Molecular Neurobiology

, Volume 55, Issue 6, pp 5006–5018 | Cite as

Ethanol Alters APP Processing and Aggravates Alzheimer-Associated Phenotypes

  • Daochao Huang
  • Mengjiao Yu
  • Shou Yang
  • Dandan Lou
  • Weitao Zhou
  • Lingling Zheng
  • Zhe Wang
  • Fang Cai
  • Weihui Zhou
  • Tingyu Li
  • Weihong Song


The majority of Alzheimer’s disease (AD) cases are sporadic with unknown causes. Many dietary factors including excessive alcohol intake have been reported to increase the risk to develop AD. The effect of alcohol on cognitive functions and AD pathogenesis remains elusive. In this study, we investigated the relationship between ethanol exposure and Alzheimer’s disease. Cell cultures were treated with ethanol at different dosages for different durations up to 48 h and an AD model mouse was fed with ethanol for 4 weeks. We found that ethanol treatment altered amyloid β precursor protein (APP) processing in cells and transgenic AD model mice. High ethanol exposure increased the levels of APP and beta-site APP cleaving enzyme 1 (BACE1) and significantly promoted amyloid β protein (Aβ) production both in vitro and in vivo. The upregulated APP and BACE1 expressions upon ethanol treatment were at least partially due to the activation of APP and BACE1 transcriptions. Furthermore, ethanol treatment increased the deposition of Aβ and neuritic plaque formation in the brains and exuberated learning and memory impairments in transgenic AD model mice. Taken together, our results demonstrate that excessive ethanol intake facilitates AD pathogenesis.


Ethanol exposure Alzheimer’s disease APP processing BACE1 Aβ Cognitive deficits 



Alzheimer’s disease


Amyloid β precursor protein


Beta-site APP cleaving enzyme 1

Amyloid β protein


Drinking in the dark





We sincerely thank Philip T.T. Ly, Zhifang Dong, and Mingjing Liu for their helpful comments. This work was supported by grants from the National Natural Science Foundation of China (NSFC) Grant 30972461, 81161120498 (T.L.) and the Canadian Institutes of Health Research (CIHR) Grant TAD-117948 (W.S). W.S. is the holder of the Tier 1 Canada Research Chair in Alzheimer’s Disease.

Authors’ Contributions

DH and WS conceived and designed the experiments; DH, MY, SY, DL, WZ, LZ, and FC performed the experiments; DH, MY, SY, DL, WZ, LZ, ZW, WZ, TL, and WS analyzed and contributed reagents/materials/analysis tools; and DH, ZW, and WS wrote the paper. All authors reviewed the manuscript.

Compliance with Ethical Standards

All animal studies were performed in accordance with the Guide for the Care and Use of Laboratory Animals of the Ethics Committee of Chongqing Medical University. The experimental protocols were approved by the Animal Study Committee of the Children’s Hospital of Chongqing Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135CrossRefPubMedGoogle Scholar
  2. 2.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang X, Song W (2013) The role of APP and BACE1 trafficking in APP processing and amyloid-beta generation. Alzheimers Res Ther 5(5):46CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sun XB-BK, Song W (2012) Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem 120(Suppl 1):62–70CrossRefPubMedGoogle Scholar
  5. 5.
    Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402(6761):537–540CrossRefPubMedGoogle Scholar
  6. 6.
    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741CrossRefPubMedGoogle Scholar
  7. 7.
    Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402(6761):533–537CrossRefPubMedGoogle Scholar
  8. 8.
    Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE et al (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14(6):419–427CrossRefPubMedGoogle Scholar
  9. 9.
    Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F et al (2013) Amyloid-beta protein (Abeta) Glu11 is the major beta-secretase site of beta-site amyloid-beta precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Abeta Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci 37(12):1962–1969CrossRefPubMedGoogle Scholar
  10. 10.
    Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20(9):1369–1376CrossRefPubMedGoogle Scholar
  11. 11.
    Sun X, Wang Y, Qing H, Christensen MA, Liu Y, Zhou W, Tong Y, Xiao C et al (2005) Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes. FASEB J 19(7):739–749CrossRefPubMedGoogle Scholar
  12. 12.
    Yang Y, Wu Y, Zhang S, Song W (2013) High glucose promotes Abeta production by inhibiting APP degradation. PLoS One 8(7):e69824CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y et al (2013) Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235CrossRefPubMedGoogle Scholar
  14. 14.
    Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S et al (2008) Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205(12):2781–2789CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Wu Y, Ren L et al (2017) Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol 133(6):967–982CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, Song W (2017) BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J Neurosci 37(29):6915–6925CrossRefPubMedGoogle Scholar
  17. 17.
    Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ramesh BN, Rao TS, Prakasam A, Sambamurti K, Rao KS (2010) Neuronutrition and Alzheimer’s disease. J Alzheimers Dis 19(4):1123–1139CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Piazza-Gardner AK, Gaffud TJ, Barry AE (2013) The impact of alcohol on Alzheimer’s disease: a systematic review. Aging Ment Health 17(2):133–146CrossRefPubMedGoogle Scholar
  20. 20.
    Harwood DG, Kalechstein A, Barker WW, Strauman S, St George-Hyslop P, Iglesias C, Loewenstein D, Duara R (2010) The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer’s disease. Int J Geriatr Psychiatry 25(5):511–518CrossRefPubMedGoogle Scholar
  21. 21.
    Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS et al (2006) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20(13):2313–2320CrossRefPubMedGoogle Scholar
  22. 22.
    Deng J, Zhou DH, Li J, Wang YJ, Gao C, Chen M (2006) A 2-year follow-up study of alcohol consumption and risk of dementia. Clin Neurol Neurosurg 108(4):378–383CrossRefPubMedGoogle Scholar
  23. 23.
    Weyerer S, Schaufele M, Wiese B, Maier W, Tebarth F, van den Bussche H, Pentzek M, Bickel H et al (2011) Current alcohol consumption and its relationship to incident dementia: results from a 3-year follow-up study among primary care attenders aged 75 years and older. Age Ageing 40(4):456–463CrossRefPubMedGoogle Scholar
  24. 24.
    Guizzetti M, Costa LG (2007) Cholesterol homeostasis in the developing brain: a possible new target for ethanol. Hum Exp Toxicol 26(4):355–360CrossRefPubMedGoogle Scholar
  25. 25.
    Arendt T (1994) Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm Suppl 44:173–187PubMedGoogle Scholar
  26. 26.
    Ehrlich D, Pirchl M, Humpel C (2012) Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 205:154–166CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim SR, Jeong HY, Yang S, Choi SP, Seo MY, Yun YK, Choi Y, Baik SH et al (2011) Effects of chronic alcohol consumption on expression levels of APP and Abeta-producing enzymes. BMB Rep 44(2):135–139CrossRefPubMedGoogle Scholar
  28. 28.
    Gil-Mohapel J, Boehme F, Kainer L, Christie BR (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64(2):283–303CrossRefPubMedGoogle Scholar
  29. 29.
    Lahiri DK, Nall C, Chen D, Zaphiriou M, Morgan C, Nurnberger JI Sr (2002) Developmental expression of the beta-amyloid precursor protein and heat-shock protein 70 in the cerebral hemisphere region of the rat brain. Ann N Y Acad Sci 965:324–333CrossRefPubMedGoogle Scholar
  30. 30.
    Aho L, Karkola K, Juusela J, Alafuzoff I (2009) Heavy alcohol consumption and neuropathological lesions: a post-mortem human study. J Neurosci Res 87(12):2786–2792CrossRefPubMedGoogle Scholar
  31. 31.
    Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L et al (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125(1):234–247CrossRefPubMedGoogle Scholar
  32. 32.
    Thiele TE, Navarro M (2014) “Drinking in the dark” (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol 48(3):235–241CrossRefPubMedGoogle Scholar
  33. 33.
    Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84(1):53–63CrossRefPubMedGoogle Scholar
  34. 34.
    Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE et al (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 103(49):18727–18732CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 53:e2920Google Scholar
  36. 36.
    Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2(7):463–465CrossRefPubMedGoogle Scholar
  37. 37.
    Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W (2004) Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24(2):865–874CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Santhakumar V, Wallner M, Otis TS (2007) Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition. Alcohol 41(3):211–221CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moykkynen T, Korpi ER (2012) Acute effects of ethanol on glutamate receptors. Basic Clin Pharmacol Toxicol 111(1):4–13PubMedGoogle Scholar
  40. 40.
    Harwood DG, Barker WW, Loewenstein DA, Ownby RL, St George-Hyslop P, Mullan M, Duara R (1999) A cross-ethnic analysis of risk factors for AD in white Hispanics and white non-Hispanics. Neurology 52(3):551–556CrossRefPubMedGoogle Scholar
  41. 41.
    Wheeler MD, Kono H, Rusyn I, Arteel GE, McCarty D, Samulski RJ, Thurman RG (2000) Chronic ethanol increases adeno-associated viral transgene expression in rat liver via oxidant and NFkappaB-dependent mechanisms. Hepatology 32(5):1050–1059CrossRefPubMedGoogle Scholar
  42. 42.
    Yao Z, Zhang J, Dai J, Keller ET (2001) Ethanol activates NFkappaB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone 28(2):167–173CrossRefPubMedGoogle Scholar
  43. 43.
    Ward RJ, Zhang Y, Crichton RR, Piret B, Piette J, de Witte P (1996) Identification of the nuclear transcription factor NFkappaB in rat after in vivo ethanol administration. FEBS Lett 389(2):119–122CrossRefPubMedGoogle Scholar
  44. 44.
    Magne L, Blanc E, Legrand B, Lucas D, Barouki R, Rouach H, Garlatti M (2011) ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. J Hepatol 54(4):729–737CrossRefPubMedGoogle Scholar
  45. 45.
    Buggia-Prevot V, Sevalle J, Rossner S, Checler F (2008) NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42. J Biol Chem 283(15):10037–10047CrossRefPubMedGoogle Scholar
  46. 46.
    Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y et al (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol 15(1):77–90CrossRefPubMedGoogle Scholar
  47. 47.
    Walton JR, Wang MX (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103(11):1548–1554CrossRefPubMedGoogle Scholar
  48. 48.
    Barkley-Levenson AM, Crabbe JC (2012) Ethanol drinking microstructure of a high drinking in the dark selected mouse line. Alcohol Clin Exp Res 36(8):1330–1339CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Criado JR, Liu T, Ehlers CL, Mathe AA (2011) Prolonged chronic ethanol exposure alters neuropeptide Y and corticotropin-releasing factor levels in the brain of adult Wistar rats. Pharmacol Biochem Behav 99(1):104–111CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28(14):3729–3737CrossRefPubMedGoogle Scholar
  51. 51.
    Piano MR, Carrigan TM, Schwertz DW (2005) Sex differences in ethanol liquid diet consumption in Sprague-Dawley rats. Alcohol 35(2):113–118CrossRefPubMedGoogle Scholar
  52. 52.
    Hanson GR, Li TK (2003) Public health implications of excessive alcohol consumption. JAMA 289(8):1031–1032CrossRefPubMedGoogle Scholar
  53. 53.
    Fernandez GM, Lew BJ, Vedder LC, Savage LM (2017) Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats. Neuroscience 348:324–334CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cash C, Peacock A, Barrington H, Sinnett N, Bruno R (2015) Detecting impairment: sensitive cognitive measures of dose-related acute alcohol intoxication. J Psychopharmacol 29(4):436–446CrossRefPubMedGoogle Scholar
  55. 55.
    Brust JC (2010) Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review. Int J Environ Res Public Health 7(4):1540–1557CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Crabbe JC, Harris RA, Koob GF (2011) Preclinical studies of alcohol binge drinking. Ann N Y Acad Sci 1216:24–40CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 44(2):115–127CrossRefPubMedGoogle Scholar
  58. 58.
    Allen-Gipson DS, Jarrell JC, Bailey KL, Robinson JE, Kharbanda KK, Sisson JH, Wyatt TA (2009) Ethanol blocks adenosine uptake via inhibiting the nucleoside transport system in bronchial epithelial cells. Alcohol Clin Exp Res 33(5):791–798CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Deng XS, Deitrich RA (2007) Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol 2(2):145–153CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jamal M, Ameno K, Miki T, Wang W, Kumihashi M, Isse T, Kawamoto T, Kitagawa K et al (2009) Cholinergic alterations following alcohol exposure in the frontal cortex of Aldh2-deficient mice models. Brain Res 1295:37–43CrossRefPubMedGoogle Scholar
  61. 61.
    McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124CrossRefPubMedGoogle Scholar
  62. 62.
    Abreu-Villaca Y, de Carvalho Graca AC, Ribeiro-Carvalho A, Naiff Vde F, Manhaes AC, Filgueiras CC (2013) Combined exposure to tobacco smoke and ethanol in adolescent mice elicits memory and learning deficits both during exposure and withdrawal. Nicotine Tob Res 15(7):1211–1221CrossRefPubMedGoogle Scholar
  63. 63.
    Vaglenova J, Pandiella N, Wijayawardhane N, Vaithianathan T, Birru S, Breese C, Suppiramaniam V, Randal C (2008) Aniracetam reversed learning and memory deficits following prenatal ethanol exposure by modulating functions of synaptic AMPA receptors. Neuropsychopharmacology 33(5):1071–1083CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Townsend Family Laboratories, Department of Psychiatry, Brain Research CenterThe University of British ColumbiaVancouverCanada

Personalised recommendations