Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action

  • Tatyana Strekalova
  • Nataliia Bahzenova
  • Alexander Trofimov
  • Angelika G. Schmitt-Böhrer
  • Nataliia Markova
  • Vladimir Grigoriev
  • Vladimir Zamoyski
  • Tatiana Serkova
  • Olga Redkozubova
  • Daria Vinogradova
  • Alexei Umriukhin
  • Vladimir Fisenko
  • Christina Lillesaar
  • Elena Shevtsova
  • Vladimir Sokolov
  • Alexey Aksinenko
  • Klaus-Peter Lesch
  • Sergey Bachurin
Article

Abstract

A comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage. Short-term memory and fear extinction remained unaltered across treatment groups. During the 5-day predation stress paradigm, oral drug treatment over a period of 2 weeks at the higher dosage regimen decreased anxiety-like behaviour. Both compounds supressed inter-male aggression in CD1 mice, the most eminent being the effects of DF302 in its highest dose. DF302 at the higher dose decreased floating behaviour in a 2-day swim test and after 21-day ultrasound stress. The density of Ki67-positive cells, a marker of adult neurogenesis, was reduced in the dentate gyrus of stressed dimebon-treated and non-treated mice, but not in DF302-treated mice. Non-stressed mice that received DF302 had a higher density of Ki67-positive cells than controls unlike dimebon-treated mice. Similar to dimebon, DF302 effectively potentiated AMPA receptor-mediated currents, bound to the 5-HT6 receptor, inhibited mitochondrial permeability transition and displayed cytoprotective properties in cellular models of neurodegeneration. Thus, DF302 exerts multi-target effects on the key mechanisms of neurodegenerative pathologies and can be considered as an optimized novel analogue of the neuroprotective agent dimebon.

Keywords

Alzheimer’s disease Multi-target mechanisms Hippocampal plasticity AMPA receptor 5-HT6 receptor Stress and depression Aggression 

Supplementary material

12035_2017_745_MOESM1_ESM.docx (63 kb)
ESM 1(DOCX 62 kb)

References

  1. 1.
    Harrison TM, Burggren AC, Small GW, Bookheimer SY (2016) Altered memory-related functional connectivity of the anterior and posterior hippocampus in older adults at increased genetic risk for Alzheimer’s disease. Hum Brain Mapp 37(1):366–380. https://doi.org/10.1002/hbm.23036 CrossRefPubMedGoogle Scholar
  2. 2.
    Naj AC, Schellenberg GD, Alzheimer’s Disease Genetics Consortium (ADGC) (2017) Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet B Neuropsychiatr Genet 174(1):5–26. https://doi.org/10.1002/ajmg.b.32499 CrossRefPubMedGoogle Scholar
  3. 3.
    Schneider LS (2013) Alzheimer disease pharmacologic treatment and treatment research. Continuum (Minneap Minn) 19(2 Dementia):339–357. https://doi.org/10.1212/01.CON.0000429180.60095.d0 Google Scholar
  4. 4.
    Sugino H, Watanabe A, Amada N, Yamamoto M, Ohgi Y, Kostic D, Sanchez R (2015) Global trends in Alzheimer disease clinical development: increasing the probability of success. Clin Ther 37(8):1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer’s disease. The major trends. Med Res Rev 37(5):1186–1225Google Scholar
  6. 6.
    Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372. https://doi.org/10.1021/jm700936 CrossRefPubMedGoogle Scholar
  7. 7.
    Combarros O, Cortina-Borja M, Smith AD, Lehmann DJ (2009) Epistasis in sporadic Alzheimer’s disease. Neurobiol Aging 30(9):1333–1349. https://doi.org/10.1016/j.neurobiolaging.2007.11.027 CrossRefPubMedGoogle Scholar
  8. 8.
    Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J (2013) The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr Top Med Chem 13(15):1745–1770CrossRefPubMedGoogle Scholar
  9. 9.
    Calzà L, Baldassarro VA, Giuliani A, Lorenzini L, Fernandez M, Mangano C, Sivilia S, Alessandri M et al (2013) From the multifactorial nature of Alzheimer’s disease to multitarget therapy: the contribution of the translational approach. Curr Top Med Chem 13(15):1843–1845Google Scholar
  10. 10.
    Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R (2016) Dissecting complex and multifactorial nature of Alzheimer’s disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol Neurobiol 53(7):4833–4864CrossRefPubMedGoogle Scholar
  11. 11.
    Terry AV Jr, Gattu M, Buccafusco JJ, Sowell JW, Kosh JW (1999) Ranitidine analogue, JWS-USC-751X, enhances memory-related task performance in rats. Drug Develop Res 47:97–106CrossRefGoogle Scholar
  12. 12.
    Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M (2003) A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Prog Neuro-Psychoph 27(4):555–561. https://doi.org/10.1016/S0278-5846(03)00053-8 CrossRefGoogle Scholar
  13. 13.
    Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26(1):27–35. https://doi.org/10.1016/j.tips.2004.11.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Kukharsky MS, Ovchinnikov RK, Bachurin SO (2015) Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 115(6):103–114CrossRefPubMedGoogle Scholar
  15. 15.
    Upton N, Chuang TT, Hunter AJ, Virley DJ (2008) 5-HT(6) receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5:458–469CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schaffhauser H, Mathiasen JR, Dicamillo A, Huffman MJ, Lu LD, McKenna BA, Qian J, Marino MJ (2009) Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol 78(8):1035–1042. https://doi.org/10.1016/j.bcp.2009.06.021 CrossRefPubMedGoogle Scholar
  17. 17.
    Giorgetti M, Gibbons JA, Bernales S, Alfaro IE, Drieu La Rochelle C, Cremers T, Altar CA, Wronski R et al (2010) Cognition-enhancing properties of Dimebon in a rat novel object recognition task are unlikely to be associated with acetylcholinesterase inhibition or N-methyl-D-aspartate receptor antagonism. J Pharmacol Exp Ther 333(3):748–757. https://doi.org/10.1124/jpet.109.164491
  18. 18.
    Grigorev VV, Dranyi OA, Bachurin SO (2003) Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull Exp Biol Med 136(5):474–477CrossRefPubMedGoogle Scholar
  19. 19.
    Vignisse J, Steinbusch HW, Grigoriev V, Bolkunov A, Proshin A, Bettendorff L, Bachurin S, Strekalova T (2014) Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice. Eur Neuropsychopharmacol 24(2):309–320. https://doi.org/10.1016/j.euroneuro.2013.06.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Steele JW, Gandy S (2013a) Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 9(4):617–684CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Steele JW, Ju S, Lachenmayer ML et al (2013b) Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain. Mol Psychiatry 18(8):882–888. https://doi.org/10.1038/mp.2012.115 CrossRefPubMedGoogle Scholar
  22. 22.
    Steele JW, Lachenmayer ML, Ju S et al (2013c) Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 18(8):889–897CrossRefPubMedGoogle Scholar
  23. 23.
    Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO (2003) Mitochondria as a target for neurotoxins and neuroprotective agents. Ann N Y Acad Sci 993:334–344CrossRefPubMedGoogle Scholar
  24. 24.
    Shevtsova EF, Kireeva EG, Bachurin SO (2003) Effect of β-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria. Bull Exp Biol Med 132(6):1173–1176CrossRefGoogle Scholar
  25. 25.
    Ustyugov A, Shevtsova E, Bachurin S (2015) Novel sites of neuroprotective action of Dimebon (latrepirdine). Mol Neurobiol 52(2):970–978. https://doi.org/10.1007/s12035-015-9249-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Protter A, Vartiainen V, Yrjanheikki J, Bernales S (2009) Neurite outgrowth and mitochondrial function in dimebon treated rat cortical cultures. Neurodegener Dis 6:1536Google Scholar
  27. 27.
    Bernales S, Alarcon R, Guerrero J, Higaki JN, Protter AA (2009) Dimebon induces neurite outgrowth from hippocampal, spinal, and cortical neurons. Neurology 72:A385Google Scholar
  28. 28.
    Page M, Pacico N, Ourtioualous S, Deprez T, Koshibu K (2015) Procognitive compounds promote neurite outgrowth. Pharmacology 96(3–4):131–136. https://doi.org/10.1159/000436974 CrossRefPubMedGoogle Scholar
  29. 29.
    Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM et al (2010) Discovery of a proneurogenic, neuroprotective chemical. Cell 142:39–51. https://doi.org/10.1016/j.cell.2010.06.018
  30. 30.
    Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, Grigoriev V, Grigorieva I, Ivanov Y et al (2001) Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 939:425–435Google Scholar
  31. 31.
    Vignisse J, Steinbusch HW, Bolkunov A, Nunes J, Santos AI, Grandfils C, Bachurin S, Strekalova T (2011) Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice. Prog Neuro-Psychoph 35(2):510–522. https://doi.org/10.1016/j.pnpbp.2010.12.007 CrossRefGoogle Scholar
  32. 32.
    Webster SJ, Wilson CA, Lee CH, Mohler EG, Terry AV Jr, Buccafusco JJ (2011) The acute effects of dimebolin, a potential Alzheimer’s disease treatment, on working memory in rhesus monkeys. Br J Pharmacol 164(3):970–978. https://doi.org/10.1111/j.1476-5381.2011.01432.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lermontova NN, Lukoyanov NV, Serkova TP, Lukoyanova EA, Bachurin SO (2000) Dimebon improves learning in animals with experimental Alzheimer’s disease. Bull Exp Biol Med 129:544–546CrossRefPubMedGoogle Scholar
  34. 34.
    Malatynska E, Steinbusch HW, Redkozubova O, Bolkunov A, Kubatiev A, Yeritsyan NB, Vignisse J, Bachurin S et al (2012) Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression. Exp Gerontol 47(8):552–564. https://doi.org/10.1016/j.exger.2012.04.010
  35. 35.
    Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D et al (2008) Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 372(9634):207–215. https://doi.org/10.1016/S0140-6736(08)61074-0
  36. 36.
    O’Brien JT (2008) A promising new treatment for Alzheimer’s disease? Neurology 7(9):768–769. https://doi.org/10.1016/S1474-4422(08)70177-7 PubMedGoogle Scholar
  37. 37.
    Gura T (2008) Hope in Alzheimer’s fight emerges from unexpected places. Nat Med 14(9):894. https://doi.org/10.1038/nm0908-894 CrossRefPubMedGoogle Scholar
  38. 38.
    Bharadwaj PR, Bates KA, Porter T, Teimouri E, Perry G, Steele JW, Gandy S, Groth D et al (2013) Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl Psychiatry 3(3):e332Google Scholar
  39. 39.
    Cowley TR, González-Reyes RE, Richardson JC, Virley D, Upton N, Lynch MA (2013) The age-related gliosis and accompanying deficit in spatial learning are unaffected by dimebon. Neurochem Res 38(6):1190–1195. https://doi.org/10.1007/s11064-012-0884-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Sokolov VB, Aksinenko AY, Epishina TA, Bachurin SO (2009) Synthesis of organophosphates with fluorine-containing leaving groups as serine esterase inhibitors with potential for Alzheimer disease therapeutics. Russ Chem Bull 58:631. https://doi.org/10.1007/s11172-009-0067-6 CrossRefGoogle Scholar
  41. 41.
    Bachurin SO, Shelkovnikova TA, Ustyugov AA, Peters O, Khritankova I, Afanasieva MA, Tarasova TV, Alentov II et al (2012) Dimebon slows progression of proteinopathy in γ-synuclein transgenic mice. Neurotox Res 22(1):33–42. https://doi.org/10.1007/s12640-011-9299-y
  42. 42.
    Peters OM, Connor-Robson N, Sokolov VB, Aksinenko AY, Kukharsky MS, Bachurin SO, Ninkina N, Buchman VL (2013) Chronic administration of dimebon ameliorates pathology in TauP301S transgenic mice. J Alzheimers Dis 33(4):1041–1049. https://doi.org/10.3233/JAD-2012-121732 PubMedGoogle Scholar
  43. 43.
    Peters OM, Shelkovnikova T, Tarasova T, Springe S, Kukharsky MS, Smith GA, Brooks S, Kozin SA et al (2013) Chronic administration of Dimebon does not ameliorate amyloid-β pathology in 5xFAD transgenic mice. J Alzheimers Dis 36(3):589–596. https://doi.org/10.3233/JAD-130071
  44. 44.
    Strekalova T, Wotjak C, Schachner M (2001) Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 17(6):1102–1113CrossRefPubMedGoogle Scholar
  45. 45.
    Strekalova T, Zörner B, Zacher C, Sadovska G, Herdegen T, Gass P (2003) Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. Genes Brain Behav 2(1):3–10CrossRefPubMedGoogle Scholar
  46. 46.
    Veniaminova E, Cespuglio R, Cheung CW, Umriukhin A., Markova N, Shevtsova E, Lesch K-P, Anthony DC, Strekalova T (2017) Autism-like behaviours and memory deficits result from a Western diet in mice. Neural Plasticity, in pressGoogle Scholar
  47. 47.
    Strekalova T, Evans M, Chernopiatko A, Couch Y, Costa-Nunes J, Cespuglio R, Chesson L, Vignisse J et al (2015) Deuterium content of water increases depression susceptibility: the potential role of a serotonin-related mechanism. Behav Brain Res 277:237–244. https://doi.org/10.1016/j.bbr.2014.07.039
  48. 48.
    Markova N, Bazhenova N, Anthony DC, Vignisse J, Svistunov A, Lesch KP, Bettendorff L, Strekalova T (2016) Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 75:148–156. https://doi.org/10.1016/j.pnpbp.2016.11.001 CrossRefGoogle Scholar
  49. 49.
    Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP et al (2016) Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuro-Psychopharmacol Biol Psychiatry 68:52–63. https://doi.org/10.1016/j.pnpbp.2016.03.003
  50. 50.
    Couch Y, Trofimov A, Markova N, Nikolenko V, Steinbusch HW, Chekhonin V, Schroeter C, Lesch KP et al (2016) Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice. J Neuroinflammation 13(1):108. https://doi.org/10.1186/s12974-016-0572-0
  51. 51.
    Strekalova T, Steinbusch HWM (2010) Measuring behavior in mice with chronic stress depression paradigm. Prog Neuro-Psychopharmacol Biol Psychiatry 34(2):348–361. https://doi.org/10.1016/j.pnpbp.2009.12.014 CrossRefGoogle Scholar
  52. 52.
    Strekalova T, Anthony DC, Dolgov O, Anokhin K, Kubatiev A, Steinbusch HM, Schroeter C (2013) The differential effects of chronic imipramine or citalopram administration on physiological and behavioral outcomes in naïve mice. Behav Brain Res 245C:101–106CrossRefGoogle Scholar
  53. 53.
    Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29(11):2007–2017CrossRefPubMedGoogle Scholar
  54. 54.
    Sun P, Knezovic A, Parlak M, Cuber J, Karabeg MM, Deckert J, Riederer P, Hua Q et al (2015) Long-term effects of intracerebroventricular streptozotocin treatment on adult neurogenesis in the rat hippocampus. Curr Alzheimer Res 12(8):772–784Google Scholar
  55. 55.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  56. 56.
    Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3(7):1228–1239. https://doi.org/10.1038/nprot.2008.105 CrossRefPubMedGoogle Scholar
  57. 57.
    Shevtsova EF, Vinogradova DV, Kireeva EG, Reddy VP, Aliev G, Bachurin SO (2014) Dimebon attenuates the Aβ-induced mitochondrial permeabilization. Curr Alzheimer Res 11(5):422–429CrossRefPubMedGoogle Scholar
  58. 58.
    Serkov IV, Shevtsova EF, Dubova LG, Kireeva EG, Vishnevskaya EM, Gretskaya NM, Bezuglov VV, Bachurin SO (2007) Interaction of docosahexaenoic acid derivatives with mitochondria. Dokl Biol Sci 414:187–189CrossRefPubMedGoogle Scholar
  59. 59.
    Rathinam ML, Watts LT, Narasimhan M, Riar AK, Mahimainathan L, Henderson GI (2012) Astrocyte mediated protection of fetal cerebral cortical neurons from rotenone and paraquat. Environ Toxicol Pharmacol 33(2):353–360. https://doi.org/10.1016/j.etap.2011.12.027 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Niks M, Otto M (1990) Towards an optimized MTT assay. J Immunol Methods 130(1):149–145CrossRefPubMedGoogle Scholar
  61. 61.
    Strekalova T, Gorenkova N, Schunk E, Dolgov O, Bartsch D (2006) Selective effects of citalopram in the mouse model of stress-induced anhedonia with control effects for chronic stress. Behav Pharm 17(3):271–287CrossRefGoogle Scholar
  62. 62.
    Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond Ser B Biol Sci 367(1601):2475–2484CrossRefGoogle Scholar
  63. 63.
    Kohman RA, Rhodes JS (2014) Neurogenesis, inflammation and behavior. Brain Behav Immun 27C:22–32. https://doi.org/10.1016/j.bbi.2012.09.003 Google Scholar
  64. 64.
    Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182(3):335–344. https://doi.org/10.1007/s00213-005-0093-5 CrossRefPubMedGoogle Scholar
  65. 65.
    D'Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194CrossRefPubMedGoogle Scholar
  66. 66.
    Chau S, Herrmann N, Ruthirakuhan MT, Chen JJ, Lanctôt KL (2015) Latrepirdine for Alzheimer’s disease. Cochrane Database Syst Rev 21(4):CD009524. https://doi.org/10.1002/14651858.CD009524.pub2 Google Scholar
  67. 67.
    McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84(3):436–452CrossRefPubMedGoogle Scholar
  68. 68.
    Harro J, Kanarik M, Matrov D, Panksepp J (2011) Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 35(9):1876–1889. https://doi.org/10.1016/j.neubiorev.2011.02.016 CrossRefPubMedGoogle Scholar
  69. 69.
    Yun H-M, Rhim H (2011) The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol 20(4):159–168. https://doi.org/10.5607/en.2011.20.4.159 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mitchell ES, Hoplight BJ, Lear SP, Neumaier JF (2006) BGC20-761, a novel tryptamine analog, enhances memory consolidation and reverses scopolamine-induced memory deficit in social and visuospatial memory tasks through a 5-HT6 receptor-mediated mechanism. Neuropharmacology 50(4):412–420CrossRefPubMedGoogle Scholar
  71. 71.
    Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2(5):e00045. https://doi.org/10.1042/AN20100019 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Voloboueva LA, Lee SW, Emery JF, Palmer TD, Giffard RG (2010) Mitochondrial protection attenuates inflammation-induced impairment of neurogenesis in vitro and in vivo. J Neurosci 30(37):12242–12251. https://doi.org/10.1523/JNEUROSCI.1752-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hou Y, Mattson MP, Cheng A (2013) Permeability transition pore-mediated mitochondrial superoxide flashes regulate cortical neural progenitor differentiation. PLoS One 8(10):e76721. https://doi.org/10.1371/journal.pone.0076721 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Tatyana Strekalova
    • 1
    • 2
    • 3
  • Nataliia Bahzenova
    • 2
    • 4
    • 5
  • Alexander Trofimov
    • 1
    • 6
  • Angelika G. Schmitt-Böhrer
    • 7
  • Nataliia Markova
    • 2
    • 3
    • 5
    • 6
  • Vladimir Grigoriev
    • 6
  • Vladimir Zamoyski
    • 6
  • Tatiana Serkova
    • 6
  • Olga Redkozubova
    • 6
  • Daria Vinogradova
    • 6
  • Alexei Umriukhin
    • 4
    • 8
  • Vladimir Fisenko
    • 4
  • Christina Lillesaar
    • 9
  • Elena Shevtsova
    • 6
  • Vladimir Sokolov
    • 6
  • Alexey Aksinenko
    • 6
  • Klaus-Peter Lesch
    • 1
    • 2
    • 3
  • Sergey Bachurin
    • 6
  1. 1.Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
  2. 2.Department of Translational Neuroscience, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Laboratory of Psychiatric Neurobiology, Institute of Molecular MedicineI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
  4. 4.I.M. Sechenov Moscow State Medical UniversityMoscowRussia
  5. 5.Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
  6. 6.Department of Medicinal Chemistry, Institute of Physiologically Active CompoundsRussian Academy of SciencesMoscow RegionRussia
  7. 7.Center of Mental Health, Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of WürzburgWürzburgGermany
  8. 8.Department of Normal PhysiologyI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
  9. 9.Department of Physiological Chemistry, Biocenter, Am HublandUniversity of WürzburgWürzburgGermany

Personalised recommendations