Molecular Neurobiology

, Volume 55, Issue 7, pp 5672–5688 | Cite as

Field Synopsis and Re-analysis of Systematic Meta-analyses of Genetic Association Studies in Multiple Sclerosis: a Bayesian Approach

  • Jae Hyon Park
  • Joo Hi Kim
  • Kye Eun Jo
  • Se Whan Na
  • Michael Eisenhut
  • Andreas Kronbichler
  • Keum Hwa Lee
  • Jae Il ShinEmail author


To provide an up-to-date summary of multiple sclerosis-susceptible gene variants and assess the noteworthiness in hopes of finding true associations, we investigated the results of 44 meta-analyses on gene variants and multiple sclerosis published through December 2016. Out of 70 statistically significant genotype associations, roughly a fifth (21%) of the comparisons showed noteworthy false-positive rate probability (FPRP) at a statistical power to detect an OR of 1.5 and at a prior probability of 10−6 assumed for a random single nucleotide polymorphism. These associations (IRF8/rs17445836, STAT3/rs744166, HLA/rs4959093, HLA/rs2647046, HLA/rs7382297, HLA/rs17421624, HLA/rs2517646, HLA/rs9261491, HLA/rs2857439, HLA/rs16896944, HLA/rs3132671, HLA/rs2857435, HLA/rs9261471, HLA/rs2523393, HLA-DRB1/rs3135388, RGS1/rs2760524, PTGER4/rs9292777) also showed a noteworthy Bayesian false discovery probability (BFDP) and one additional association (CD24 rs8734/rs52812045) was also noteworthy via BFDP computation. Herein, we have identified several noteworthy biomarkers of multiple sclerosis susceptibility. We hope these data are used to study multiple sclerosis genetics and inform future screening programs.


Multiple sclerosis FPRP BFDP Gene variant Meta-analysis 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Manuscript is not under consideration for publication elseware and all named authors have agreed to its submission. No patients were involved in setting the research question or outcome measures, nor were they involved in developing plans for design or implementation of the study.


The authors declare no financial or non-financial conflict of interest.

Supplementary material

12035_2017_773_MOESM1_ESM.docx (165 kb)
ESM 1 (DOCX 165 kb)


  1. 1.
    Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–139CrossRefPubMedGoogle Scholar
  2. 2.
    Ioannidis JP, Boffetta P, Little J et al (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37:120–132CrossRefPubMedGoogle Scholar
  3. 3.
    Little J, Higgins J. (2006) The HuGENet™ HuGE review handbook, version 1.0.Google Scholar
  4. 4.
    Sagoo GS, Little J, Higgins JP (2009) Systematic reviews of genetic association studies. Human genome epidemiology network. PLoS Med 6:e28CrossRefPubMedGoogle Scholar
  5. 5.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442CrossRefPubMedGoogle Scholar
  6. 6.
    Wakefield J (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 81:208–227CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lucke JF (2009) A critique of the false-positive report probability. Genet Epidemiol 33:145–150CrossRefPubMedGoogle Scholar
  8. 8.
    von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261CrossRefGoogle Scholar
  9. 9.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568CrossRefPubMedGoogle Scholar
  10. 10.
    Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue)):W214–W220CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(Database issue):D277–D280CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mitchell A, Chang HY, Daugherty L et al (2015) The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221CrossRefPubMedGoogle Scholar
  13. 13.
    Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, Thomas G, Hoover R, Hunter DJ et al (2009) Beyond odds ratios–communicating disease risk based on genetic profiles. Nat Rev Genet 10:264–269CrossRefPubMedGoogle Scholar
  14. 14.
    Mokhtarian F, McFarlin DE, Raine CS (1984) Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 309:356–358CrossRefPubMedGoogle Scholar
  15. 15.
    Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324:258–260CrossRefPubMedGoogle Scholar
  16. 16.
    Tuohy VK, Sobel RA, Lees MB (1988) Susceptibility to PLP-induced EAE is regulated by non-H-2 genes. Ann N Y Acad Sci 540:709–711CrossRefPubMedGoogle Scholar
  17. 17.
    Mendel I, Kerlero de Rosbo N, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25:1951–1959CrossRefPubMedGoogle Scholar
  18. 18.
    Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199CrossRefPubMedGoogle Scholar
  19. 19.
    Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: Requirement for Lyt 1+ 2- T lymphocytes. J Immunol 127:1420–1423PubMedGoogle Scholar
  20. 20.
    Hafler DA, Compston A, Sawcer S et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357:851–862CrossRefPubMedGoogle Scholar
  21. 21.
    Ascherio A, Munger KL, Lunemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8:602–612CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wekerle H, Berer K, Krishnamoorthy G (2013) Remote control-triggering of brain autoimmune disease in the gut. Curr Opin Immunol 25:683–689CrossRefPubMedGoogle Scholar
  23. 23.
    Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L (2009) Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73:696–701CrossRefPubMedGoogle Scholar
  24. 24.
    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635CrossRefPubMedGoogle Scholar
  25. 25.
    Gran B, Hemmer B, Vergelli M, McFarland HF, Martin R (1999) Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol 45:559–567CrossRefPubMedGoogle Scholar
  26. 26.
    Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705CrossRefPubMedGoogle Scholar
  27. 27.
    Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R (2001) CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 108:1185–1194CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lassmann H, Ransohoff RM (2004) The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal. Trends Immunol 25:132–137CrossRefPubMedGoogle Scholar
  29. 29.
    Trotter JL, Damico CA, Cross AH, Pelfrey CM, Karr RW, Fu XT, McFarland HF (1997) HPRT mutant T-cell lines from multiple sclerosis patients recognize myelin proteolipid protein peptides. J Neuroimmunol 75(1–2):95–103CrossRefPubMedGoogle Scholar
  30. 30.
    Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175CrossRefPubMedGoogle Scholar
  31. 31.
    Nelson N, Marks MS, Driggers PH, Ozato K (1993) Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol Cell Biol 13:588–599CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K (2000) ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13:155–165CrossRefPubMedGoogle Scholar
  33. 33.
    Holtschke T, Lohler J, Kanno Y et al (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87:307–317CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Lee CH, Qi C, Tailor P, Feng J, Abbasi S, Atsumi T, Morse HC 3rd (2008) IRF8 regulates B-cell lineage specification, commitment, and differentiation. Blood 112:4028–4038CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    De Jager PL, Jia X, Wang J et al (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41:776–782CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Friese MA, Jakobsen KB, Friis L, Etzensperger R, Craner MJ, McMahon RM, Jensen LT, Huygelen V et al (2008) Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat Med 14:1227–1235CrossRefPubMedGoogle Scholar
  37. 37.
    Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19:578–587CrossRefPubMedGoogle Scholar
  38. 38.
    Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R et al (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A 101:2428–2433CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R et al (2007) Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130:2789–2799CrossRefPubMedGoogle Scholar
  41. 41.
    Neumann H, Cavalie A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552CrossRefPubMedGoogle Scholar
  42. 42.
    Yshii L, Gebauer C, Bernard-Valnet R, Liblau R (2015) Neurons and T cells: understanding this interaction for inflammatory neurological diseases. Eur J Immunol 45:2712–2720CrossRefPubMedGoogle Scholar
  43. 43.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132CrossRefPubMedGoogle Scholar
  44. 44.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2012) Defining the human T helper 17 cell phenotype. Trends Immunol 33:505–512CrossRefPubMedGoogle Scholar
  46. 46.
    Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, Hafler DA (2015) Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 7:287ra274CrossRefGoogle Scholar
  47. 47.
    Liu X, Lee YS, Yu CR, Egwuagu CE (2008) Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J Immunol 180:6070–6076CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, Sugimoto Y, Narumiya S (2009) Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 15:633–640CrossRefPubMedGoogle Scholar
  50. 50.
    Jiang L, Bai X, Wang Y, Wei M (2015) Association between CD24-P226-C/T polymorphism and multiple sclerosis: a meta-analysis. Immunol Investig 44:321–330CrossRefGoogle Scholar
  51. 51.
    Bai XF, Li O, Zhou Q, Zhang H, Joshi PS, Zheng X, Liu Y, Wang Y et al (2004) CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J Exp Med 200:447–458CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moratz C, Harrison K, Kehrl JH (2004) Regulation of chemokine-induced lymphocyte migration by RGS proteins. Methods Enzymol 389:15–32CrossRefPubMedGoogle Scholar
  53. 53.
    Han SB, Moratz C, Huang NN, Kelsall B, Cho H, Shi CS, Schwartz O, Kehrl JH (2005) Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 22:343–354CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Severance HospitalYonsei University College of MedicineSeoulRepublic of Korea
  2. 2.Yonsei University Wonju College of MedicineSeoulRepublic of Korea
  3. 3.College of MedicineUniversity of DebrecenDebrecenHungary
  4. 4.Department of PediatricsLuton & Dunstable University Hospital NHS Foundation TrustLutonUK
  5. 5.Department of Internal Medicine IVMedical University InnsbruckInnsbruckAustria
  6. 6.Department of PediatricsYonsei University College of MedicineSeoulRepublic of Korea

Personalised recommendations