Advertisement

Molecular Neurobiology

, Volume 55, Issue 1, pp 103–114 | Cite as

Co-Ultramicronized Palmitoylethanolamide/Luteolin Facilitates the Development of Differentiating and Undifferentiated Rat Oligodendrocyte Progenitor Cells

  • Stephen D. SkaperEmail author
  • Massimo Barbierato
  • Laura Facci
  • Mila Borri
  • Gabriella Contarini
  • Morena Zusso
  • Pietro Giusti
Article

Abstract

Oligodendrocytes, the myelin-producing cells of the central nervous system (CNS), have limited capability to bring about repair in chronic CNS neuroinflammatory demyelinating disorders such as multiple sclerosis (MS). MS lesions are characterized by a compromised pool of undifferentiated oligodendrocyte progenitor cells (OPCs) unable to mature into myelin-producing oligodendrocytes. An attractive strategy may be to replace lost OLs and/or promote their maturation. N-palmitoylethanolamine (PEA) is an endogenous fatty acid amide signaling molecule with anti-inflammatory and neuroprotective actions. Recent studies show a co-ultramicronized composite of PEA and the flavonoid luteolin (co-ultraPEALut) to be more efficacious than PEA in improving outcome in CNS injury models. Here, we examined the effects of co-ultraPEALut on development of OPCs from newborn rat cortex cultured under conditions favoring either differentiation (Sato medium) or proliferation (fibroblast growth factor-2 and platelet-derived growth factor (PDGF)-AA-supplemented serum-free medium (“SFM”)). OPCs in SFM displayed high expression of PDGF receptor alpha gene and the proliferation marker Ki-67. In Sato medium, in contrast, OPCs showed rapid decreases in PDGF receptor alpha and Ki-67 expression with a concomitant rise in myelin basic protein (MBP) expression. In these conditions, co-ultraPEALut (10 μM) enhanced OPC morphological complexity and expression of MBP and the transcription factor TCF7l2. Surprisingly, co-ultraPEALut also up-regulated MBP mRNA expression in OPCs in SFM. MBP expression in all cases was sensitive to inhibition of mammalian target of rapamycin. Within the context of strategies to promote endogenous remyelination in MS which focus on enhancing long-term survival of OPCs and stimulating their differentiation into remyelinating oligodendrocytes, co-ultraPEALut may represent a novel pharmacological approach.

Keywords

Oligodendrocytes Myelin Maturation Multiple sclerosis Autoimmune demyelinating disease Palmitoylethanolamide Luteolin Co-ultramicronization Regeneration 

Notes

Acknowledgements

This study was supported in part by the MIUR, PON “Ricerca e Competitività 2007–2013” project PON01_02512, and by Regione Veneto project protocol 103173COF/14/LR52001C2/000051.

Compliance with Ethical Standards

Competing Financial Interests

The authors declare that they have no competing financial interests.

Human and Animal Rights and Informed Consent

Experiments were performed in accordance with Italian Ministry of Health (at. 31, D.L. 26/2014) guidelines for the care and use of laboratory animals, and were approved by the Institutional Animal Care and Use Committee of the University of Padua (958/2016-PR).

References

  1. 1.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927CrossRefPubMedGoogle Scholar
  2. 2.
    Kamm CP, Uitdehaag BM, Polman CH (2014) Multiple sclerosis: current knowledge and future outlook. Eur Neurol 72:132–141. doi: 10.1159/000360528 CrossRefPubMedGoogle Scholar
  3. 3.
    Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain (122):17–26  doi.org/10.1093/brain/122.1.17
  4. 4.
    Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM, Yong VW, Fox RJ et al (2012) Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol 72:918–926. doi: 10.1002/ana.23693 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Damasceno A, Damasceno BP, Cendes F (2014) The clinical impact of cerebellar grey matter pathology in multiple sclerosis. PLoS One 9:5. doi: 10.1371/journal.pone.0096193 Google Scholar
  6. 6.
    Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173. doi: 10.1056/NEJMoa010994 CrossRefPubMedGoogle Scholar
  7. 7.
    Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CC, Ben-Nun A (1993) Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92:2602–2608. doi: 10.1172/JCI116875 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11:506–517. doi: 10.2174/187152712801661248 CrossRefPubMedGoogle Scholar
  9. 9.
    Fraussen J, Claes N, de Bock L, Somers V (2014) Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev 13:1126–1137. doi: 10.1016/j.autrev.2014.07.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Finkelsztejn A (2014) Multiple sclerosis: overview of disease-modifying agents. Perspect Medicin Chem 6:65–72. doi: 10.4137/PMC.S13213 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Filippini G (2013) Immunomodulators and immunosuppressants for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 6:CD008933. doi: 10.1002/14651858.CD008933.pub2 Google Scholar
  12. 12.
    Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG et al (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–332. doi: 10.1038/nature12647 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Luessi F, Kuhlmann T, Zipp F (2014) Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 14:1315–1334. doi: 10.1586/14737175.2014.969241 CrossRefPubMedGoogle Scholar
  14. 14.
    Olsen JA, Akirav EM (2015) Remyelination in multiple sclerosis: cellular mechanisms and novel therapeutic approaches. J Neurosci Res 93:687–696. doi: 10.1002/jnr.23493 CrossRefPubMedGoogle Scholar
  15. 15.
    Ransohoff RM, Hafler DA, Lucchinetti CF (2015) Multiple sclerosis—a quiet devolution. Nat Rev Neurol 11:134–142. doi: 10.1038/nrneurol.2015.14 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lopez Juarez A, He D, Richard Lu Q (2015) Oligodendrocyte progenitor programming and reprogramming: toward myelin regeneration. Brain Res 1638(Pt B):209–220. doi: 10.1016/j.brainres.2015.10.051 PubMedGoogle Scholar
  17. 17.
    Mei F, Fancy SP, Shen YA, Niu J, Zhao C, Presley B, Miao E, Lee S et al (2014) Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20:954–960. doi: 10.1038/nm.3618 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS et al (2015) Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522:216–220. doi: 10.1038/nature14335 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L et al (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12:252–264. doi: 10.1016/j.stem.2012.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Modell JG, Tandon R, Beresford TP (1989) Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol 9:347–351CrossRefPubMedGoogle Scholar
  21. 21.
    Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882. doi: 10.1016/j.cell.2010.02.029 CrossRefPubMedGoogle Scholar
  22. 22.
    Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP (2013) The resolution of inflammation. Nat Rev Immunol 13:59–66. doi: 10.1038/nri3362 CrossRefPubMedGoogle Scholar
  23. 23.
    Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 166:166–172. doi: 10.1126/science.1230720 CrossRefGoogle Scholar
  24. 24.
    Petrosino S, Iuvone T, Di Marzo V (2010) N-palmitoylethanolamine: biochemistry and new therapeutic opportunities. Biochimie 92:724–727. doi: 10.1016/j.biochi.2010.01.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Skaper SD, Facci L (2012) Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond Ser B Biol Sci 367:3312–3325. doi: 10.1098/rstb.2011.0391 CrossRefGoogle Scholar
  26. 26.
    Alhouayek M, Muccioli GG (2014) Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today 19:1632–1639. doi: 10.1016/j.drudis.2014.06.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Esposito E, Cordaro M, Cuzzocrea S (2014) Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol Res 86:26–31. doi: 10.1016/j.phrs.2014.05.009 CrossRefPubMedGoogle Scholar
  28. 28.
    Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G (2016) Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician 19:11–24PubMedGoogle Scholar
  29. 29.
    Paterniti I, Impellizzeri D, Di Paola R, Navarra M, Cuzzocrea S, Esposito E (2013) A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury. J Neuroinflammation 10:91. doi: 10.1186/1742-2094-10-91 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Paterniti I, Siracusa R, Cuzzocrea S, Esposito E (2016) Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury. Front Pharmacol 7:47. doi: 10.3389/fphar.2016.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cordaro M, Impellizzeri D, Paterniti I, Bruschetta G, Siracusa R, De Stefano D, Cuzzocrea S, Esposito E (2016) Neuroprotective effects of co-ultraPEALut on secondary inflammatory process and autophagy involved in traumatic brain injury. J Neurotrauma 33:132–146. doi: 10.1089/neu.2014.3460 CrossRefPubMedGoogle Scholar
  32. 32.
    Paterniti I, Cordaro M, Campolo M, Siracusa R, Cornelius C, Navarra M, Cuzzocrea S, Esposito E (2014) Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer’s disease models: the control of neuroinflammation. CNS Neurol Disord Drug Targets 13:1530–1541. doi: 10.2174/1871527313666140806124322 CrossRefPubMedGoogle Scholar
  33. 33.
    Caltagirone C, Cisari C, Schievano C, Di Paola R, Cordaro M, Bruschetta G, Esposito E, Cuzzocrea S (2016) Co-ultramicronized palmitoylethanolamide/luteolin in the treatment of cerebral ischemia: from rodent to man. Transl Stroke Res 7:54–69. doi: 10.1007/s12975-015-0440-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Barbierato M, Facci L, Marinelli C, Zusso M, Argentini C, Skaper SD, Giusti P (2015) Co-ultramicronized palmitoylethanolamide/luteolin promotes the maturation of oligodendrocyte precursor cells. Sci Rep 5:16676. doi: 10.1038/srep16676 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms. J Neurochem 90:1173–1185. doi: 10.1111/j.1471-4159.2004.02584 CrossRefPubMedGoogle Scholar
  36. 36.
    Skaper SD, Argentini C, Barbierato M (2012) Culture of neonatal rodent microglia, astrocytes, and oligodendrocytes from cortex and spinal cord. Methods Mol Biol 846:67–77. doi: 10.1007/978-1-61779-536-7_7 CrossRefPubMedGoogle Scholar
  37. 37.
    Lundholt BK, Scudder KM, Pagliaro L (2003) A simple technique for reducing edge effect in cell-based assays. J Biomol Screen 8:566–570. doi: 10.1177/1087057103256465 CrossRefPubMedGoogle Scholar
  38. 38.
    Barbierato M, Facci L, Argentini C, Giusti P, Skaper SD (2013) Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype. CNS Neurol Disord Drug Targets 12:608–618. doi: 10.2174/18715273113129990064 CrossRefPubMedGoogle Scholar
  39. 39.
    Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197. doi: 10.1016/0962-8924(93)90213-K CrossRefPubMedGoogle Scholar
  40. 40.
    Barbarese E, Barry C, Chou CH, Goldstein DJ, Nakos GA, Hyde-DeRuyscher R, Scheld K, Carson JH (1988) Expression and localization of myelin basic protein in oligodendrocytes and transfected fibroblasts. J Neurochem 51:1737–1745. doi: 10.1111/j.1471-4159.1988.tb01153 CrossRefPubMedGoogle Scholar
  41. 41.
    Griffiths IR, Montague P, Dickinson P (1995) The proteolipid protein gene. Neuropathol Appl Neurobiol 21:85–96. doi: 10.1111/j.1365-2990.1995.tb01034 CrossRefPubMedGoogle Scholar
  42. 42.
    Freese JL, Pino D, Pleasure SJ (2010) Wnt signaling in development and disease. Neurobiol Dis 38:148.153. doi: 10.1016/j.nbd.2009.09.003 CrossRefGoogle Scholar
  43. 43.
    Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. doi: 10.1101/gad.1806309 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fu H, Cai J, Clevers H, Fast E, Gray S, Greenberg R, Jain MK, Ma Q et al (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 29:11399–11408. doi: 10.1523/JNEUROSCI.0160-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12:829–838. doi: 10.1038/nn.2333 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dai ZM, Sun S, Wang C, Huang H, Hu X, Zhang Z, Lu QR, Qiu M (2014) Stage-specific regulation of oligodendrocyte development by Wnt/beta-catenin signaling. J Neurosci 34:8467–8473. doi: 10.1523/JNEUROSCI.0311-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lürbke A, Hagemeier K, Cui QL, Metz I, Brück W, Antel J, Kuhlmann T (2013) Limited TCF7L2 expression in MS lesions. PLoS One 8:e72822. doi: 10.1371/journal.pone.0072822 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33:3113–3130. doi: 10.1523/JNEUROSCI.3467-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hammond E, Lang J, Maeda Y, Pleasure D, Angus-Hill M, Xu J, Horiuchi M, Deng W et al (2015) The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J Neurosci 35:5007–5022. doi: 10.1523/JNEUROSCI.4787-14 CrossRefPubMedGoogle Scholar
  50. 50.
    Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322. doi: 10.1002/(SICI)1097-4652(200003) CrossRefPubMedGoogle Scholar
  51. 51.
    Winking H, Gerdes J, Traut W (2004) Expression of the proliferation marker Ki-67 during early mouse development. Cytogenet Genome Res 105:251–256. doi: 10.1159/000078196 CrossRefPubMedGoogle Scholar
  52. 52.
    Haynes BF, Shimizu K, Eisenbarth GS (1983) Identification of human and rodent thymic epithelium using tetanus toxin and monoclonal antibody A2B5. J Clin Invest 71:9–14CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29:6860–6870. doi: 10.1523/JNEUROSCI.0232-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Guardiola-Diaz HM, Ishii A, Bansal R (2012) Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia 60:476–486. doi: 10.1002/glia.22281 CrossRefPubMedGoogle Scholar
  55. 55.
    Wahl SE, McLane LE, Bercury KK, Macklin WB, Wood TL (2014) Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci 34:4453–4465. doi: 10.1523/JNEUROSCI.4311-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303. doi: 10.1016/j.neuron.2009.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dayger CA, Rosenberg JS, Winkler C, Foster S, Witkowski E, Benice TS, Sherman LS, Raber J (2013) Paradoxical effects of apolipoprotein E on cognitive function and clinical progression in mice with experimental autoimmune encephalomyelitis. Pharmacol Biochem Behav 103:860–868. doi: 10.1016/j.pbb.2012.11.010 CrossRefPubMedGoogle Scholar
  58. 58.
    Karussis D, Michaelson DM, Grigoriadis N, Korezyn AD, Mizrachi-Koll R, Chapman S, Abramsky O, Chapman J (2003) Lack of apolipoprotein-E exacerbates experimental allergic encephalomyelitis. Mult Scler 9:476–480. doi: 10.1191/1352458503ms950oa CrossRefPubMedGoogle Scholar
  59. 59.
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356. doi: 10.1001/jama.1997.03550160069041 CrossRefPubMedGoogle Scholar
  60. 60.
    Lill CM, Liu T, Schjeide BM, Roehr JT, Akkad DA, Damotte V et al (2012) Closing the case of APOE in multiple sclerosis: no association with disease risk in over 29 000 subjects. J Med Genet 49:558–562. doi: 10.1136/jmedgenet-2012-101175 CrossRefPubMedGoogle Scholar
  61. 61.
    Shi J, Tu JL, Gale SD, Baxter L, Vollmer TL, Campagnolo DI, Tyry TM, Zhuang Y et al (2011) APOE ε4 is associated with exacerbation of cognitive decline in patients with multiple sclerosis. Cogn Behav Neurol 24:128–133. doi: 10.1097/WNN.0b013e31823380b5 CrossRefPubMedGoogle Scholar
  62. 62.
    Yin YW, Zhang YD, Wang JZ, Li BH, Yang QW, Fang CQ et al (2012) Association between apolipoprotein E gene polymorphism and the risk of multiple sclerosis: a meta-analysis of 6977 subjects. Gene 511:12–17. doi: 10.1016/j.gene.2012.09.010 CrossRefPubMedGoogle Scholar
  63. 63.
    Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374. doi: 10.1038/ng1095 CrossRefPubMedGoogle Scholar
  64. 64.
    Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. doi: 10.1038/nature11007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448. doi: 10.1038/nature11314 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23:644–651. doi: 10.1016/j.tcb.2013.07.007 CrossRefPubMedGoogle Scholar
  67. 67.
    Saab AS, Tzvetanova ID, Nave KA (2013) The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol 23:1065–1072. doi: 10.1016/j.conb.2013.09.008 CrossRefPubMedGoogle Scholar
  68. 68.
    Thöne J, Ellrichmann G (2013) Oral available agents in the treatment of relapsing remitting multiple sclerosis: an overview of merits and culprits. Drug Healthc Patient Saf 5:37–47. doi: 10.2147/DHPS.S28822 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kremer D, Göttle P, Hartung HP, Küry P (2016) Pushing forward: remyelination as the new frontier in CNS diseases. Trends Neurosci 39:246–263. doi: 10.1016/j.tins.2016.02.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Mei F, Mayoral SR, Nobuta H, Wang F, Desponts C, Lorrain DS, Xiao L, Green AJ et al (2016) Identification of the kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination. J Neurosci 36:7925–7935. doi: 10.1523/JNEUROSCI.1493-16 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P (2016) Systematic review of pharmacological properties of the oligodendrocyte lineage. Front Cell Neurosci 10:27. doi: 10.3389/fncel.2016.00027 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Woods JH (1987) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420PubMedGoogle Scholar
  73. 73.
    Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414. doi: 10.1523/JNEUROSCI.4458-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, Giusti P (2014) Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology 22:79–94. doi: 10.1007/s10787-013-0191-7 CrossRefPubMedGoogle Scholar
  75. 75.
    Theoharides TC, Asadi S, Panagiotidou S (2012) A case series of a luteolin formulation (NeuroProtek®) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 25:317–323CrossRefPubMedGoogle Scholar
  76. 76.
    Bsibsi M, Peferoen LA, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJ et al (2014) Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 128:215–229. doi: 10.1007/s00401-014-1317-8 CrossRefPubMedGoogle Scholar
  77. 77.
    Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147. doi: 10.3389/fimmu.2012.00147 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141:314–327. doi: 10.1111/imm.12170 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141:302–313. doi: 10.1111/imm.12163 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Skaper SD, Barbierato M, Facci L, Contarini G, Marinelli C, Zusso J, Giusti P (2016) A co-ultramicronized N-palmitoylethanolamine/luteolin composite promotes oligodendrocyte precursor cell survival and development and promotes outcome in experimental autoimmune encephalomyelitis. Program No. 511.16. Neuroscience Meeting Planner. Society for Neuroscience, San Diego. OnlineGoogle Scholar
  81. 81.
    Cudaback E (2016) The role of APOE in MS-associated inflammation. Program No. 37.11. Neuroscience Meeting Planner. Society for Neuroscience, San Diego. OnlineGoogle Scholar
  82. 82.
    Enzinger C, Ropele S, Strasser-Fuchs S, Kapeller P, Schmidt H, Poltrum B, Schmidt R, Hartung HP et al (2003) Lower levels of N-acetylaspartate in multiple sclerosis patients with the apolipoprotein E epsilon4 allele. Arch Neurol 60:65–70. doi: 10.1001/archneur.60.1.65
  83. 83.
    Amaral AI, Hadera MG, Kotter M, Sonnewald U (2016) Oligodendrocytes do not export NAA-derived aspartate in vitro. Neurochem Res. doi: 10.1007/s11064-016-1985-y
  84. 84.
    Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745. doi: 10.1046/j.1471-4159.2001.00456 CrossRefPubMedGoogle Scholar
  85. 85.
    Hoshino H, Kubota M (2014) Canavan disease: clinical features and recent advances in research. Pediatr Int 56:477–483. doi: 10.1111/ped.12422 CrossRefPubMedGoogle Scholar
  86. 86.
    Zhang SC, Ge B, Duncan ID (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci U S A 96:4089–4094CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22:161.170. doi: 10.1002/(SICI)1098-1136 CrossRefGoogle Scholar
  88. 88.
    Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121:2221.2228. doi: 10.1093/brain/121.12.2221 CrossRefGoogle Scholar
  89. 89.
    Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609PubMedGoogle Scholar
  90. 90.
    Sabo JK, Cate HS (2013) Signalling pathways that inhibit the capacity of precursor cells for myelin repair. Int J Mol Sci 14:1031–1049. doi: 10.3390/ijms14011031 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Stephen D. Skaper
    • 1
    Email author
  • Massimo Barbierato
    • 1
  • Laura Facci
    • 1
  • Mila Borri
    • 1
  • Gabriella Contarini
    • 1
  • Morena Zusso
    • 1
  • Pietro Giusti
    • 1
  1. 1.Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly

Personalised recommendations