Advertisement

Molecular Neurobiology

, Volume 55, Issue 7, pp 5727–5740 | Cite as

Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries

  • Sara Emad El-Agamy
  • Amal Kamal Abdel-Aziz
  • Sara Wahdan
  • Ahmed Esmat
  • Samar S. Azab
Original Paper

Abstract

Chemobrain refers to a common sequelae experienced by 15–80% of cancer patients exposed to chemotherapeutics. The antineoplastic agent doxorubicin (DOX) has been implicated in a strenuous neurotoxicity manifested as decline in cognitive functions, most probably via cytokine-induced oxidative and nitrosative damage to brain tissues. Astaxanthin (AST), a naturally occurring carotenoid, is reputable for its outstanding antioxidant, anti-inflammatory, and antiapoptotic activities. Therefore, the aim of the current study was to investigate the potential neuroprotective and memory-enhancing effects of AST against DOX-induced behavioral and neurobiological abnormalities. Briefly, AST treatment (25 mg/kg) significantly protected against DOX-induced memory impairment. Furthermore, AST restored hippocampal histopathological architecture, halted DOX-induced oxidative and inflammatory insults, mitigated the increase in acetylcholinesterase activity, and consistently downregulated the overactive apoptotic machineries. In conclusion, these findings suggest that AST offers neuroprotection against DOX-induced cognitive impairment which could be explained at least partly by its antioxidant, anti-inflammatory, and antiapoptotic effects.

Keywords

Chemobrain Doxorubicin Astaxanthin Oxidative stress Neuroinflammation Apoptosis 

Notes

Compliance with Ethical Standards

The experimental protocol including procedures of laboratory animal care in research was approved by the Research Ethics Committee, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, under the memorandum no. 87.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ahles TA, Saykin A (2001) Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Investig 19(8):812–820.  https://doi.org/10.1081/CNV-100107743 CrossRefGoogle Scholar
  2. 2.
    Olin JJ. Cognitive function after systemic therapy for breast cancer. Oncology (Williston Park). 2001;15(5):613–618; discussion 618, 621–624. http://www.ncbi.nlm.nih.gov/pubmed/11396356. Accessed July 30, 2016.
  3. 3.
    Hayslip J, Dressler EV, Weiss H et al (2015) Plasma TNF-α and soluble TNF receptor levels after doxorubicin with or without co-administration of mesna—a randomized, cross-over clinical study. PLoS One 10(4):1–14.  https://doi.org/10.1371/journal.pone.0124988. CrossRefGoogle Scholar
  4. 4.
    Correa DD, Ahles TA (2008) Neurocognitive changes in cancer survivors. Cancer J 14(6):396–400.  https://doi.org/10.1097/PPO.0b013e31818d8769 CrossRefPubMedGoogle Scholar
  5. 5.
    Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF (2000) Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 18(14):2695–2701.  https://doi.org/10.1200/JCO.2000.18.14.2695 CrossRefPubMedGoogle Scholar
  6. 6.
    Correa DD, Ahles TA (2007) Cognitive adverse effects of chemotherapy in breast cancer patients. Curr Opin Support Palliat Care 1(1):57–62.  https://doi.org/10.1097/SPC.0b013e32813a328f CrossRefPubMedGoogle Scholar
  7. 7.
    Aluise CD, Sultana R, Tangpong J et al (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. In:147–156.  https://doi.org/10.1007/978-1-4419-6306-2_19
  8. 8.
    Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19(6):670–686 http://www.ncbi.nlm.nih.gov/pubmed/1462166. Accessed August 1, 2016PubMedGoogle Scholar
  9. 9.
    Volkova M, Russell R, III. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011;7(4):214–220. doi: https://doi.org/10.2174/157340311799960645.
  10. 10.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229.  https://doi.org/10.1124/pr.56.2.6 CrossRefPubMedGoogle Scholar
  11. 11.
    Zordoky BNM, Anwar-Mohamed A, Aboutabl ME, El-Kadi AOS (2011) Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metab Dispos 39(8):1440–1450.  https://doi.org/10.1124/dmd.111.039123 CrossRefPubMedGoogle Scholar
  12. 12.
    Jansen CE, Dodd MJ, Miaskowski CA, Dowling GA, Kramer J (2008) Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psychooncology 17(12):1189–1195.  https://doi.org/10.1002/pon.1342 CrossRefPubMedGoogle Scholar
  13. 13.
    Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100(11):2292–2299.  https://doi.org/10.1002/cncr.20272 CrossRefPubMedGoogle Scholar
  14. 14.
    Wefel JS, Saleeba AK, Buzdar AU, Meyers CA (2010) Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 116(14):3348–3356.  https://doi.org/10.1002/cncr.25098 CrossRefPubMedGoogle Scholar
  15. 15.
    Tangpong J, Cole MP, Sultana R et al (2006) Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139.  https://doi.org/10.1016/j.nbd.2006.02.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Cardoso S, Santos RX, Carvalho C et al (2008) Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic Biol Med 45(10):1395–1402.  https://doi.org/10.1016/j.freeradbiomed.2008.08.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Tangpong J, Cole MP, Sultana R et al (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 100(1):191–201.  https://doi.org/10.1111/j.1471-4159.2006.04179.x CrossRefPubMedGoogle Scholar
  18. 18.
    Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46(2):185–196.  https://doi.org/10.1080/10408690590957188 CrossRefPubMedGoogle Scholar
  19. 19.
    Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 2008;101(10, Supplement 1):S58-S68. doi: https://doi.org/10.1016/j.amjcard.2008.02.010.
  20. 20.
    Lee S-J, Bai S-K, Lee K-S et al (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol Cells 16(1):97–105 http://www.ncbi.nlm.nih.gov/pubmed/14503852. Accessed April 26, 2017PubMedGoogle Scholar
  21. 21.
    Lee DH, Kim CS, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49(1):271–280.  https://doi.org/10.1016/j.fct.2010.10.029 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang L, Wang H (2015) Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs 13(7):4310–4330.  https://doi.org/10.3390/md13074310 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hussein G, Nakamura M, Zhao Q et al (2005) Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol Pharm Bull 28(January):47–52.  https://doi.org/10.1248/bpb.28.47 CrossRefPubMedGoogle Scholar
  24. 24.
    Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T (2008) Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 107(6):1730–1740.  https://doi.org/10.1111/j.1471-4159.2008.05743.x CrossRefPubMedGoogle Scholar
  25. 25.
    Lee D-H, Lee YJ, Kwon KH (2010) Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr 47(2):121–129.  https://doi.org/10.3164/jcbn.10-29 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    YP L, Liu SY, Sun H, XM W, Li JJ, Zhu L (2010) Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res 1360:40–48.  https://doi.org/10.1016/j.brainres.2010.09.016 CrossRefGoogle Scholar
  27. 27.
    Wakshlag JJ, Balkman CA, Morgan SK, McEntee MC (2010) Evaluation of the protective effects of all-trans-astaxanthin on canine osteosarcoma cell lines. Am J Vet Res 71(1):89–96.  https://doi.org/10.2460/ajvr.71.1.89 CrossRefPubMedGoogle Scholar
  28. 28.
    He L, Liu G, Shi Y, Peng X, Liu H, Peng Y (2015) Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology 95(3–4):193–200.  https://doi.org/10.1159/000381314 PubMedGoogle Scholar
  29. 29.
    Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18(7):1954–1965.  https://doi.org/10.1158/1078-0432.CCR-11-2000 CrossRefPubMedGoogle Scholar
  30. 30.
    Kitamura Y, Hattori S, Yoneda S et al (2015) Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 292:184–193.  https://doi.org/10.1016/j.bbr.2015.06.007 CrossRefPubMedGoogle Scholar
  31. 31.
    Kim J-H, Kim Y-S, Song G-G, Park J-J, Chang H-I (2005) Protective effect of astaxanthin on naproxen-induced gastric antral ulceration in rats. Eur J Pharmacol 514(1):53–59.  https://doi.org/10.1016/j.ejphar.2005.03.034 CrossRefPubMedGoogle Scholar
  32. 32.
    KIM J-H, CHOI S-K, CHOI S-Y, KIM H-K, CHANG H-I (2005) Suppressive effect of astaxanthin isolated from the Xanthophyllomyces dendrorhous mutant on ethanol-induced gastric mucosal injury in rats. Biosci Biotechnol Biochem 69(7):1300–1305.  https://doi.org/10.1271/bbb.69.1300 CrossRefPubMedGoogle Scholar
  33. 33.
    Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R (2016) The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Exp Neurol 283:129–141.  https://doi.org/10.1016/j.expneurol.2016.06.004. CrossRefPubMedGoogle Scholar
  34. 34.
    Bancroft JD (2008) Gamble M. Theory and practice of histological techniques, Churchill Livingstone/ElsevierGoogle Scholar
  35. 35.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. Blum D, ed. PLoS One 2015;10(2):e0117223. doi: https://doi.org/10.1371/journal.pone.0117223.
  37. 37.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888 http://www.ncbi.nlm.nih.gov/pubmed/13967893. Accessed August 6, 2016PubMedGoogle Scholar
  38. 38.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 http://www.ncbi.nlm.nih.gov/pubmed/6727660. Accessed August 9, 2016CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Amin MM, Reza HM, Saadi HM et al (2016) Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. Eur J Pharmacol 777:60–69.  https://doi.org/10.1016/j.ejphar.2016.02.062 CrossRefPubMedGoogle Scholar
  40. 40.
    Xu L, Zhu J, Yin W, Ding X (2015) Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int J Clin Exp Pathol 8(6):6083–6094 http://www.ncbi.nlm.nih.gov/pubmed/26261486. Accessed February 23, 2017PubMedPubMedCentralGoogle Scholar
  41. 41.
    Satoh A, Tsuji S, Okada Y et al (2009) Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr 44(3):280–284.  https://doi.org/10.3164/jcbn.08-238 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7(3):192–201.  https://doi.org/10.1038/nrc2073 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Joshi G, Aluise CD, Cole MP et al (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166(3):796–807.  https://doi.org/10.1016/j.neuroscience.2010.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Joshi G, Sultana R, Tangpong J et al (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39(11):1147–1154.  https://doi.org/10.1080/10715760500143478 CrossRefPubMedGoogle Scholar
  45. 45.
    Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA (2007) Glutathione elevation by gamma-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implication for chemobrain. J Neurosci Res 85(3):497–503.  https://doi.org/10.1002/jnr.21158 CrossRefPubMedGoogle Scholar
  46. 46.
    Daiber A, Daub S, Bachschmid M et al (2013) Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications. Int J Mol Sci 14(4):7542–7570.  https://doi.org/10.3390/ijms14047542 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297(2):291–295.  https://doi.org/10.1016/0003-9861(92)90675-M CrossRefPubMedGoogle Scholar
  48. 48.
    Kidd P (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16(4):355–364 http://www.ncbi.nlm.nih.gov/pubmed/22214255. Accessed August 23, 2016PubMedGoogle Scholar
  49. 49.
    Bigotte L, Arvidson B, Olsson Y (1982) Cytofluorescence localization of adriamycin in the nervous system. Acta Neuropathol 57(2–3):121–129.  https://doi.org/10.1007/BF00685379 CrossRefPubMedGoogle Scholar
  50. 50.
    Trachootham D, Lu W, Ogasawara MA, Nilsa R-DV, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374.  https://doi.org/10.1089/ars.2007.1957 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nishioku T, Matsumoto J, Dohgu S et al (2010) Tumor necrosis factor-α mediates the blood–brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254.  https://doi.org/10.1254/jphs.09292SC CrossRefPubMedGoogle Scholar
  52. 52.
    Butler M, O’Connor J, Moynagh P (2004) Dissection of tumor-necrosis factor-α inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early—but not late—phase LTP. Neuroscience 124(2):319–326.  https://doi.org/10.1016/j.neuroscience.2003.11.040 CrossRefPubMedGoogle Scholar
  53. 53.
    Keeney J. Doxorubicin-induced, TNF-α-mediated brain oxidative stress, neurochemical alterations, and cognitive decline: insights into mechanisms of chemotherapy induced cognitive impairment and its prevention. Theses Diss. 2013. http://uknowledge.uky.edu/chemistry_etds/27. Accessed April 26, 2017.
  54. 54.
    Hyka N (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389.  https://doi.org/10.1182/blood.V97.8.2381. CrossRefPubMedGoogle Scholar
  55. 55.
    Watkins LR, Maier SF, Goehler LE (1995) Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci 57(11):1011–1026.  https://doi.org/10.1016/0024-3205(95)02047-M CrossRefPubMedGoogle Scholar
  56. 56.
    Szelényi J (2001) Cytokines and the central nervous system. Brain Res Bull 54(4):329–338.  https://doi.org/10.1016/S0361-9230(01)00428-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Haydon PG (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031.  https://doi.org/10.1152/physrev.00049.2005 CrossRefPubMedGoogle Scholar
  58. 58.
    Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6(5):237–245.  https://doi.org/10.1016/j.cnr.2006.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353.  https://doi.org/10.1016/j.nurt.2010.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Baune BT, Camara M-L, Eyre H, Jawahar C, Anscomb H, Körner H (2012) Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction. Transl Neurosci 3(3):263–277.  https://doi.org/10.2478/s13380-012-0027-8. CrossRefGoogle Scholar
  61. 61.
    Oliveira WH, Nunes AK, França MER et al (2016) Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res 1644:149–160.  https://doi.org/10.1016/j.brainres.2016.05.013 CrossRefPubMedGoogle Scholar
  62. 62.
    Zhou X, Zhang F, Hu X et al (2017) Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice. Brain Res 1657:262–268.  https://doi.org/10.1016/j.brainres.2016.12.018 CrossRefPubMedGoogle Scholar
  63. 63.
    Suzuki Y, Ohgami K, Shiratori K et al (2006) Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-κB signaling pathway. Exp Eye Res 82(2):275–281.  https://doi.org/10.1016/j.exer.2005.06.023 CrossRefPubMedGoogle Scholar
  64. 64.
    Izumi-Nagai K, Nagai N, Ohgami K et al (2008) Inhibition of choroidal neovascularization with an anti-inflammatory carotenoid astaxanthin. Investig Opthalmology Vis Sci 49(4):1679.  https://doi.org/10.1167/iovs.07-1426 CrossRefGoogle Scholar
  65. 65.
    Choi S-K, Park Y-S, Choi D-K, Chang H-I (2008) Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J Microbiol Biotechnol 18(12):1990–1996 http://www.ncbi.nlm.nih.gov/pubmed/19131704. Accessed August 28, 2016PubMedGoogle Scholar
  66. 66.
    Speranza L, Pesce M, Patruno A et al (2012) Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar Drugs. 10(12):890–899.  https://doi.org/10.3390/md10040890 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang XS, Zhang X, Wu Q et al (2014) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192(1):206–213.  https://doi.org/10.1016/j.jss.2014.05.029 CrossRefPubMedGoogle Scholar
  68. 68.
    Gold P (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80(3):194–210.  https://doi.org/10.1016/j.nlm.2003.07.003. CrossRefPubMedGoogle Scholar
  69. 69.
    Das A, Rai D, Dikshit M, Palit G, Nath C (2005) Nature of stress: differential effects on brain acetylcholinesterase activity and memory in rats. Life Sci 77(18):2299–2311.  https://doi.org/10.1016/j.lfs.2005.02.020 CrossRefPubMedGoogle Scholar
  70. 70.
    Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715.  https://doi.org/10.1016/j.conb.2006.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dose J, Matsugo S, Yokokawa H et al (2016) Free radical scavenging and cellular antioxidant properties of astaxanthin. Int J Mol Sci 17(1).  https://doi.org/10.3390/ijms17010103
  72. 72.
    Tangpong J, Miriyala S, Noel T, Sinthupibulyakit C, Jungsuwadee P, St Clair DK (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience 175:292–299.  https://doi.org/10.1016/j.neuroscience.2010.11.007 CrossRefPubMedGoogle Scholar
  73. 73.
    Gomez-Lazaro M, Galindo MF, Concannon CG et al (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104(6):1599–1612.  https://doi.org/10.1111/j.1471-4159.2007.05115.x CrossRefPubMedGoogle Scholar
  74. 74.
    Li J, Xia Y, Liu T, et al. Protective effects of astaxanthin on ConA-induced autoimmune hepatitis by the JNK/p-JNK pathway-mediated inhibition of autophagy and apoptosis. Papa S, ed. PLoS One 2015;10(3):e0120440.  https://doi.org/10.1371/journal.pone.0120440.
  75. 75.
    Usta Y, Ismailoglu U, Bakkaloglu A et al (2004) Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol 19(8).  https://doi.org/10.1007/s00467-004-1538-5

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sara Emad El-Agamy
    • 1
  • Amal Kamal Abdel-Aziz
    • 1
  • Sara Wahdan
    • 1
  • Ahmed Esmat
    • 1
  • Samar S. Azab
    • 1
  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyAin Shams UniversityCairoEgypt

Personalised recommendations