Advertisement

Molecular Neurobiology

, Volume 55, Issue 7, pp 5490–5504 | Cite as

Pro-necrotic Activity of Cationic Mastoparan Peptides in Human Glioblastoma Multiforme Cells Via Membranolytic Action

  • Annielle Mendes Brito da Silva
  • Laíz Costa Silva-Gonçalves
  • Fernando Augusto Oliveira
  • Manoel Arcisio-Miranda
Article

Abstract

Glioblastoma multiforme is the most common and lethal malignant brain tumor. Because of its complexity and heterogeneity, this tumor has become resistant to conventional therapies and the available treatment produces multiple side effects. Here, using multiple experimental approaches, we demonstrate that three mastoparan peptides—Polybia-MP1, Mastoparan X, and HR1—from solitary wasp venom exhibit potent anticancer activity toward human glioblastoma multiforme cells. Importantly, the antiglioblastoma action of mastoparan peptides occurs by membranolytic activity, leading to necrosis. Our data also suggest a direct relation between mastoparan membranolytic potency and the presence of negatively charged phospholipids like phosphatidylserine. Collectively, these data may warrant additional studies for mastoparan peptides as new agents for the treatment of glioblastoma multiforme brain tumor.

Keywords

Mastoparan Glioblastoma Cationic peptide Necrosis Phosphatidylserine 

Notes

Acknowledgments

This study was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) (Processo no 2012/02065-0 and 2016/13368-4 to M.A.-M., and 2012/50336-2 to F.A.O.) and a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Processo no 477780/2010-5 to M.A.-M.). A.M.B.S is a Capes fellowship recipient. L.C.S.-G. is a CNPq fellowship recipient (Processo no 142066/2014-1). We thank Fapesp for funding 2009/53840-0.

Author Contributions

A.M.B.S and L.C.S.-G. performed the experiments. A.M.B.S., L.C.S.-G, F.A.O., and M.A.-M. analyzed the experiments. M.A.-M. supervised the project. A.M.B.S., L.C.S.-G, and M.A.-M. wrote the manuscript. All authors reviewed the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890.  https://doi.org/10.1016/j.ncl.2007.07.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710.  https://doi.org/10.1101/gad.1596707 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wrensch M, Minn Y, Chew T et al (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-Oncology 4:278–299CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A 97:6242–6244CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Porter KR, McCarthy BJ, Berbaum ML, Davis FG (2011) Conditional survival of all primary brain tumor patients by age, behavior, and histology. Neuroepidemiology 36:230–239.  https://doi.org/10.1159/000327752 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82.  https://doi.org/10.1016/j.pharmthera.2015.05.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Van Meir EG, Hadjipanayis CG, Norden AD et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193.  https://doi.org/10.3322/caac.20069 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nakagawa T, Kubota T, Kabuto M et al (1996) Secretion of matrix metalloproteinase-2 (72 kD gelatinase/type IV collagenase = gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix. J Neuro-Oncol 28:13–24CrossRefGoogle Scholar
  9. 9.
    Perego C, Vanoni C, Massari S et al (2002) Invasive behaviour of glioblastoma cell lines is associated with altered organisation of the cadherin-catenin adhesion system. J Cell Sci 115:3331–3340PubMedGoogle Scholar
  10. 10.
    Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426.  https://doi.org/10.1172/JCI89587 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr 1778:357–375.  https://doi.org/10.1016/j.bbamem.2007.11.008 CrossRefGoogle Scholar
  12. 12.
    Liu X, Li Y, Li Z et al (2015) Mechanism of anticancer effects of antimicrobial peptides. J Fiber Bioeng Informatics 8:25–36.  https://doi.org/10.3993/jfbi03201503 CrossRefGoogle Scholar
  13. 13.
    Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194.  https://doi.org/10.1016/j.ejphar.2009.08.043 CrossRefPubMedGoogle Scholar
  14. 14.
    Felício MR, Silva ON, Gonçalves S et al (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:1–9.  https://doi.org/10.3389/fchem.2017.00005 CrossRefGoogle Scholar
  15. 15.
    Lee S, Baek J, Yoon K (2016) Differential properties of venom peptides and proteins in solitary vs. social hunting wasps. Toxins (Basel) 8:1–29.  https://doi.org/10.3390/toxins8020032 CrossRefGoogle Scholar
  16. 16.
    Konno K, Kazuma K, Nihei K-I (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8:114.  https://doi.org/10.3390/toxins8040114 CrossRefGoogle Scholar
  17. 17.
    Arbuzova A, Schwarz G (1999) Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochim Biophys Acta Biomembr 1420:139–152.  https://doi.org/10.1016/S0005-2736(99)00098-X CrossRefGoogle Scholar
  18. 18.
    Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177.  https://doi.org/10.1016/j.plipres.2011.12.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Giuliani A, Pirri G, Bozzi A et al (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460.  https://doi.org/10.1007/s00018-008-8188-x CrossRefPubMedGoogle Scholar
  20. 20.
    Galdiero S, Falanga A, Cantisani M et al (2013) Peptide-lipid interactions: experiments and applications. Int J Mol Sci 14:18758–18789.  https://doi.org/10.3390/ijms140918758 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gaspar D, Veiga a S, Castanho M a RB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:1–16.  https://doi.org/10.3389/fmicb.2013.00294
  22. 22.
    Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248.  https://doi.org/10.1002/bip.10260 CrossRefPubMedGoogle Scholar
  23. 23.
    Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152.  https://doi.org/10.1007/s13238-010-0004-3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Raynor RL, Kim YS, Zheng B et al (1992) Membrane interactions of mastoparan analogues related to their differential effects on protein kinase C, Na, K-ATPase and HL60 cells. FEBS Lett 307:275–279CrossRefPubMedGoogle Scholar
  25. 25.
    Wu TM, Li ML (1999) The cytolytic action of all-D mastoparan M on tumor cell lines. Int J Tissue React 21:35–42PubMedGoogle Scholar
  26. 26.
    Yamada Y, Shinohara Y, Kakudo T et al (2005) Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303:1–7.  https://doi.org/10.1016/j.ijpharm.2005.06.009 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang K, Zhang B, Zhang W et al (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29:963–968.  https://doi.org/10.1016/j.peptides.2008.01.015 CrossRefPubMedGoogle Scholar
  28. 28.
    dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R et al (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-Lymphocyte cell selectivity. Biochemistry 51:4898–4908.  https://doi.org/10.1021/bi201608d CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang W, Li J, Liu L-W et al (2010) A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides 31:1832–1838.  https://doi.org/10.1016/j.peptides.2010.06.019 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu L-N, Fu C-Y, Zhang S-F et al (2013) Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells. J Pept Sci 19:566–574.  https://doi.org/10.1002/psc.2533 CrossRefPubMedGoogle Scholar
  31. 31.
    Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916.  https://doi.org/10.1128/IAI.73.4.1907-1916.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang X (2012) Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol Rep:2050–2056.  https://doi.org/10.3892/or.2012.1715
  33. 33.
    Cummings BS, Wills LP, Schnellmann RG (2012) Measurement of cell death in mammalian cells. Curr. Protoc. Pharmacol. John Wiley & Sons, Inc., Hoboken, NJ, USA, In, pp. 1–24Google Scholar
  34. 34.
    Chazotte B (2011) Labeling mitochondria with TMRM or TMRE. Cold Spring Harb Protoc 6:895–897.  https://doi.org/10.1101/pdb.prot5641 CrossRefGoogle Scholar
  35. 35.
    Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128.  https://doi.org/10.1023/A:1022945107762 CrossRefPubMedGoogle Scholar
  36. 36.
    Gottlieb E, Armour S, Harris M, Thompson C (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717.  https://doi.org/10.1038/sj.cdd.4401231 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr. Protoc. Cell Biol. John Wiley & Sons, Inc., Hoboken, NJ, USA, In, pp. 1–23Google Scholar
  38. 38.
    Kim NS, Lee GM (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95:237–248.  https://doi.org/10.1016/S0168-1656(02)00011-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221.  https://doi.org/10.1016/j.ceca.2011.03.003 CrossRefPubMedGoogle Scholar
  40. 40.
    Kennedy CL, Smith DJ, Lyras D et al (2009) Programmed cellular necrosis mediated by the pore-forming alpha-toxin from Clostridium septicum. PLoS Pathog.  https://doi.org/10.1371/journal.ppat.1000516
  41. 41.
    dos Santos Cabrera MP, Arcisio-Miranda M, da Costa LC et al (2009) Interactions of mast cell degranulating peptides with model membranes: a comparative biophysical study. Arch Biochem Biophys 486:1–11.  https://doi.org/10.1016/j.abb.2009.03.009 CrossRefPubMedGoogle Scholar
  42. 42.
    Arcisio-Miranda M, dos Santos Cabrera MP, Konno K et al (2008) Effects of the cationic antimicrobial peptide eumenitin from the venom of solitary wasp Eumenes rubronotatus in planar lipid bilayers: surface charge and pore formation activity. Toxicon 51:736–745.  https://doi.org/10.1016/j.toxicon.2007.11.023 CrossRefPubMedGoogle Scholar
  43. 43.
    Leite NB, dos Santos AD, de Souza BM et al (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43:121–130.  https://doi.org/10.1007/s00249-014-0945-1 PubMedCrossRefGoogle Scholar
  44. 44.
    de Azevedo RA, Figueiredo CR, Ferreira AK et al (2015) Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68:113–119.  https://doi.org/10.1016/j.peptides.2014.09.024 CrossRefPubMedGoogle Scholar
  45. 45.
    Hilchie AL, Sharon AJ, Haney EF et al (2016) Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta Biomembr 1858:3195–3204.  https://doi.org/10.1016/j.bbamem.2016.09.021 CrossRefGoogle Scholar
  46. 46.
    Konno K, Hisada M, Fontana R et al (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta - Protein Struct Mol Enzymol 1550:70–80.  https://doi.org/10.1016/S0167-4838(01)00271-0 CrossRefGoogle Scholar
  47. 47.
    dos Santos Cabrera MP, Arcisio-Miranda M, Broggio Costa ST et al (2008) Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidatedC-terminus. J Pept Sci 14:661–669.  https://doi.org/10.1002/psc.960 CrossRefPubMedGoogle Scholar
  48. 48.
    Souza BM, Mendes MA, Santos LD et al (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26:2157–2164.  https://doi.org/10.1016/j.peptides.2005.04.026 CrossRefPubMedGoogle Scholar
  49. 49.
    Alvares DS, Fanani ML, Ruggiero Neto J, Wilke N (2016) The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim Biophys Acta Biomembr 1858:393–402.  https://doi.org/10.1016/j.bbamem.2015.12.010 CrossRefGoogle Scholar
  50. 50.
    Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9:1–9.  https://doi.org/10.1371/journal.pone.0091007 CrossRefGoogle Scholar
  51. 51.
    Nakao S, Komagoe K, Inoue T, Katsu T (2011) Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells. Biochim Biophys Acta Biomembr 1808:490–497.  https://doi.org/10.1016/j.bbamem.2010.10.007 CrossRefGoogle Scholar
  52. 52.
    Huang Y, Feng Q, Yan Q et al (2015) Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini Rev Med Chem 15:73–81.  https://doi.org/10.2174/1389557514666141107120954 CrossRefPubMedGoogle Scholar
  53. 53.
    Hou L, Liu K, Li Y et al (2016) Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J Cell Sci 129:3084–3090.  https://doi.org/10.1242/jcs.184374 PubMedCrossRefGoogle Scholar
  54. 54.
    Birge RB, Boeltz S, Kumar S et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23:962–978.  https://doi.org/10.1038/cdd.2016.11 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Alvares DS, Ruggiero Neto J, Ambroggio EE (2017) Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide. Biochim Biophys Acta Biomembr 1859:1067–1074.  https://doi.org/10.1016/j.bbamem.2017.03.002 CrossRefPubMedGoogle Scholar
  56. 56.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  57. 57.
    Ribeiro-Silva L, Queiroz FO, da Silva AMB et al (2016) Voltage-gated proton channel in human glioblastoma multiforme cells. ACS Chem Neurosci 7:864–869.  https://doi.org/10.1021/acschemneuro.6b00083 CrossRefPubMedGoogle Scholar
  58. 58.
    Sonoda Y, Kasahara T, Yokota-Aizu E et al (1997) A suppressive role of p125FAK protein tyrosine kinase in hydrogen peroxide-induced apoptosis of T98G cells. Biochem Biophys Res Commun 241:769–774.  https://doi.org/10.1006/bbrc.1997.7895 CrossRefPubMedGoogle Scholar
  59. 59.
    Chazotte B (2011) Labeling nuclear DNA with Hoechst 33342. Cold Spring Harb Protoc:83–85.  https://doi.org/10.1101/pdb.prot5557
  60. 60.
    dos Santos Cabrera MP, Baldissera G, Silva-Gonçalves L da C, et al (2014) Combining experimental evidence and molecular dynamic simulations to understand the mechanism of action of the antimicrobial octapeptide Jelleine-I. Biochemistry 53:4857–4868.  https://doi.org/10.1021/bi5003585
  61. 61.
    Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496.  https://doi.org/10.1007/BF02531316 CrossRefPubMedGoogle Scholar
  62. 62.
    Luo P, Baldwin RL (1997) Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water †. Biochemistry 36:8413–8421.  https://doi.org/10.1021/bi9707133 CrossRefPubMedGoogle Scholar
  63. 63.
    Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol, In, pp. 1–26Google Scholar
  64. 64.
    Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific -helical properties. Bioinformatics 24:2101–2102.  https://doi.org/10.1093/bioinformatics/btn392 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Escola Paulista de MedicinaUniversidade Federal de São Paulo (Unifesp)São PauloBrazil
  2. 2.Laboratório de Neurobiologia Celular e Molecular (LaNeC), Centro de Matemática, Computação e CogniçãoUniversidade Federal do ABC (UFABC)São PauloBrazil

Personalised recommendations