Molecular Neurobiology

, Volume 55, Issue 7, pp 5594–5610 | Cite as

Soluble Amyloid Precursor Protein Alpha Interacts with alpha3-Na, K-ATPAse to Induce Axonal Outgrowth but Not Neuroprotection: Evidence for Distinct Mechanisms Underlying these Properties

  • Emilie Dorard
  • Stéphanie Chasseigneaux
  • Lucie Gorisse-Hussonnois
  • Cédric Broussard
  • Thierry Pillot
  • Bernadette AllinquantEmail author


Amyloid precursor protein (APP) is cleaved not only to generate the amyloid peptide (Aß), involved in neurodegenerative processes, but can also be metabolized by alpha secretase to produce and release soluble N-terminal APP (sAPPα), which has many properties including the induction of axonal elongation and neuroprotection. The mechanisms underlying the properties of sAPPα are not known. Here, we used proteomic analysis of mouse cortico-hippocampal membranes to identify the neuronal specific alpha3 (α3)-subunit of the plasma membrane enzyme Na, K-ATPase (NKA) as a new binding partner of sAPPα. We showed that sAPPα recruits very rapidly clusters of α3-NKA at neuronal surface, and its binding triggers a cascade of events promoting sAPPα-induced axonal outgrowth. The binding of sAPPα with α3-NKA was not observed for sAPPα-induced Aß1-42 oligomers neuroprotection, neither the downstream events particularly the interaction of sAPPα with APP before endocytosis, ERK signaling, and the translocation of SET from the nucleus to the plasma membrane. These data suggest that the mechanisms of the axonal growth promoting and neuroprotective properties of sAPPα appear to be specific and independent. The signals at the cell surface specific to trigger these mechanisms require further study.


Soluble amyloid precursor protein alpha alpha3-Na, K-ATPase Neuron Axonal elongation Neuroprotection SET 



We thank Luc Camoin and François Guillonneau for their supervision and comments on the proteomic analysis. This work was supported by the Institut National de la Santé et de la Recherche Médicale, France and by SynAging, Nancy, France.

Compliance with Ethical Standards

The protocol of animal anesthesia was carried out in compliance with French law in strict accordance with the recommendations of the European Economic Committee (63/2010) and was approved by the local ethics committee (Direction Départementale des Services Vétérinaires de Paris, Service de la Protection de Santé Animale et de la Protection de l’Environnement).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12035_2017_783_Fig11_ESM.gif (9 kb)
Fig. S1

Action of 1 nM ouabain on ATPase activity in primary neurons 1 nM of ouabain was added to primary neurons at 5DIV for 24 h. Neurons were then processed for ATPAse activity as described in Material and Methods. Data are expressed in μmol of Pi/h/mg proteins and are the mean ± SEM of 3 independent experiments. **: p < 0.01. (GIF 9 kb).

12035_2017_783_MOESM1_ESM.tif (123 kb)
High resolution image (TIFF 122 kb).


  1. 1.
    Leyssen M, Ayaz D, Hebert SS, Reeve S, De Strooper B, Hassan BA (2005) Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO J 24:2944–2955CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26:7212–7221CrossRefPubMedGoogle Scholar
  3. 3.
    Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ (2007) A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 27:14459–14469CrossRefPubMedGoogle Scholar
  4. 4.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766CrossRefPubMedGoogle Scholar
  5. 5.
    Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184CrossRefPubMedGoogle Scholar
  6. 6.
    Larson ME, Lesne SE (2012) Soluble Abeta oligomer production and toxicity. J Neurochem 120(Suppl 1):125–139CrossRefPubMedGoogle Scholar
  7. 7.
    Scheuermann S, Hambsch B, Hesse L, Stumm J, Schmidt C, Beher D, Bayer TA, Beyreuther K et al (2001) Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J Biol Chem 276:33923–33929CrossRefPubMedGoogle Scholar
  8. 8.
    Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A et al (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24:3624–3634CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kaden D, Munter LM, Joshi M, Treiber C, Weise C, Bethge T, Voigt P, Schaefer M et al (2008) Homophilic interactions of the amyloid precursor protein (APP) ectodomain are regulated by the loop region and affect beta-secretase cleavage of APP. J Biol Chem 283:7271–7279CrossRefPubMedGoogle Scholar
  10. 10.
    Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10:243–254CrossRefPubMedGoogle Scholar
  11. 11.
    Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128:1–12CrossRefPubMedGoogle Scholar
  12. 12.
    Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Muller U, Ciccolini F (2008) Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 28:871–882CrossRefPubMedGoogle Scholar
  13. 13.
    Copanaki E, Chang S, Vlachos A, Tschape JA, Muller UC, Kogel D, Deller T (2010) sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 44:386–393CrossRefPubMedGoogle Scholar
  14. 14.
    Smith-Swintosky VL, Pettigrew LC, Craddock SD, Culwell AR, Rydel RE, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect against ischemic brain injury. J Neurochem 63:781–784CrossRefPubMedGoogle Scholar
  15. 15.
    Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6:e16301CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chasseigneaux S, Allinquant B (2012) Functions of Abeta, sAPPalpha and sAPPbeta: similarities and differences. J Neurochem 120(Suppl 1):99–108CrossRefPubMedGoogle Scholar
  17. 17.
    Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2014) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131:2173–2181CrossRefGoogle Scholar
  18. 18.
    Demars MP, Hollands C, Zhao Kda T, Lazarov O (2013) Soluble amyloid precursor protein-alpha rescues age-linked decline in neural progenitor cell proliferation. Neurobiol Aging 34:2431–2440CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP et al (2008) Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31:250–260CrossRefPubMedGoogle Scholar
  20. 20.
    Moreno L, Rose C, Mohanraj A, Allinquant B, Billard JM, Dutar P (2015) sAbetaPPalpha improves hippocampal NMDA-dependent functional alterations linked to healthy aging. J Alzheimers Dis 48:927–935CrossRefPubMedGoogle Scholar
  21. 21.
    Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C et al (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27:7817–7826CrossRefPubMedGoogle Scholar
  22. 22.
    Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M et al (2016) Viral gene transfer of APPsalpha rescues synaptic failure in an Alzheimer’s disease mouse model. Acta Neuropathol 131:247–266CrossRefPubMedGoogle Scholar
  23. 23.
    Reinhard C, Borgers M, David G, De Strooper B (2013) Soluble amyloid-beta precursor protein binds its cell surface receptor in a cooperative fashion with glypican and syndecan proteoglycans. J Cell Sci 126:4856–4861CrossRefPubMedGoogle Scholar
  24. 24.
    Dawkins E, Gasperini R, Hu Y, Cui H, Vincent AJ, Bolos M, Young KM, Foa L et al (2014) The N-terminal fragment of the beta-amyloid precursor protein of Alzheimer’s disease (N-APP) binds to phosphoinositide-rich domains on the surface of hippocampal neurons. J Neurosci Res 92:1478–1489CrossRefPubMedGoogle Scholar
  25. 25.
    Young-Pearse TL, Chen AC, Chang R, Marquez C, Selkoe DJ (2008) Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev 3:15CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gralle M, Botelho MG, Wouters FS (2009) Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 284:15016–15025CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C et al (2014) Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsalpha expression. Acta Neuropathol Commun 2:36CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T (2013) Soluble beta-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One 8:e82321CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Azarias G, Kruusmagi M, Connor S, Akkuratov EE, Liu XL, Lyons D, Brismar H, Broberger C et al (2013) A specific and essential role for Na,K-ATPase alpha3 in neurons co-expressing alpha1 and alpha3. J Biol Chem 288:2734–2743CrossRefPubMedGoogle Scholar
  30. 30.
    Brouillet E, Trembleau A, Galanaud D, Volovitch M, Bouillot C, Valenza C, Prochiantz A, Allinquant B (1999) The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci 19:1717–1727CrossRefPubMedGoogle Scholar
  31. 31.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefPubMedGoogle Scholar
  32. 32.
    Pillot T, Drouet B, Queille S, Labeur C, Vandekerchkhove J, Rosseneu M, Pincon-Raymond M, Chambaz J (1999) The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem 73:1626–1634CrossRefPubMedGoogle Scholar
  33. 33.
    Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac’h-Pillot K, Koziel V, Yen-Potin FT, Bihain B et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 19:85–87CrossRefPubMedGoogle Scholar
  34. 34.
    Fifre A, Sponne I, Koziel V, Kriem B, Yen Potin FT, Bihain BE, Olivier JL, Oster T et al (2006) Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J Biol Chem 281:229–240CrossRefPubMedGoogle Scholar
  35. 35.
    Briand S, Facchinetti P, Clamagirand C, Madeira A, Pommet JM, Pimplikar SW, Allinquant B (2011) PAT1 induces cell death signal and SET mislocalization into the cytoplasm by increasing APP/APLP2 at the cell surface. Neurobiol Aging 32:1099–1113CrossRefPubMedGoogle Scholar
  36. 36.
    Lecuona E, Dada LA, Sun H, Butti ML, Zhou G, Chew TL, Sznajder JI (2006) Na,K-ATPase alpha1-subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB J 20:2618–2620CrossRefPubMedGoogle Scholar
  37. 37.
    Kimura T, Han W, Pagel P, Nairn AC, Caplan MJ (2011) Protein phosphatase 2A interacts with the Na,K-ATPase and modulates its trafficking by inhibition of its association with arrestin. PLoS One 6:e29269CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Madeira A, Pommet JM, Prochiantz A, Allinquant B (2005) SET protein (TAF1beta, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. FASEB J 19:1905–1907CrossRefPubMedGoogle Scholar
  39. 39.
    Tanimukai H, Grundke-Iqbal I, Iqbal K (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 166:1761–1771CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Facchinetti P, Dorard E, Contremoulins V, Gaillard MC, Deglon N, Sazdovitch V, Guihenneuc-Jouyaux C, Brouillet E et al (2014) SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiol Aging 35:958–968CrossRefPubMedGoogle Scholar
  41. 41.
    Trakhtenberg EF, Wang Y, Morkin MI, Fernandez SG, Mlacker GM, Shechter JM, Liu X, Patel KH et al (2014) Regulating Set-beta’s subcellular localization toggles its function between inhibiting and promoting axon growth and regeneration. J Neurosci 34:7361–7374CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shrivastava AN, Redeker V, Fritz N, Pieri L, Almeida LG, Spolidoro M, Liebmann T, Bousset L et al (2015) Alpha-synuclein assemblies sequester neuronal alpha3-Na+/K+-ATPase and impair Na+ gradient. EMBO J 34:2408–2423CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71:511–535CrossRefPubMedGoogle Scholar
  44. 44.
    Xie Z, Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269:2434–2439CrossRefPubMedGoogle Scholar
  45. 45.
    Golden WC, Martin LJ (2006) Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience 137:133–144CrossRefPubMedGoogle Scholar
  46. 46.
    Aperia A (2007) New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52CrossRefPubMedGoogle Scholar
  47. 47.
    Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM (2012) Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 343:596–607CrossRefPubMedGoogle Scholar
  48. 48.
    Allinquant B, Moya KL, Bouillot C, Prochiantz A (1994) Amyloid precursor protein in cortical neurons: coexistence of two pools differentially distributed in axons and dendrites and association with cytoskeleton. J Neurosci 14:6842–6854CrossRefPubMedGoogle Scholar
  49. 49.
    Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, Kii I, Nishiyama T et al (2015) Na, K-ATPase alpha3 is a death target of Alzheimer patient amyloid-beta assembly. Proc Natl Acad Sci U S A 112:E4465–E4474CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liguri G, Taddei N, Nassi P, Latorraca S, Nediani C, Sorbi S (1990) Changes in Na+,K(+)-ATPase, Ca2(+)-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer’s disease. Neurosci Lett 112:338–342CrossRefPubMedGoogle Scholar
  51. 51.
    Chauhan NB, Lee JM, Siegel GJ (1997) Na,K-ATPase mRNA levels and plaque load in Alzheimer’s disease. J Mol Neurosci 9:151–166CrossRefPubMedGoogle Scholar
  52. 52.
    Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA et al (1998) CI-ATPase and Na+/K(+)-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254:141–144CrossRefPubMedGoogle Scholar
  53. 53.
    Rohn TT, Ivins KJ, Bahr BA, Cotman CW, Cribbs DH (2000) A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis. J Neurochem 74:2331–2342CrossRefPubMedGoogle Scholar
  54. 54.
    Hashimoto Y, Chiba T, Yamada M, Nawa M, Kanekura K, Suzuki H, Terashita K, Aiso S et al (2005) Transforming growth factor beta2 is a neuronal death-inducing ligand for amyloid-beta precursor protein. Mol Cell Biol 25:9304–9317CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Milosch N, Tanriover G, Kundu A, Rami A, Francois JC, Baumkotter F, Weyer SW, Samanta A et al (2014) Holo-APP and G-protein-mediated signaling are required for sAPPalpha-induced activation of the Akt survival pathway. Cell Death Dis 5:e1391CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Mattson MP (1996) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 67:1882–1896CrossRefPubMedGoogle Scholar
  57. 57.
    Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C (2012) Evaluation of the effects of treatment with sAPPalpha on functional and histological outcome following controlled cortical impact injury in mice. Neurosci Lett 515:50–54CrossRefPubMedGoogle Scholar
  58. 58.
    Lai A, Sisodia SS, Trowbridge IS (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J Biol Chem 270:3565–3573CrossRefPubMedGoogle Scholar
  59. 59.
    Haass C, Koo EH, Capell A, Teplow DB, Selkoe DJ (1995) Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J Cell Biol 128:537–547CrossRefPubMedGoogle Scholar
  60. 60.
    Heggem MA, Bradley RS (2003) The cytoplasmic domain of Xenopus NF-protocadherin interacts with TAF1/set. Dev Cell 4:419–429CrossRefPubMedGoogle Scholar
  61. 61.
    Piper M, Dwivedy A, Leung L, Bradley RS, Holt CE (2008) NF-protocadherin and TAF1 regulate retinal axon initiation and elongation in vivo. J Neurosci 28:100–105CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    ten Klooster JP, Leeuwen I, Scheres N, Anthony EC, Hordijk PL (2007) Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. EMBO J 26:336–345CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lam BD, Anthony EC, Hordijk PL (2013) Cytoplasmic targeting of the proto-oncogene SET promotes cell spreading and migration. FEBS Lett 587:111–119CrossRefPubMedGoogle Scholar
  64. 64.
    Miyaji-Yamaguchi M, Okuwaki M, Nagata K (1999) Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J Mol Biol 290:547–557CrossRefPubMedGoogle Scholar
  65. 65.
    Yu G, Yan T, Feng Y, Liu X, Xia Y, Luo H, Wang JZ, Wang X (2013) Ser9 phosphorylation causes cytoplasmic detention of I2PP2A/SET in Alzheimer disease. Neurobiol Aging 34:1748–1758CrossRefPubMedGoogle Scholar
  66. 66.
    Arif M, Wei J, Zhang Q, Liu F, Basurto-Islas G, Grundke-Iqbal I, Iqbal K (2014) Cytoplasmic retention of protein phosphatase 2A inhibitor 2 (I2PP2A) induces Alzheimer-like abnormal hyperphosphorylation of Tau. J Biol Chem 289:27677–27691CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chasseigneaux S, Clamagirand C, Huguet L, Gorisse-Hussonnois L, Rose C, Allinquant B (2014) Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A. BMC Neurosci 15:82CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris CitéFaculté de MédecineParisFrance
  2. 2.SynAgingNancyFrance
  3. 3.INSERM U1144Université Paris Descartes and Université Paris Diderot UMR-S 1144ParisFrance
  4. 4.Plate-forme Protéomique, Université Paris Descartes 3P5Institut CochinParisFrance

Personalised recommendations