Molecular Neurobiology

, Volume 55, Issue 6, pp 4918–4926 | Cite as

Loss of Pericytes in Radiation Necrosis after Glioblastoma Treatments

  • Soon-Tae Lee
  • Youngbeom Seo
  • Ji-Yeon Bae
  • Kon Chu
  • Jin Wook Kim
  • Seung Hong Choi
  • Tae Min Kim
  • Il Han Kim
  • Sung-Hye Park
  • Chul-Kee ParkEmail author
Original Paper


Radiation necrosis (RN) in brain tumor patients is often symptomatic, persistent without immediate resolution, and confused with tumor recurrence. Cerebral vascular pericytes are essential for endothelial function, vascular integrity, and angiogenesis. In this study, we showed that the loss of pericytes is involved in the pathogenesis of RN. From a brain tumor tissue repository, we identified three patients since 2011 with pathologically confirmed RN after the standard treatment for glioblastoma (GBM). The RN and their preradiation GBM tissues were serially processed for Western blotting using cell-type-specific antibodies against endothelial (CD31, active RhoA), pericyte [platelet-derived growth factor receptor-beta (PDGFR-β)], alpha-smooth muscle actin (α-SMA), astrocyte (GFAP), myelin sheath protein (MBP), and microglial markers (Iba1). Normal brain tissues from a brain bank were used as normal controls. The expressions of PDGFR-β and α-SMA were remarkably reduced in the RN, compared to those of GBM. However, the levels of CD31 or RhoA were not different between the two groups, which suggest that there was no change in the number of endothelial cells or their cytoskeletal assembly. The RN tissues showed a decreased ratio of pericyte/endothelial markers and an increased level of Iba1 compared to the GBM and even to the normal brain. The levels of GFAP and MBP were not changed in the RN. In the histopathology, the RN tissues showed a loss of markers (PDGFR-β), whereas the GBM tissues had abundant expression of the markers. The loss of pericytes and vascular smooth muscle cells, and the unsupported endothelial cells might be the cause of the leaky blood-brain barrier and tissue necrosis.


Radiation necrosis Glioblastoma Pericytes Endothelial cells Microglia 



This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning, Republic of Korea (2016M3C7A1914002 by the Brain Research Program, and 2016R1C1B2011815). S.-T.L. was supported by the SNUH Research Fund (0420150850). We are thankful for the artwork done by Mijin Jung.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Giglio P, Gilbert MR (2003) Cerebral radiation necrosis. Neurologist 9(4):180–188. doi: 10.1097/01.nrl.0000080951.78533.c4 CrossRefPubMedGoogle Scholar
  2. 2.
    Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, Shiue K, Suh JH (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87(3):449–457. doi: 10.1016/j.ijrobp.2013.05.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H, Jung SC, Lee AL et al (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269(3):831–840. doi: 10.1148/radiol.13122024 CrossRefPubMedGoogle Scholar
  4. 4.
    Kim HS, Goh MJ, Kim N, Choi CG, Kim SJ, Kim JH (2014) Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 273(3):831–843. doi: 10.1148/radiol.14132868 CrossRefPubMedGoogle Scholar
  5. 5.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79(5):1487–1495. doi: 10.1016/j.ijrobp.2009.12.061 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kumar S, Arbab AS, Jain R, Kim J, deCarvalho AC, Shankar A, Mikkelsen T, Brown SL (2012) Development of a novel animal model to differentiate radiation necrosis from tumor recurrence. J Neuro-Oncol 108(3):411–420. doi: 10.1007/s11060-012-0846-z CrossRefGoogle Scholar
  7. 7.
    Kondo N, Sakurai Y, Takata T, Takai N, Nakagawa Y, Tanaka H, Watanabe T, Kume K et al (2015) Localized radiation necrosis model in mouse brain using proton ion beams. Appl Radiat Isot 106:242–246. doi: 10.1016/j.apradiso.2015.07.032 CrossRefPubMedGoogle Scholar
  8. 8.
    Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19(6):771–783. doi: 10.1038/nn.4288 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi: 10.1016/j.devcel.2011.07.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245CrossRefPubMedGoogle Scholar
  11. 11.
    Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427. doi: 10.1016/j.neuron.2010.09.043 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS et al (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20(3):406–416. doi: 10.1038/nn.4489 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152. doi: 10.1016/j.cell.2013.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33(6):1962–1974. doi: 10.1002/stem.1977 CrossRefPubMedGoogle Scholar
  15. 15.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  16. 16.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W et al (2010) Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. doi: 10.1200/jco.2009.26.3541 CrossRefPubMedGoogle Scholar
  17. 17.
    Park CK, Kim JH, Nam DH, Kim CY, Chung SB, Kim YH, Seol HJ, Kim TM et al (2013) A practical scoring system to determine whether to proceed with surgical resection in recurrent glioblastoma. Neuro-Oncology 15(8):1096–1101. doi: 10.1093/neuonc/not069 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW (2003) Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23(2):211–217CrossRefPubMedGoogle Scholar
  19. 19.
    Rousseau M, Gaugler MH, Rodallec A, Bonnaud S, Paris F, Corre I (2011) RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration. Biochem Biophys Res Commun 414(4):750–755. doi: 10.1016/j.bbrc.2011.09.150 CrossRefPubMedGoogle Scholar
  20. 20.
    Sagare AP, Sweeney MD, Makshanoff J, Zlokovic BV (2015) Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci Lett. 21;607:97-101. doi:  10.1016/j.neulet.2015.09.025.
  21. 21.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. doi: 10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TC, Porto-Carreiro I, Pereira CM, Balca-Silva J et al (2014) Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 8:418. doi: 10.3389/fncel.2014.00418 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L (1997) Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 21(1):41–49CrossRefPubMedGoogle Scholar
  24. 24.
    Ribeiro AL, Okamoto OK (2015) Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015:868475. doi: 10.1155/2015/868475 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105(1):112–117CrossRefPubMedGoogle Scholar
  26. 26.
    Furuhashi M, Sjoblom T, Abramsson A, Ellingsen J, Micke P, Li H, Bergsten-Folestad E, Eriksson U et al (2004) Platelet-derived growth factor production by B16 melanoma cells leads to increased pericyte abundance in tumors and an associated increase in tumor growth rate. Cancer Res 64(8):2725–2733CrossRefPubMedGoogle Scholar
  27. 27.
    Catena R, Luis-Ravelo D, Anton I, Zandueta C, Salazar-Colocho P, Larzabal L, Calvo A, Lecanda F (2011) PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res 71(1):164–174. doi: 10.1158/0008-5472.can-10-1708 CrossRefPubMedGoogle Scholar
  28. 28.
    Ruan J, Luo M, Wang C, Fan L, Yang SN, Cardenas M, Geng H, Leonard JP et al (2013) Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 121(26):5192–5202. doi: 10.1182/blood-2013-03-490763 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tsai JH, Makonnen S, Feldman M, Sehgal CM, Maity A, Lee WM (2005) Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther 4(12):1395–1400CrossRefPubMedGoogle Scholar
  30. 30.
    Grabham P, Sharma P (2013) The effects of radiation on angiogenesis. Vasc Cell 5(1):19. doi: 10.1186/2045-824x-5-19 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of NeurologySeoul National University HospitalSeoulKorea
  2. 2.Department of NeurosurgeryYeungnam University College of MedicineDaeguKorea
  3. 3.Department of NeurosurgerySeoul National University Hosptial, Seoul National University College of MedicineSeoulKorea
  4. 4.Department of RadiologySeoul National University Hospital, Seoul National University College of MedicineSeoulKorea
  5. 5.Department of Internal MedicineSeoul National University HospitalSeoulKorea
  6. 6.Department of Radiation OncologySeoul National University Hospital, Seoul National University College of MedicineSeoulKorea
  7. 7.Department of PathologySeoul National University Hospital, Seoul National University College of MedicineSeoulKorea

Personalised recommendations