMedGoogle Scholar
  25. 25.
    Ilzecka J, Kocki T, Stelmasiak Z, Turski WA (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 107(6):412–418. CrossRefPubMedGoogle Scholar
  26. 26.
    Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42(9):1702–1706. CrossRefPubMedGoogle Scholar
  27. 27.
    Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L, Arizona Parkinson's Disease C (2013) 3-Hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. CrossRefPubMedGoogle Scholar
  28. 28.
    Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. J Neurol Sci 239(1):31–35. CrossRefPubMedGoogle Scholar
  29. 29.
    Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72(4):411–412. CrossRefPubMedGoogle Scholar
  30. 30.
    Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219(4582):316–318. CrossRefPubMedGoogle Scholar
  31. 31.
    Sˇtípek S, Sˇtastný FE, Pláteník J, Crkovská JI, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30(2):233–237. CrossRefGoogle Scholar
  32. 32.
    Pláteník J, Stopka P, Vejražka M, Štípek S (2001) Quinolinic acid—iron(II) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radic Res 34(5):445–459. CrossRefPubMedGoogle Scholar
  33. 33.
    Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86. CrossRefPubMedGoogle Scholar
  34. 34.
    Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141. CrossRefPubMedGoogle Scholar
  35. 35.
    Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I et al (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33(5):538–547. CrossRefPubMedGoogle Scholar
  36. 36.
    Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473CrossRefPubMedGoogle Scholar
  37. 37.
    Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247(1):184–187. CrossRefPubMedGoogle Scholar
  38. 38.
    Rebouche CJ (2004) Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 1033(1):30–41. CrossRefPubMedGoogle Scholar
  39. 39.
    Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN (2002) Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci U S A 99(4):1870–1875. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fritz IB, Arrigoni-Martelli E (1993) Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci 14(10):355–360. CrossRefPubMedGoogle Scholar
  41. 41.
    Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42. CrossRefPubMedGoogle Scholar
  42. 42.
    Tang XQ, Fang HR, Li YJ, Zhou CF, Ren YK, Chen RQ, Wang CY, Hu B (2011) Endogenous hydrogen sulfide is involved in asymmetric dimethylarginine-induced protection against neurotoxicity of 1-methyl-4-phenyl-pyridinium ion. Neurochem Res 36(11):2176–2185. CrossRefPubMedGoogle Scholar
  43. 43.
    Paschen W (1992) Polyamine metabolism in different pathological states of the brain. Mol Chem Neuropathol 16(3):241–271. CrossRefPubMedGoogle Scholar
  44. 44.
    Morrison LD, Cao XC, Kish SJ (1998) Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer’s disease. J Neurochem 71(1):288–294. CrossRefPubMedGoogle Scholar
  45. 45.
    Rassoulpour A, Wu H-Q, Poeggeler B, Schwarcz R (1998) Systemic d-amphetamine administration causes a reduction of kynurenic acid levels in rat brain. Brain Res 802(1–2):111–118. CrossRefPubMedGoogle Scholar
  46. 46.
    Wu HQ, Rassoulpour A, Schwarcz R (2002) Effect of systemic L-DOPA administration on extracellular kynurenate levels in the rat striatum. J Neural Transm 109(3):239–249. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of MedicineChang Gung UniversityTaoyuanTaiwan
  2. 2.Department of Biomedical SciencesChang Gung UniversityTao-YuanTaiwan
  3. 3.Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
  4. 4.Clinical Phenome CenterChang Gung Memorial HospitalTao-YuanTaiwan

Personalised recommendations