The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes

Article

Abstract

Exposure to organic forms of mercury has the theoretical capacity to generate a range of immune abnormalities coupled with chronic nitro-oxidative stress seen in children with autism spectrum disorder (ASD). The paper discusses possible mechanisms explaining the neurotoxic effects of mercury and possible associations between mercury exposure and ASD subtypes. Environmental mercury is neurotoxic at doses well below the current reference levels considered to be safe, with evidence of neurotoxicity in children exposed to environmental sources including fish consumption and ethylmercury-containing vaccines. Possible neurotoxic mechanisms of mercury include direct effects on sulfhydryl groups, pericytes and cerebral endothelial cells, accumulation within astrocytes, microglial activation, induction of chronic oxidative stress, activation of immune-inflammatory pathways and impairment of mitochondrial functioning. (Epi-)genetic factors which may increase susceptibility to the toxic effects of mercury in ASD include the following: a greater propensity of males to the long-term neurotoxic effects of postnatal exposure and genetic polymorphisms in glutathione transferases and other glutathione-related genes and in selenoproteins. Furthermore, immune and inflammatory responses to immunisations with mercury-containing adjuvants are strongly influenced by polymorphisms in the human leukocyte antigen (HLA) region and by genes encoding effector proteins such as cytokines and pattern recognition receptors. Some epidemiological studies investigating a possible relationship between high environmental exposure to methylmercury and impaired neurodevelopment have reported a positive dose-dependent effect. Retrospective studies, on the other hand, reported no relationship between a range of ethylmercury-containing vaccines and chronic neuropathology or ASD. On the basis of these results, we would argue that more clinically relevant research is required to examine whether environmental mercury is associated with ASD or subtypes. Specific recommendations for future research are discussed.

Keywords

Autism spectrum disorders Mercury Immune Cytokines Inflammation Oxidative stress 

References

  1. 1.
    Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45PubMedCrossRefGoogle Scholar
  2. 2.
    Loke YJ, Hannan AJ, Craig JM (2015) The role of epigenetic change in autism Spectrum disorders. Front Neurol 6:107. doi:10.3389/fneur.2015.00107 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mead J, Ashwood P (2015) Evidence supporting an altered immune response in ASD. Immunol Lett 163(1):49–55. doi:10.1016/j.imlet.2014.11.006 PubMedCrossRefGoogle Scholar
  4. 4.
    McDougle CJ, Landino SM, Vahabzadeh A, O'Rourke J, Zurcher NR, Finger BC, Palumbo ML, Helt J et al (2015) Toward an immune-mediated subtype of autism spectrum disorder. Brain Res 1617:72–92. doi:10.1016/j.brainres.2014.09.048 PubMedCrossRefGoogle Scholar
  5. 5.
    Samsam M, Ahangari R, Naser SA (2014) Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance. World J Gastroenterol 20(29):9942–9951. doi:10.3748/wjg.v20.i29.9942 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Noriega DB, Savelkoul HF (2014) Immune dysregulation in autism spectrum disorder. Eur J Pediatr 173(1):33–43. doi:10.1007/s00431-013-2183-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Estes ML, McAllister AK (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 16(8):469–486. doi:10.1038/nrn3978 PubMedCrossRefGoogle Scholar
  8. 8.
    Goyal DK, Miyan JA (2014) Neuro-immune abnormalities in autism and their relationship with the environment: A variable insult model for autism. Front Endocrinol 5:29. doi:10.3389/fendo.2014.00029 CrossRefGoogle Scholar
  9. 9.
    Meltzer A, Van de Water J (2017) The role of the immune system in autism Spectrum disorder. Neuropsychopharmacology 42(1):284–298. doi:10.1038/npp.2016.158 PubMedCrossRefGoogle Scholar
  10. 10.
    Hendren R (2014) Biomarkers in Autism. Front Psychol 5. doi:10.3389/fpsyt.2014.00100
  11. 11.
    Rossignol D, Frye R (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:150PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bilbo SD, Nevison CD, Parker W (2015) A model for the induction of autism in the ecosystem of the human body: The anatomy of a modern pandemic? Microb Ecol Health Dis 26:26253. doi:10.3402/mehd.v26.26253 PubMedGoogle Scholar
  13. 13.
    Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N (2013) Epigenetic findings in autism: New perspectives for therapy. Int J Environ Res Public Health 10(9):4261–4273. doi:10.3390/ijerph10094261 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hallmayer J, Cleveland S, Torres A et al (2011) GEnetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102. doi:10.1001/archgenpsychiatry.2011.76 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Voineagu I (2012) Gene expression studies in autism: Moving from the genome to the transcriptome and beyond. Neurobiol Dis 45(1):69–75. doi:10.1016/j.nbd.2011.07.017 PubMedCrossRefGoogle Scholar
  16. 16.
    Wong C, Meaburn E, Ronald A, Price T, Jeffries A, Schalkwyk L (2014) Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 19:495–503PubMedCrossRefGoogle Scholar
  17. 17.
    Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C et al (2014) Gene x environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Front Psychol 5:53. doi:10.3389/fpsyt.2014.00053 Google Scholar
  18. 18.
    Koufaris C, Sismani C (2015) Modulation of the genome and epigenome of individuals susceptible to autism by environmental risk factors. Int J Mol Sci 16(4):8699–8718. doi:10.3390/ijms16048699 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R (2011) Residential proximity to freeways and autism in the CHARGE study. Environ Health Perspect 119(6):873–877. doi:10.1289/ehp.1002835 PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts AL, Lyall K, Hart JE, Laden F, Just AC, Bobb JF, Koenen KC, Ascherio A et al (2013) Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses' health study II participants. Environ Health Perspect 121(8):978–984. doi:10.1289/ehp.1206187 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lenroot RK, Yeung PK (2013) Heterogeneity within autism Spectrum disorders: What have we learned from neuroimaging studies? Front Hum Neurosci 7:733. doi:10.3389/fnhum.2013.00733 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. doi:10.3961/jpmph.2014.47.2.74 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sokolowski K, Obiorah M, Robinson K, McCandlish E, Buckley B, DiCicco-Bloom E (2013) Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits. Dev Neurobiol 73(12):936–949. doi:10.1002/dneu.22119 PubMedCrossRefGoogle Scholar
  24. 24.
    Sokolowski K, Falluel-Morel A, Zhou X, DiCicco-Bloom E (2011) Methylmercury (MeHg) elicits mitochondrial-dependent apoptosis in developing hippocampus and acts at low exposures. Neurotoxicology 32(5):535–544. doi:10.1016/j.neuro.2011.06.003 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ceccatelli S, Bose R, Edoff K, Onishchenko N, Spulber S (2013) Long-lasting neurotoxic effects of exposure to methylmercury during development. J Intern Med 273(5):490–497. doi:10.1111/joim.12045 PubMedCrossRefGoogle Scholar
  26. 26.
    Obiorah M, McCandlish E, Buckley B, DiCicco-Bloom E (2015) Hippocampal developmental vulnerability to methylmercury extends into prepubescence. Front Neurosci 9:150. doi:10.3389/fnins.2015.00150 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weston HI, Sobolewski M, Allen JL, Weston D, Conrad K, Pelkowski S, Watson GE, Zareba G et al (2014) Sex-dependent and non-monotonic enhancement and unmasking of methylmercury neurotoxicity by prenatal stress. Neurotoxicology 41:123–140. doi:10.1016/j.neuro.2014.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim SH, Johnson VJ, Sharma RP (2002) Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: Differential modulation of NF-kappaB and p38 MAPK signaling pathways. Nitric Oxide 7(1):67–74PubMedCrossRefGoogle Scholar
  29. 29.
    Guzzi G, Pigatto PD, Spadari F, La Porta CA (2012) Effect of thimerosal, methylmercury, and mercuric chloride in Jurkat T cell line. Interdiscip Toxicol 5(3):159–161. doi:10.2478/v10102-012-0026-1 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36. doi:10.1080/10408440600845619
  31. 31.
    Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256(3):405–417. doi:10.1016/j.taap.2011.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Farina M, Avila DS, da Rocha JBT, Aschner M (2013) Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem Int 62(5):575–594. doi:10.1016/j.neuint.2012.12.006 PubMedCrossRefGoogle Scholar
  33. 33.
    Glaser V, Leipnitz G, Straliotto MR, Oliveira J, dos Santos VV, Wannmacher CM, de Bem AF, Rocha JB et al (2010) Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury. Neurotoxicology 31(5):454–460. doi:10.1016/j.neuro.2010.05.012 PubMedCrossRefGoogle Scholar
  34. 34.
    Freitas AJ, Rocha JB, Wolosker H, Souza DO (1996) Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes. Brain Res 738(2):257–264PubMedCrossRefGoogle Scholar
  35. 35.
    Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO et al (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227(1):147–154. doi:10.1016/j.taap.2007.10.010 PubMedCrossRefGoogle Scholar
  36. 36.
    Branco V, Ramos P, Canario J, Lu J, Holmgren A, Carvalho C (2012) Biomarkers of adverse response to mercury: Histopathology versus thioredoxin reductase activity. J Biomed Biotechnol 2012:359879. doi:10.1155/2012/359879 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia Pomblum SC, Moro AM, Bohrer D et al (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102(1):22–28. doi:10.1016/j.envres.2006.02.003 PubMedCrossRefGoogle Scholar
  38. 38.
    Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M (2014) The glutathione system: A new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084PubMedCrossRefGoogle Scholar
  39. 39.
    Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR et al (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: Protective effects of quercetin. Chem Res Toxicol 20(12):1919–1926. doi:10.1021/tx7002323 PubMedCrossRefGoogle Scholar
  40. 40.
    Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776. doi:10.1007/s00204-007-0209-2 PubMedCrossRefGoogle Scholar
  41. 41.
    Allen JW, Mutkus LA, Aschner M (2001) Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes. Brain Res 891. doi:10.1016/s0006-8993(00)03185-1
  42. 42.
    Lockman PR, Roder KE, Allen DD (2001) Inhibition of the rat blood-brain barrier choline transporter by manganese chloride. J Neurochem 79(3):588–594PubMedCrossRefGoogle Scholar
  43. 43.
    Eto K, Marumoto M, Takeya M (2010) The pathology of methylmercury poisoning (Minamata disease): The 50th anniversary of Japanese Society of Neuropathology. Neuropathology 30(5):471–479. doi:10.1111/j.1440-1789.2010.01119.x PubMedGoogle Scholar
  44. 44.
    Hirooka T, Fujiwara Y, Shinkai Y, Yamamoto C, Yasutake A, Satoh M, Eto K, Kaji T (2010) Resistance of human brain microvascular endothelial cells in culture to methylmercury: Cell-density-dependent defense mechanisms. J Toxicol Sci 35(3):287–294PubMedCrossRefGoogle Scholar
  45. 45.
    Hirooka T, Kaji T (2012) The cytotoxicity of methylmercury in human microvascular endothelial cells and pericytes in culture. Biol Pharm Bull 35(8):1201–1205PubMedCrossRefGoogle Scholar
  46. 46.
    Hirooka T, Yamamoto C, Yasutake A, Eto K, Kaji T (2013) Expression of VEGF-related proteins in cultured human brain microvascular endothelial cells and pericytes after exposure to methylmercury. J Toxicol Sci 38(6):837–845PubMedCrossRefGoogle Scholar
  47. 47.
    Yin Z, Jiang H, Syversen T, Rocha JBT, Farina M, Aschner M (2008) The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter, LAT1. J Neurochem 107(4):1083–1090. doi:10.1111/j.1471-4159.2008.05683.x PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zimmermann LT, Santos DB, Naime AA, Leal RB, Dorea JG, Barbosa F Jr, Aschner M, Rocha JB et al (2013) Comparative study on methyl- and ethylmercury-induced toxicity in C6 glioma cells and the potential role of LAT-1 in mediating mercurial-thiol complexes uptake. Neurotoxicology 38:1–8. doi:10.1016/j.neuro.2013.05.015 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lohren H, Bornhorst J, Galla HJ, Schwerdtle T (2015) The blood-cerebrospinal fluid barrier--first evidence for an active transport of organic mercury compounds out of the brain. Metallomics 7(10):1420–1430. doi:10.1039/c5mt00171d PubMedCrossRefGoogle Scholar
  50. 50.
    Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–117PubMedCrossRefGoogle Scholar
  51. 51.
    Sorg O, Schilter B, Honegger P, Monnet-Tschudi F (1998) Increased vulnerability of neurones and glial cells to low concentrations of methylmercury in a prooxidant situation. Acta Neuropathol 96(6):621–627PubMedCrossRefGoogle Scholar
  52. 52.
    Baek S-E, Lee G-J, Rhee C-K, Rho D-Y, Kim D-H, Huh S, Lee S-K (2016) Decreased Total antioxidant activity in major depressive disorder patients non-responsive to antidepressant treatment. Psychiatry Investig 13(2):222–226. doi:10.4306/pi.2016.13.2.222 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JB et al (2011) Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 32(3):291–299. doi:10.1016/j.neuro.2011.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J et al (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131(1):1–10. doi:10.1016/j.brainres.2006.10.070 PubMedCrossRefGoogle Scholar
  55. 55.
    Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40(3):285–291PubMedCrossRefGoogle Scholar
  56. 56.
    Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27(4):492–500. doi:10.1016/j.neuro.2006.01.010 PubMedCrossRefGoogle Scholar
  57. 57.
    Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128(1):48–57. doi:10.1016/j.molbrainres.2004.05.022 PubMedCrossRefGoogle Scholar
  58. 58.
    Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137(1–2):11–22. doi:10.1016/j.molbrainres.2005.02.006 PubMedCrossRefGoogle Scholar
  59. 59.
    Sharpe MA, Livingston AD, Baskin DS (2012) Thimerosal-derived Ethylmercury is a mitochondrial toxin in human astrocytes: Possible role of Fenton chemistry in the oxidation and breakage of mtDNA. J Toxicol 2012:373678. doi:10.1155/2012/373678 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang L, Jiang H, Yin Z, Aschner M, Cai J (2009) Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci 107(1):135–143. doi:10.1093/toxsci/kfn201 PubMedCrossRefGoogle Scholar
  61. 61.
    Shanker G, Aschner M (2003) Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Brain Res Mol Brain Res 110(1):85–91PubMedCrossRefGoogle Scholar
  62. 62.
    Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37(2–3):199–206PubMedCrossRefGoogle Scholar
  63. 63.
    Ruzzo EK, Capo-Chichi J-M, Ben-Zeev B, Chitayat D, Mao H, Pappas AL, Hitomi Y, Lu Y-F, Yao X, Hamdan FF, Pelak K, Reznik-Wolf H, Bar-Joseph I, Oz-Levi D, Lev D, Lerman-Sagie T, Leshinsky-Silver E, Anikster Y, Ben-Asher E, Olender T, Colleaux L, Décarie J-C, Blaser S, Banwell B, Joshi RB, He X-P, Patry L, Silver RJ, Dobrzeniecka S, Islam MS, Hasnat A, Samuels ME, Aryal DK, Rodriguiz RM, Jiang Y-H, Wetsel WC, McNamara JO, Rouleau GA, Silver DL, Lancet D, Pras E, Mitchell GA, Michaud JL, Goldstein DB (2013) Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron 80 (2). doi:10.1016/j.neuron.2013.08.013
  64. 64.
    Allen JW, Shanker G, Tan KH, Aschner M (2002) The consequences of methylmercury exposure on interactive functions between astrocytes and neurons. Neurotoxicology 23(6):755–759. doi:10.1016/s0161-813x(01)00076-6 PubMedCrossRefGoogle Scholar
  65. 65.
    Monnet-Tschudi F, Zurich MG, Honegger P (1996) Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of rat telencephalon. Brain Res 741(1–2):52–59PubMedCrossRefGoogle Scholar
  66. 66.
    Jebbett NJ, Hamilton JW, Rand MD, Eckenstein F (2013) Low level methylmercury enhances CNTF-evoked STAT3 signaling and glial differentiation in cultured cortical progenitor cells. Neurotoxicology 38:91–100. doi:10.1016/j.neuro.2013.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Garg TK, Chang JY (2006) Methylmercury causes oxidative stress and cytotoxicity in microglia: Attenuation by 15-deoxy-delta 12, 14-prostaglandin J2. J Neuroimmunol 171(1–2):17–28. doi:10.1016/j.Jneuroim.2005.09.007 PubMedCrossRefGoogle Scholar
  68. 68.
    Eskes C, Honegger P, Juillerat-Jeanneret L, Monnet-Tschudi F (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 37(1):43–52PubMedCrossRefGoogle Scholar
  69. 69.
    Ni M, Li X, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Farina M, Rocha JB, Syversen T et al (2011) Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 59(5):810–820. doi:10.1002/glia.21153 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ni M, Li X, Rocha JBT, Farina M, Aschner M (2012) Glia and Methylmercury Neurotoxicity. J Toxicol Environm Health A 75:1091–1101. doi:10.1080/15287394.2012.697840 CrossRefGoogle Scholar
  71. 71.
    Fernandes Azevedo B, Barros Furieri L, Pecanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simoes M, Fiorim J, Rossi de Batista P et al (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012:949048. doi:10.1155/2012/949048 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ et al (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 295(3):H1033–H1043. doi:10.1152/ajpheart.00430.2008 PubMedCrossRefGoogle Scholar
  73. 73.
    Reus IS, Bando I, Andres D, Cascales M (2003) Relationship between expression of HSP70 and metallothionein and oxidative stress during mercury chloride induced acute liver injury in rats. J Biochem Mol Toxicol 17(3):161–168. doi:10.1002/jbt.10074 PubMedCrossRefGoogle Scholar
  74. 74.
    Lemos NB, Angeli JK, Faria TO, Ribeiro Junior RF, Vassallo DV, Padilha AS, Stefanon I (2012) Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery. PLoS One 7(11):e49005. doi:10.1371/journal.pone.0049005 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Agrawal S, Flora G, Bhatnagar P, Flora SJ (2014) Comparative oxidative stress, metallothionein induction and organ toxicity following chronic exposure to arsenic, lead and mercury in rats. Cell Mol Biol (Noisy-le-Grand) 60(2):13–21Google Scholar
  76. 76.
    Sanfeliu C, Sebastia J, Ki SU (2001) Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology 22(3):317–327PubMedCrossRefGoogle Scholar
  77. 77.
    Gasso S, Cristofol RM, Selema G, Rosa R, Rodriguez-Farre E, Sanfeliu C (2001) Antioxidant compounds and ca(2+) pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity. J Neurosci Res 66(1):135–145PubMedCrossRefGoogle Scholar
  78. 78.
    Yee S, Choi BH (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17(1):17–26PubMedGoogle Scholar
  79. 79.
    Choi BH, Yee S, Robles M (1996) The effects of glutathione glycoside in methyl mercury poisoning. Toxicol Appl Pharmacol 141(2):357–364. doi:10.1006/taap.1996.0300 PubMedCrossRefGoogle Scholar
  80. 80.
    Sarafian T, Verity MA (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci 9(2):147–153PubMedCrossRefGoogle Scholar
  81. 81.
    Furieri LB, Galan M, Avendano MS, Garcia-Redondo AB, Aguado A, Martinez S, Cachofeiro V, Bartolome MV et al (2011) Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br J Pharmacol 162(8):1819–1831. doi:10.1111/j.1476-5381.2011.01203.x PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kishimoto T, Oguri T, Tada M (1995) Effect of methylmercury (CH3HgCl) injury on nitric oxide synthase (NOS) activity in cultured human umbilical vascular endothelial cells. Toxicology 103(1):1–7PubMedCrossRefGoogle Scholar
  83. 83.
    Kim SH, Sharma RP (2004) Mercury-induced apoptosis and necrosis in murine macrophages: Role of calcium-induced reactive oxygen species and p38 mitogen-activated protein kinase signaling. Toxicol Appl Pharmacol 196(1):47–57. doi:10.1016/j.taap.2003.11.020 PubMedCrossRefGoogle Scholar
  84. 84.
    Kobal AB, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I et al (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17(4):261–274. doi:10.1016/s0946-672x(04)80028-2 PubMedCrossRefGoogle Scholar
  85. 85.
    Kobal AB, Prezelj M, Horvat M, Krsnik M, Gibicar D, Osredkar J (2008) Glutathione level after long-term occupational elemental mercury exposure. Environ Res 107(1):115–123. doi:10.1016/j.envres.2007.07.001 PubMedCrossRefGoogle Scholar
  86. 86.
    Mahboob M, Shireen KF, Atkinson A, Khan AT (2001) Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. J Environ Sci Health B 36(5):687–697. doi:10.1081/pfc-100106195 PubMedCrossRefGoogle Scholar
  87. 87.
    Hijova E, Nistiar F, Sipulova A (2005) Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury. Bratisl Lek Listy 106(8–9):248–251PubMedGoogle Scholar
  88. 88.
    Al-Saleh I, Al-Sedairi A, Elkhatib R (2012) Effect of mercury (hg) dental amalgam fillings on renal and oxidative stress biomarkers in children. Sci Total Environ 431:188–196. doi:10.1016/j.scitotenv.2012.05.036 PubMedCrossRefGoogle Scholar
  89. 89.
    Perottoni J, Lobato LP, Silveira A, Rocha JB, Emanuelli T (2004) Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environ Res 95(2):166–173. doi:10.1016/j.envres.2003.08.007 PubMedCrossRefGoogle Scholar
  90. 90.
    Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Perkins NJ, Bloom MS, Rudra CB, Browne RW et al (2012) Relation of blood cadmium, lead, and mercury levels to biomarkers of lipid peroxidation in premenopausal women. Am J Epidemiol 175(7):645–652. doi:10.1093/aje/kwr375 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lucas K, Morris G, Anderson G, Maes M (2015) The toll-like receptor radical cycle pathway: A new drug target in immune-related chronic fatigue. CNS Neurol Disord Drug Targets 14(7):838–854. doi:10.2174/1871527314666150317224645 PubMedCrossRefGoogle Scholar
  92. 92.
    Lucas K, Maes M (2013) Role of the toll like receptor (TLR) radical cycle in chronic inflammation: Possible treatments targeting the TLR4 pathway. Mol Neurobiol 48:190–204PubMedCrossRefGoogle Scholar
  93. 93.
    Havarinasab S, Hultman P (2005) Organic mercury compounds and autoimmunity. Autoimmun Rev 4(5):270–275. doi:10.1016/j.autrev.2004.12.001 PubMedCrossRefGoogle Scholar
  94. 94.
    Haggqvist B, Havarinasab S, Bjorn E, Hultman P (2005) The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice. Toxicology 208(1):149–164. doi:10.1016/j.tox.2004.11.020 PubMedCrossRefGoogle Scholar
  95. 95.
    Silva IA, El Nabawi M, Hoover D, Silbergeld EK (2005) Prenatal HgCl2 exposure in BALB/c mice: Gender-specific effects on the ontogeny of the immune system. Dev Comp Immunol 29(2):171–183. doi:10.1016/j.dci.2004.05.008 PubMedCrossRefGoogle Scholar
  96. 96.
    Silva IA, Nyland JF, Gorman A, Perisse A, Ventura AM, Santos EC, Souza JM, Burek CL et al (2004) Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in Amazon populations in Brazil: A cross-sectional study. Environ Health 3(1):11. doi:10.1186/1476-069x-3-11 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Crowe W, Allsopp PJ, Watson GE, Magee PJ, Strain JJ, Armstrong DJ, Ball E, McSorley EM (2016) Mercury as an environmental stimulus in the development of autoimmunity - a systematic review. Autoimmun Rev. doi:10.1016/j.autrev.2016.09.020
  98. 98.
    Santarelli L, Bracci M, Mocchegiani E (2006) In vitro and in vivo effects of mercuric chloride on thymic endocrine activity, NK and NKT cell cytotoxicity, cytokine profiles (IL-2, IFN-gamma, IL-6): Role of the nitric oxide-L-arginine pathway. Int Immunopharmacol 6(3):376–389. doi:10.1016/j.intimp.2005.08.028 PubMedCrossRefGoogle Scholar
  99. 99.
    Silva IA, Graber J, Nyland JF, Silbergeld EK (2005) In vitro HgCl2 exposure of immune cells at different stages of maturation: Effects on phenotype and function. Environ Res 98(3):341–348. doi:10.1016/j.envres.2005.01.006 PubMedCrossRefGoogle Scholar
  100. 100.
    Pilones K, Tatum A, Gavalchin J (2009) Gestational exposure to mercury leads to persistent changes in T-cell phenotype and function in adult DBF1 mice. J Immunotoxicol 6(3):161–170. doi:10.1080/15476910903084021 PubMedCrossRefGoogle Scholar
  101. 101.
    Alves MF, Fraiji NA, Barbosa AC, De Lima DS, Souza JR, Dorea JG, Cordeiro GW (2006) Fish consumption, mercury exposure and serum antinuclear antibody in Amazonians. Int J Environ Health Res 16(4):255–262. doi:10.1080/09603120600734147 PubMedCrossRefGoogle Scholar
  102. 102.
    Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK (2010) Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: A cross-sectional study. Environ Res 110(4):345–354. doi:10.1016/j.envres.2010.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cooper GS, Parks CG, Treadwell EL, St Clair EW, Gilkeson GS, Dooley MA (2004) Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol 31(10):1928–1933PubMedGoogle Scholar
  104. 104.
    Gump BB, MacKenzie JA, Dumas AK, Palmer CD, Parsons PJ, Segu ZM, Mechref YS, Bendinskas KG (2012) Fish consumption, low-level mercury, lipids, and inflammatory markers in children. Environ Res 112:204–211. doi:10.1016/j.envres.2011.10.002 PubMedCrossRefGoogle Scholar
  105. 105.
    Sanchez Rodriguez LH, Florez-Vargas O, Rodriguez-Villamizar LA, Vargas Fiallo Y, Stashenko EE, Ramirez G (2015) Lack of autoantibody induction by mercury exposure in artisanal gold mining settings in Colombia: Findings and a review of the epidemiology literature. J Immunotoxicol 12(4):368–375. doi:10.3109/1547691x.2014.986591 PubMedCrossRefGoogle Scholar
  106. 106.
    Kristensen AK, Thomsen JF, Mikkelsen S (2014) A review of mercury exposure among artisanal small-scale gold miners in developing countries. Int Arch Occup Environ Health 87(6):579–590. doi:10.1007/s00420-013-0902-9 PubMedCrossRefGoogle Scholar
  107. 107.
    Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117(12):1932–1938. doi:10.1289/ehp.0900855 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kempuraj D, Asadi S, Zhang B, Manola A, Hogan J, Peterson E, Theoharides TC (2010) Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 7:20. doi:10.1186/1742-2094-7-20 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nyland JF, Fillion M, Barbosa F Jr, Shirley DL, Chine C, Lemire M, Mergler D, Silbergeld EK (2011) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119(12):1733–1738. doi:10.1289/ehp.1103741 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, Silbergeld EK (2011) Fetal and maternal immune responses to methylmercury exposure: A cross-sectional study. Environ Res 111(4):584–589. doi:10.1016/j.envres.2011.02.010 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Polunas M, Halladay A, Tjalkens RB, Philbert MA, Lowndes H, Reuhl K (2011) Role of oxidative stress and the mitochondrial permeability transition in methylmercury cytotoxicity. Neurotoxicology 32(5):526–534. doi:10.1016/j.neuro.2011.07.006 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Messer RLW, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B Appl Biomater 75B(2):257–263. doi:10.1002/jbm.b.30263 CrossRefGoogle Scholar
  113. 113.
    Atchison WD, Hare MF (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J 8(9):622–629PubMedGoogle Scholar
  114. 114.
    Hare MF, Atchison WD (1992) Comparative action of methylmercury and divalent inorganic mercury on nerve terminal and intraterminal mitochondrial membrane potentials. J Pharmacol Exp Ther 261(1):166–172PubMedGoogle Scholar
  115. 115.
    Roos D, Seeger R, Puntel R, Vargas Barbosa N (2012) Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol 2012:248764. doi:10.1155/2012/248764 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Usuki F, Fujimura M, Yamashita A (2013) Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses. Sci Rep 3:2346. doi:10.1038/srep02346 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Mori N, Yasutake A, Marumoto M, Hirayama K (2011) Methylmercury inhibits electron transport chain activity and induces cytochrome c release in cerebellum mitochondria. J Toxicol Sci 36(3):253–259PubMedCrossRefGoogle Scholar
  118. 118.
    Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA et al (2015) Mercury and metabolic syndrome: A review of experimental and clinical observations. Biometals 28(2):231–254. doi:10.1007/s10534-015-9823-2 PubMedCrossRefGoogle Scholar
  119. 119.
    Yuan Y, Atchison WD (2007) Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Mol Pharmacol 71(4):1109–1121. doi:10.1124/mol.106.031286 PubMedCrossRefGoogle Scholar
  120. 120.
    Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S (2002) Biochemical and molecular basis of thimerosal-induced apoptosis in T cells: A major role of mitochondrial pathway. Genes Immun 3(5):270–278PubMedCrossRefGoogle Scholar
  121. 121.
    Rose S, Wynne R, Frye RE, Melnyk S, James SJ (2015) Increased susceptibility to Ethylmercury-induced mitochondrial dysfunction in a subset of autism Lymphoblastoid cell lines. J Toxicol 2015:573701. doi:10.1155/2015/573701 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Usuki F, Fujita E, Sasagawa N (2008) Methylmercury activates ASK1/JNK signaling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines. Neurotoxicology 29(1):22–30. doi:10.1016/j.neuro.2007.08.011 PubMedCrossRefGoogle Scholar
  123. 123.
    Song J, Park KA, Lee WT, Lee JE (2014) Apoptosis signal regulating kinase 1 (ASK1): Potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15(2):2119–2129. doi:10.3390/ijms15022119 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hybenova M, Hrda P, Prochazkova J, Stejskal V, Sterzl I (2010) The role of environmental factors in autoimmune thyroiditis. Neuro Endocrinol Lett 31(3):283–289PubMedGoogle Scholar
  125. 125.
    Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, Mayer W, Bieger W et al (1999) Metal-specific lymphocytes: Biomarkers of sensitivity in man. Neuro Endocrinol Lett 20(5):289–298PubMedGoogle Scholar
  126. 126.
    Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD (2004) The beneficial effect of amalgam replacement on health in patients with autoimmunity. Neuro Endocrinol Lett 25(3):211–218PubMedGoogle Scholar
  127. 127.
    Schrijvers R, Gilissen L, Chiriac AM, Demoly P (2015) Pathogenesis and diagnosis of delayed-type drug hypersensitivity reactions, from bedside to bench and back. Clin Transl Allergy 5:31. doi:10.1186/s13601-015-0073-8 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M (2006) LTT-MELISA is clinically relevant for detecting and monitoring metal sensitivity. Neuro Endocrinol Lett 27(Suppl 1):17–24PubMedGoogle Scholar
  129. 129.
    Sterzl I, Prochazkova J, Hrda P, Matucha P, Bartova J, Stejskal V (2006) Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. Neuro Endocrinol Lett 27(Suppl 1):25–30PubMedGoogle Scholar
  130. 130.
    Stejskal V, Reynolds T, Bjorklund G (2015) Increased frequency of delayed type hypersensitivity to metals in patients with connective tissue disease. J Trace Elem Med Biol 31:230–236. doi:10.1016/j.jtemb.2015.01.001 PubMedCrossRefGoogle Scholar
  131. 131.
    Sterzl I, Prochazkova J, Hrda P, Bartova J, Matucha P, Stejskal VD (1999) Mercury and nickel allergy: Risk factors in fatigue and autoimmunity. Neuro Endocrinol Lett 20(3–4):221–228PubMedGoogle Scholar
  132. 132.
    Bjorkman L, Sjursen TT, Dalen K, Lygre GB, Berge TL, Svahn J, Lundekvam BF (2017) Long term changes in health complaints after removal of amalgam restorations. Acta Odontol Scand 75(3):208–219. doi:10.1080/00016357.2016.1278262 PubMedCrossRefGoogle Scholar
  133. 133.
    Kristoffersen AE, Alraek T, Stub T, Hamre HJ, Bjorkman L, Musial F (2016) Health complaints attributed to dental amalgam: A retrospective survey exploring perceived health changes related to amalgam removal. Open Dent J 10:739–751. doi:10.2174/1874210601610010739 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Stejskal V (2014) Metals as a common trigger of inflammation resulting in non-specific symptoms: Diagnosis and treatment. Isr Med Assoc J 16(12):753–758PubMedGoogle Scholar
  135. 135.
    Stejskal V, Ockert K, Bjorklund G (2013) Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. Neuro Endocrinol Lett 34(6):559–565PubMedGoogle Scholar
  136. 136.
    Kim M-K, Zoh K-D (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 45(6):335–343. doi:10.3961/jpmph.2012.45.6.335 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Odumo BO, Carbonell G, Angeyo HK, Patel JP, Torrijos M, Rodriguez Martin JA (2014) Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environ Sci Pollut Res Int 21(21):12426–12435. doi:10.1007/s11356-014-3190-3 PubMedCrossRefGoogle Scholar
  138. 138.
    Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjoblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53. doi:10.1016/j.envint.2014.09.007 PubMedCrossRefGoogle Scholar
  139. 139.
    Webster JP, Kane TJ, Obrist D, Ryan JN, Aiken GR (2016) Estimating mercury emissions resulting from wildfire in forests of the western United States. Sci Total Environ 568:578–586. doi:10.1016/j.Scitotenv.2016.01.166 PubMedCrossRefGoogle Scholar
  140. 140.
    Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z (1995) Chai F (2012) control strategies of atmospheric mercury emissions from coal-fired power plants in China. J Air Waste Manage Assoc 62(5):576–586CrossRefGoogle Scholar
  141. 141.
    Holzman DC (2010) AIR POLLUTION: Mercury emissions not shrinking as forecast. Environ Health Perspect 118(5):A198–A198PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Schroeder WH, Munthe J (1998) Atmospheric mercury—An overview. Atmospheric environment 32 (5):809-822. Doi:http://dx.Doi.Org/10.1016/S1352-2310(97)00293-8
  143. 143.
    Han Y-J, Holsen TM, Lai S-O, Hopke PK, Yi S-M, Liu W, Pagano J, Falanga L et al (2004) Atmospheric gaseous mercury concentrations in New York state: Relationships with meteorological data and other pollutants. Atmos Environ 38(37):6431–6446. doi:10.1016/j.Atmosenv.2004.07.031 CrossRefGoogle Scholar
  144. 144.
    Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR et al (2002) Atmospherc mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36(11):2303–2310PubMedCrossRefGoogle Scholar
  145. 145.
    Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, ter Schure A (2016) Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ 568:546–556. doi:10.1016/j.Scitotenv.2016.01.061 PubMedCrossRefGoogle Scholar
  146. 146.
    Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the United States. Environ Sci Technol 38(2):555–569PubMedCrossRefGoogle Scholar
  147. 147.
    Weiss-Penzias P, Jaffe DA, Swartzendruber P, Dennison JB, Chand D, Hafner W, Prestbo E (2006) Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J Geophys Res: Atmos 111(D10):n/a-n/a. doi:10.1029/2005JD006522
  148. 148.
    Fitzgerald WF, Mason RP, Vandal GM (1991) Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water Air Soil Pollut 56(1):745–767. doi:10.1007/bf00342314 CrossRefGoogle Scholar
  149. 149.
    Slemr F, Schuster G, Seiler W (1985) Distribution, speciation, and budget of atmospheric mercury. J Atmos Chem 3(4):407–434. doi:10.1007/bf00053870 CrossRefGoogle Scholar
  150. 150.
    Tokos JJS, Hall BO, Calhoun JA, Prestbo EM (1998) Homogeneous gas-phase reaction of Hg° with H2O2, 03, CH3I, AND (CH3)2S: Implications for atmospheric Hg cycling. Atmos Environ 32(5):823–827. doi:10.1016/S1352-2310(97)00171-4 CrossRefGoogle Scholar
  151. 151.
    Hu H, Lin H, Zheng W, Tomanicek SJ, Johs A, Feng X, Elias DA, Liang L et al (2013) Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat Geosci 6(9):751–754. doi:10.1038/ngeo1894 http://www.nature.com/ngeo/journal/v6/n9/abs/ngeo1894.html#supplementary-information CrossRefGoogle Scholar
  152. 152.
    Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of hg(II) by cyanobacteria. Appl Environ Microbiol 73(1):243–249. doi:10.1128/aem.01794-06 PubMedCrossRefGoogle Scholar
  153. 153.
    Lázaro WL, Guimarães JRD, Ignácio ARA, Da Silva CJ, Díez S (2013) Cyanobacteria enhance methylmercury production: A hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil. Sci Total Environ 456–457:231–238. doi:10.1016/j.scitotenv.2013.03.022 PubMedCrossRefGoogle Scholar
  154. 154.
    Kris-Etherton PM, Harris WS, Appel LJ (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23(2):e20–e30PubMedCrossRefGoogle Scholar
  155. 155.
    Smith KM, Barraj LM, Kantor M, Sahyoun NR (2009) Relationship between fish intake, n-3 fatty acids, mercury and risk markers of CHD (National Health and nutrition examination survey 1999-2002). Public Health Nutr 12(8):1261–1269. doi:10.1017/s1368980008003844 PubMedCrossRefGoogle Scholar
  156. 156.
    Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93(5):950–962. doi:10.3945/ajcn.110.006643 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Balshaw S, Edwards J, Daughtry B, Ross K (2007) Mercury in seafood: Mechanisms of accumulation and consequences for consumer health. Rev Environ Health 22(2):91–113PubMedGoogle Scholar
  158. 158.
    Hightower JM, Moore D (2003) Mercury levels in high-end consumers of fish. Environ Health Perspect 111(4):604–608PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Dabeka RW, McKenzie AD, Forsyth DS (2011) Levels of total mercury in predatory fish sold in Canada in 2005. Food Addit Contam A Chem Anal Control Expo Risk Assess 28(6):740–743. doi:10.1080/19440049.2011.571714 CrossRefGoogle Scholar
  160. 160.
    Burger J, Gochfeld M (2006) Mercury in fish available in supermarkets in Illinois: Are there regional differences. Sci Total Environ 367(2–3):1010–1016. doi:10.1016/j.scitotenv.2006.04.018 PubMedCrossRefGoogle Scholar
  161. 161.
    Rothenberg SE, Keiser S, Ajami NJ, Wong MC, Gesell J, Petrosino JF, Johs A (2016) The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol Lett 242:60–67. doi:10.1016/j.toxlet.2015.11.022 PubMedCrossRefGoogle Scholar
  162. 162.
    Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2016) The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and Neuroimmune disease. Mol Neurobiol. doi:10.1007/s12035-016-0004-2
  163. 163.
    Karimi R, Silbernagel S, Fisher NS, Meliker JR (2014) Elevated blood hg at recommended seafood consumption rates in adult seafood consumers. Int J Hyg Environ Health 217(7):758–764. doi:10.1016/j.ijheh.2014.03.007 PubMedCrossRefGoogle Scholar
  164. 164.
    Mahaffey KR, Clickner RP, Jeffries RA (2009) Adult women's blood mercury concentrations vary regionally in the United States: Association with patterns of fish consumption (NHANES 1999-2004). Environ Health Perspect 117(1):47–53. doi:10.1289/ehp.11674 PubMedCrossRefGoogle Scholar
  165. 165.
    Kim JH, Lee SJ, Kim SY, Choi G, Lee JJ, Kim HJ, Kim S, Park J et al (2016) Association of food consumption during pregnancy with mercury and lead levels in cord blood. Sci Total Environ 563-564:118–124. doi:10.1016/j.scitotenv.2016.04.082 PubMedCrossRefGoogle Scholar
  166. 166.
    Bjornberg KA, Vahter M, Petersson-Grawe K, Glynn A, Cnattingius S, Darnerud PO, Atuma S, Aune M et al (2003) Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: Influence of fish consumption. Environ Health Perspect 111(4):637–641PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Elhamri H, Idrissi L, Coquery M, Azemard S, El Abidi A, Benlemlih M, Saghi M, Cubadda F (2007) Hair mercury levels in relation to fish consumption in a community of the Moroccan Mediterranean coast. Food Addit Contam 24(11):1236–1246. doi:10.1080/02652030701329611 PubMedCrossRefGoogle Scholar
  168. 168.
    Carta P, Flore C, Alinovi R, Ibba A, Tocco MG, Aru G, Carta R, Girei E et al (2003) Sub-clinical neurobehavioral abnormalities associated with low level of mercury exposure through fish consumption. Neurotoxicology 24(4–5):617–623. doi:10.1016/s0161-813x(03)00080-9 PubMedCrossRefGoogle Scholar
  169. 169.
    Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2(1):8. doi:10.1186/1476-069x-2-8 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Oken E, Bellinger DC (2008) Fish consumption, methylmercury and child neurodevelopment. Curr Opin Pediatr 20(2):178–183. doi:10.1097/MOP.0b013e3282f5614c PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ Health Perspect 113(10):1376–1380PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N et al (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428PubMedCrossRefGoogle Scholar
  173. 173.
    McDowell MA, Dillon CF, Osterloh J, Bolger PM, Pellizzari E, Fernando R, de Oca RM, Schober SE et al (2004) Hair Mercury Levels in U.S. Children and Women of Childbearing Age: Reference range data from NHANES 1999–2000. Environ Health Perspect 112(11):1165–1171. doi:10.1289/ehp.7046 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J, Garrett ES, Canady RA et al (2003) Blood mercury levels in US children and women of childbearing age, 1999-2000. JAMA 289(13):1667–1674. doi:10.1001/jama.289.13.1667 PubMedCrossRefGoogle Scholar
  175. 175.
    Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R (2013) Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect. doi:10.1289/ehp.1206115
  176. 176.
    Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 369(9561):578–585. doi:10.1016/s0140-6736(07)60277-3 PubMedCrossRefGoogle Scholar
  177. 177.
    Woods JS, Heyer NJ, Russo JE, Martin MD, Farin FM (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: Summary findings from the casa pia Children's amalgam clinical trial. Neurotoxicology 44:288–302. doi:10.1016/j.neuro.2014.07.010 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Woods JS, Heyer NJ, Echeverria D, Russo JE, Martin MD, Bernardo MF, Luis HS, Vaz L et al (2012) Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol Teratol 34(5):513–521. doi:10.1016/j.ntt.2012.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Engstrom K, Love TM, Watson GE, Zareba G, Yeates A, Wahlberg K, Alhamdow A, Thurston SW et al (2016) Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles child development study. Environ Int 94:224–229. doi:10.1016/j.envint.2016.05.027 PubMedCrossRefGoogle Scholar
  180. 180.
    Homme KG, Kern JK, Haley BE, Geier DA, King PG, Sykes LK, Geier MR (2014) New science challenges old notion that mercury dental amalgam is safe. Biometals 27(1):19–24. doi:10.1007/s10534-013-9700-9 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Woods CG, Parker A (2013) Investigating microcephaly. Arch Dis Child 98(9):707–713. doi:10.1136/archdischild-2012-302882 PubMedCrossRefGoogle Scholar
  182. 182.
    Basu N, Goodrich JM, Head J (2014) Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ Toxicol Chem / SETAC 33(6):1248–1258. doi:10.1002/etc.2375 CrossRefGoogle Scholar
  183. 183.
    Goodrich JM, Basu N, Franzblau A, Dolinoy DC (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54(3):195–203. doi:10.1002/em.21763 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Gundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M (2009) Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res 109(6):786–796. doi:10.1016/j.envres.2009.05.003 PubMedCrossRefGoogle Scholar
  185. 185.
    Schlawicke Engstrom K, Stromberg U, Lundh T, Johansson I, Vessby B, Hallmans G, Skerfving S, Broberg K (2008) Genetic variation in glutathione-related genes and body burden of methylmercury. Environ Health Perspect 116(6):734–739. doi:10.1289/ehp.10804 PubMedCrossRefGoogle Scholar
  186. 186.
    Wang Y, Goodrich JM, Gillespie B, Werner R, Basu N, Franzblau A (2012) An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ Health Perspect 120(4):530–534. doi:10.1289/ehp.1104079 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Julvez J, Grandjean P (2013) Genetic susceptibility to methylmercury developmental neurotoxicity matters. Front Genet 4:278. doi:10.3389/fgene.2013.00278 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Ng S, Lin CC, Hwang YH, Hsieh WS, Liao HF, Chen PC (2013) Mercury, APOE, and children's neurodevelopment. Neurotoxicology 37:85–92. doi:10.1016/j.neuro.2013.03.012 PubMedCrossRefGoogle Scholar
  189. 189.
    Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Bammler TK, Farin FM (2014) Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. J Toxicol Environ Health A 77(6):293–312. doi:10.1080/15287394.2014.867210 PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Heyer NJ, Echeverria D, Martin MD, Farin FM, Woods JS (2009) Catechol O-methyltransferase (COMT) VAL158MET functional polymorphism, dental mercury exposure, and self-reported symptoms and mood. J Toxicol Environ Health A 72(9):599–609. doi:10.1080/15287390802706405 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Echeverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, Garabedian CE (2006) The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol 28(1):39–48. doi:10.1016/j.ntt.2005.10.006 PubMedCrossRefGoogle Scholar
  192. 192.
    Goodrich JM, Wang Y, Gillespie B, Werner R, Franzblau A, Basu N (2011) Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol Appl Pharmacol 257(2):301–308. doi:10.1016/j.taap.2011.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Barcelos GR, Grotto D, de Marco KC, Valentini J, Lengert A, de Oliveira AA, Garcia SC, Braga GU et al (2013) Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Sci Total Environ 463-464:319–325. doi:10.1016/j.scitotenv.2013.06.029 PubMedCrossRefGoogle Scholar
  194. 194.
    Custodio HM, Broberg K, Wennberg M, Jansson JH, Vessby B, Hallmans G, Stegmayr B, Skerfving S (2004) Polymorphisms in glutathione-related genes affect methylmercury retention. Arch Environ Health 59(11):588–595. doi:10.1080/00039890409603438 PubMedCrossRefGoogle Scholar
  195. 195.
    Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156. doi:10.1016/j.tox.2007.02.016 PubMedCrossRefGoogle Scholar
  196. 196.
    Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114(2):297–301PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Bowers K, Li Q, Bressler J, Avramopoulos D, Newschaffer C, Fallin M (2011) Glutathione pathway gene variation and risk of autism spectrum disorders. J Neurodev Disord 3:132–143PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    James S, Melnyk S, Jernigan S, Cleves M, Halsted C, Wong D (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141B:947–956PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Frustaci A, Neri M, Cesario A, Adams J, Domenici E, Dalla Bernardina B (2012) Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141PubMedCrossRefGoogle Scholar
  200. 200.
    Goin-Kochel R, Porter A, Peters S, Shinawi M, Sahoo T, Beaudet A (2009) The MTHFR 677C->T polymorphism and behaviors in children with autism: Exploratory genotype-phenotype correlations. Autism Res 2:98–108PubMedCrossRefGoogle Scholar
  201. 201.
    Guo T, Chen H, Liu B, Ji W, Yang C (2012) Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet Test Mol Biomarkers 16:968–973PubMedCrossRefGoogle Scholar
  202. 202.
    James S, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor D (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617PubMedGoogle Scholar
  203. 203.
    James S, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89:425–430PubMedCrossRefGoogle Scholar
  204. 204.
    James SJ, Rose S, Melnyk S, Jernigan S, Blossom S, Pavliv O, Gaylor DW (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23(8):2374–2383. doi:10.1096/fj.08-128926 PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Adams J, Baral M, Geis E, Mitchell J, Ingram J, Hensley A (2009) The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol 2009:532640PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Ghezzo A, Visconti P, Abruzzo P, Bolotta A, Ferreri C, Gobbi G (2013) Oxidative stress and erythrocyte membrane alterations in children with autism: Correlation with clinical features. PLoS One 8:e66418PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Rose S, Melnyk S, Pavliv O, Bai S, Nick T, Frye R (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Chauhan A, Audhya T, Chauhan V (2012) Brain region-specific glutathione redox imbalance in autism. Neurochem Res 37:1681–1689PubMedCrossRefGoogle Scholar
  209. 209.
    Gu F, Chauhan V, Kaur K, Brown W, LaFauci G, Wegiel J (2013) Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry 3:e299PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Durieux AM, Horder J, Mendez MA, Egerton A, Williams SC, Wilson CE, Spain D, Murphy C et al (2015) Cortical and subcortical glutathione levels in adults with autism spectrum disorder. Autism Res. doi:10.1002/aur.1522
  211. 211.
    Gu F, Chauhan V, Chauhan A (2013) Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: Alterations in the activities and protein expression of glutathione-related enzymes. Free Radic Biol Med 65:488–496PubMedCrossRefGoogle Scholar
  212. 212.
    Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A (2012) Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19(23):4000–4005PubMedCrossRefGoogle Scholar
  213. 213.
    Dórea JG (2015) Exposure to mercury and aluminum in early life: Developmental vulnerability as a modifying factor in neurologic and immunologic effects. Int J Environ Res Public Health 12(2):1295–1313. doi:10.3390/ijerph120201295 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Dorea JG (2013) Low-dose mercury exposure in early life: Relevance of thimerosal to fetuses, newborns and infants. Curr Med Chem 20(32):4060–4069PubMedCrossRefGoogle Scholar
  215. 215.
    Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa F Jr (2010) Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch Toxicol 84(11):891–896. doi:10.1007/s00204-010-0538-4 PubMedCrossRefGoogle Scholar
  216. 216.
    Carneiro MF, Oliveira Souza JM, Grotto D, Batista BL, de Oliveira Souza VC, Barbosa F Jr (2014) A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environ Res 134:218–227. doi:10.1016/j.envres.2014.07.009 PubMedCrossRefGoogle Scholar
  217. 217.
    Pichichero ME, Gentile A, Giglio N, Umido V, Clarkson T, Cernichiari E, Zareba G, Gotelli C et al (2008) Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 121(2):e208–e214. doi:10.1542/peds.2006-3363 PubMedCrossRefGoogle Scholar
  218. 218.
    Barregard L, Rekic D, Horvat M, Elmberg L, Lundh T, Zachrisson O (2011) Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol Sci 120(2):499–506. doi:10.1093/toxsci/kfr009 PubMedCrossRefGoogle Scholar
  219. 219.
    Geier D, Kern J, Hooker B, Sykes L, Geier M (2015) A Prospective Longitudinal Assessment of Medical Records for Diagnostic Substitution among Subjects Diagnosed with a Pervasive Developmental Disorder in the United States. Front Pediatr 3. doi:10.3389/fped.2015.00085
  220. 220.
    Geier D,A .Geier M,R. A two-phased population epidemiological study of the safety of thimerosalcontaining vaccines: a follow-up analysis. Med Sci Monit. 2005 Apr;11(4):CR160–70. Epub 2005 Mar 24Google Scholar
  221. 221.
    Geier DA, Hooker BS, Kern JK, King PG, Sykes LK, Geier MR (2014) A dose-response relationship between organic mercury exposure from thimerosal-containing vaccines and neurodevelopmental disorders. Int J Environ Res Public Health 11(9):9156–9170. doi:10.3390/ijerph110909156 PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Geier DA, Kern JK, Hooker BS, King PG, Sykes LK, Geier MR (2014) Thimerosal-containing hepatitis B vaccination and the risk for diagnosed specific delays in development in the United States: A case-control study in the vaccine safety datalink. N Am J Med Sci 6(10):519–531. doi:10.4103/1947-2714.143284 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Young HA, Geier DA, Geier MR (2008) Thimerosal exposure in infants and neurodevelopmental disorders: An assessment of computerized medical records in the vaccine safety datalink. J Neurol Sci 271(1–2):110–118. doi:10.1016/j.jns.2008.04.002 PubMedCrossRefGoogle Scholar
  224. 224.
    Gallagher C, Goodman M (2008) Hepatitis B triple series vaccine and developmental disability in US children aged 1–9 years. Toxicol Environ Chem 90(5):997–1008. doi:10.1080/02772240701806501 CrossRefGoogle Scholar
  225. 225.
    Verstraeten T, Davis RL, DeStefano F, Lieu TA, Rhodes PH, Black SB, Shinefield H, Chen RT (2003) Safety of thimerosal-containing vaccines: A two-phased study of computerized health maintenance organization databases. Pediatrics 112(5):1039–1048PubMedGoogle Scholar
  226. 226.
    Andrews N, Miller E, Grant A, Stowe J, Osborne V, Taylor B (2004) Thimerosal exposure in infants and developmental disorders: A retrospective cohort study in the United kingdom does not support a causal association. Pediatrics 114(3):584–591. doi:10.1542/peds.2003-1177-L PubMedCrossRefGoogle Scholar
  227. 227.
    Hooker B, Kern J, Geier D, Haley B, Sykes L (2014) Methodological issues and evidence of malfeasance in research purporting to show thimerosal in vaccines is safe. 2014:247218. doi:10.1155/2014/247218
  228. 228.
    Clements CJ (2004) The evidence for the safety of thiomersal in newborn and infant vaccines. Vaccine May 7;22(15-16):1854–1861. doi:10.1016/j.vaccine.2003.11.017
  229. 229.
    Dorea JG (2010) Making sense of epidemiological studies of young children exposed to thimerosal in vaccines. Clin Chim Acta 411(21–22):1580–1586. doi:10.1016/j.cca.2010.07.008 PubMedCrossRefGoogle Scholar
  230. 230.
    Marques RC, Abreu L, Bernardi JV, Dorea JG (2016) Neurodevelopment of Amazonian children exposed to ethylmercury (from thimerosal in vaccines) and methylmercury (from fish). Environ Res. doi:10.1016/j.envres.2015.12.022
  231. 231.
    Marques RC, Bernardi JV, Abreu L, Dorea JG (2015) Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. Arch Environ Contam Toxicol 68(3):432–441. doi:10.1007/s00244-014-0103-x PubMedCrossRefGoogle Scholar
  232. 232.
    Marques RC, Bernardi JV, Dorea JG, de Fatima RMM, Malm O (2014) Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age. Environ Pollut (barking, Essex : 1987) 187:130–135. doi:10.1016/j.envpol.2014.01.004 CrossRefGoogle Scholar
  233. 233.
    Dorea JG, Marques RC, Isejima C (2012) Neurodevelopment of Amazonian infants: Antenatal and postnatal exposure to methyl- and ethylmercury. J Biomed Biotechnol 2012:132876. doi:10.1155/2012/132876 PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Mrozek-Budzyn D, Majewska R, Kieltyka A, Augustyniak M (2012) Neonatal exposure to thimerosal from vaccines and child development in the first 3 years of life. Neurotoxicol Teratol 34(6):592–597. doi:10.1016/j.ntt.2012.10.001 PubMedCrossRefGoogle Scholar
  235. 235.
    Dorea JG, Marques RC, Abreu L (2014) Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 months) with different methylmercury and ethylmercury exposure. J Toxicol Environ Health A 77(1–3):1–13. doi:10.1080/15287394.2014.861335 PubMedCrossRefGoogle Scholar
  236. 236.
    Mrozek-Budzyn D, Kieltyka A, Majewska R (2010) Lack of association between measles-mumps-rubella vaccination and autism in children: A case-control study. Pediatr Infect Dis J 29(5):397–400. doi:10.1097/INF.0b013e3181c40a8a PubMedCrossRefGoogle Scholar
  237. 237.
    Rooney JP, Dorea JG (2015) Krakow's children cohort and long-term follow-up of thimerosal exposure--design and statistics. Eur J Pediatr 174(11):1555. doi:10.1007/s00431-015-2568-7 PubMedCrossRefGoogle Scholar
  238. 238.
    Marques RC, Dorea JG, Leao RS, Dos Santos VG, Bueno L, Marques RC, Brandao KG, Palermo EF et al (2012) Role of methylmercury exposure (from fish consumption) on growth and neurodevelopment of children under 5 years of age living in a transitioning (tin-mining) area of the western Amazon, Brazil. Arch Environ Contam Toxicol 62(2):341–350. doi:10.1007/s00244-011-9697-4 PubMedCrossRefGoogle Scholar
  239. 239.
    Grandjean P, Herz KT (2011) Methylmercury and brain development: Imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med 78(1):107–118. doi:10.1002/msj.20228 PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Choi AL, Mogensen UB, Bjerve KS, Debes F, Weihe P, Grandjean P, Budtz-Jorgensen E (2014) Negative confounding by essential fatty acids in methylmercury neurotoxicity associations. Neurotoxicol Teratol 42:85–92. doi:10.1016/j.ntt.2014.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Geier DA, Kern JK, Homme KG, Geier MR (2017) Abnormal brain connectivity Spectrum disorders following thimerosal administration: A prospective longitudinal case–control assessment of medical Records in the Vaccine Safety Datalink. Dose-Response 15(1):1559325817690849. doi:10.1177/1559325817690849 PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Jeong KS, Park H, Ha E, Shin J, Hong YC, Ha M, Park H, Kim BN et al (2017) High maternal blood mercury level is associated with low verbal IQ in children. J Korean Med Sci 32(7):1097–1104. doi:10.3346/jkms.2017.32.7.1097 PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Maruyama K, Yorifuji T, Tsuda T, Sekikawa T, Nakadaira H, Saito H (2012) Methyl mercury exposure at Niigata, Japan: Results of neurological examinations of 103 adults. J Biomed Biotechnol 2012:635075. doi:10.1155/2012/635075 PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Taylor LE, Swerdfeger AL, Eslick GD (2014) Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine 32(29):3623–3629. doi:10.1016/j.Vaccine.2014.04.085 PubMedCrossRefGoogle Scholar
  245. 245.
    Smeeth L, Cook C, Fombonne E, Heavey L, Rodrigues LC, Smith PG, Hall AJ (2004) MMR vaccination and pervasive developmental disorders: a case-control study. Lancet 364(9438):963–969. doi:10.1016/s0140-6736(04)17020-7 PubMedCrossRefGoogle Scholar
  246. 246.
    DeStefano F (2007) Vaccines and autism: Evidence does not support a causal association. Clin Pharmacol Ther 82(6):756–759. doi:10.1038/sj.clpt.6100407 PubMedCrossRefGoogle Scholar
  247. 247.
    Georgiades S, Szatmari P, Boyle M (2013) Importance of studying heterogeneity in autism. Neuropsychiatry 3(2):123–125. doi:10.2217/npy.13.8 CrossRefGoogle Scholar
  248. 248.
    Zhubi A, Cook EH, Guidotti A, Grayson DR (2014) Epigenetic mechanisms in autism spectrum disorder. Int Rev Neurobiol 115:203–244. doi:10.1016/b978-0-12-801311-3.00006-8 PubMedCrossRefGoogle Scholar
  249. 249.
    Voineagu I, Wang X, Johnston P, Lowe J, Tian Y, Horvath S (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77. doi:10.1016/j.brainres.2010.11.078 PubMedCrossRefGoogle Scholar
  251. 251.
    Ruggeri B, Sarkans U, Schumann G, Persico AM (2014) Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology 231(6):1201–1216. doi:10.1007/s00213-013-3290-7 PubMedCrossRefGoogle Scholar
  252. 252.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am J Psychiatry 167(7):748–751. doi:10.1176/appi.ajp.2010.09091379 PubMedCrossRefGoogle Scholar
  253. 253.
    Uher R, Rutter M (2012) Basing psychiatric classification on scientific foundation: Problems and prospects. Int Rev Psychiatry 24(6):591–605. doi:10.3109/09540261.2012.721346 PubMedCrossRefGoogle Scholar
  254. 254.
    Lord C, Jones RM (2012) Annual research review: Re-thinking the classification of autism spectrum disorders. J Child Psychol Psychiatry 53(5):490–509. doi:10.1111/j.1469-7610.2012.02547.x PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Kennedy ED, Ahluwalia IB, Ding H, Lu PJ, Singleton JA, Bridges CB (2012) Monitoring seasonal influenza vaccination coverage among pregnant women in the United States. Am J Obstet Gynecol 207(3 Suppl):S9–16. doi:10.1016/j.ajog.2012.06.069 PubMedCrossRefGoogle Scholar
  256. 256.
    Shaw CA, Seneff S, Kette SD, Tomljenovic L, Oller JW Jr, Davidson RM (2014) Aluminum-induced entropy in biological systems: Implications for neurological disease. J Toxicol 2014:491316. doi:10.1155/2014/491316 PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Samsel A, Seneff S (2017) Glyphosate pathways to modern diseases VI: Prions, amyloidoses and autoimmune neurological diseases. J Biol Phys Chem 17(1):8–32. doi:10.4024/25sa16a.jbpc.17.01 CrossRefGoogle Scholar
  258. 258.
    Xu J, Li G, Wang Z, Si L, He S, Cai J, Huang J, Donovan MD (2016) The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues. Chemosphere 145:487–494. doi:10.1016/j.chemosphere.2015.11.062 PubMedCrossRefGoogle Scholar
  259. 259.
    Langer-Gould A, Qian L, Tartof SY, Brara SM, Jacobsen SJ, Beaber BE, Sy LS, Chao C et al (2014) Vaccines and the risk of multiple sclerosis and other central nervous system demyelinating diseases. JAMA Neurol 71(12):1506–1513. doi:10.1001/jamaneurol.2014.2633 PubMedCrossRefGoogle Scholar
  260. 260.
    Arnheim-Dahlstrom L, Pasternak B, Svanstrom H, Sparen P, Hviid A (2013) Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: Cohort study. BMJ 347:f5906. doi:10.1136/bmj.f5906 PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Chao C, Klein NP, Velicer CM, Sy LS, Slezak JM, Takhar H, Ackerson B, Cheetham TC et al (2012) Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Intern Med 271(2):193–203. doi:10.1111/j.1365-2796.2011.02467.x PubMedCrossRefGoogle Scholar
  262. 262.
    Pellegrino P, Carnovale C, Pozzi M, Antoniazzi S, Perrone V, Salvati D, Gentili M, Brusadelli T et al (2014) On the relationship between human papilloma virus vaccine and autoimmune diseases. Autoimmun Rev 13(7):736–741. doi:10.1016/j.autrev.2014.01.054 PubMedCrossRefGoogle Scholar
  263. 263.
    Petrovsky N (2015) Comparative safety of vaccine adjuvants: A summary of current evidence and future needs. Drug Saf 38(11):1059–1074. doi:10.1007/s40264-015-0350-4 PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Guimaraes LE, Baker B, Perricone C, Shoenfeld Y (2015) Vaccines, adjuvants and autoimmunity. Pharmacol Res 100:190–209. doi:10.1016/j.phrs.2015.08.003 PubMedCrossRefGoogle Scholar
  265. 265.
    Grimaldi-Bensouda L, Guillemot D, Godeau B, Benichou J, Lebrun-Frenay C, Papeix C, Labauge P, Berquin P et al (2014) Autoimmune disorders and quadrivalent human papillomavirus vaccination of young female subjects. J Intern Med 275(4):398–408. doi:10.1111/joim.12155 PubMedCrossRefGoogle Scholar
  266. 266.
    Scheller NM, Svanstrom H, Pasternak B, Arnheim-Dahlstrom L, Sundstrom K, Fink K, Hviid A (2015) Quadrivalent HPV vaccination and risk of multiple sclerosis and other demyelinating diseases of the central nervous system. JAMA 313(1):54–61. doi:10.1001/jama.2014.16946 PubMedCrossRefGoogle Scholar
  267. 267.
    Castiblanco J, Anaya J-M (2015) Genetics and vaccines in the era of personalized medicine. Curr Genomics 16(1):47–59. doi:10.2174/1389202916666141223220551 PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, Oberg AL (2013) Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century. Semin Immunol 25(2):89–103. doi:10.1016/j.smim.2013.04.007 PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13(1):68PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Ferrante P, Saresella M, Guerini FR, Marzorati M, Musetti MC, Cazzullo AG (2003) Significant association of HLA A2–DR11 with CD4 naive decrease in autistic children. Biomed Pharmacother 57 (8):372-374. Doi:10.1016/S0753-3322(03)00099-4 PubMedCrossRefGoogle Scholar
  271. 271.
    Torres AR, Sweeten TL, Cutler A, Bedke BJ, Fillmore M, Stubbs EG, Odell D (2006) The association and linkage of the HLA-A2 class I allele with autism. Hum Immunol 67(4–5):346–351. doi:10.1016/j.humimm.2006.01.001 PubMedCrossRefGoogle Scholar
  272. 272.
    Chien Y-L, Wu Y-Y, Chen C-H, Gau SS-F, Huang Y-S, Chien W-H, Hu F-C, Chao Y-L (2012) Association of HLA-DRB1 alleles and neuropsychological function in autism. Psychiatr Genet 22(1):46–49. doi:10.1097/YPG.0b013e32834915ae PubMedCrossRefGoogle Scholar
  273. 273.
    Johnson WG, Buyske S, Mars AE et al (2009) HLa-dr4 as a risk allele for autism acting in mothers of probands possibly during pregnancy. Arch Pediatr Adolesc Med 163(6):542–546. doi:10.1001/archpediatrics.2009.74 PubMedCrossRefGoogle Scholar
  274. 274.
    Lee L-C, Zachary AA, Leffell MS, Newschaffer CJ, Matteson KJ, Tyler JD, Zimmerman AW HLA-DR4 in Families With Autism. Pediatr Neurol 35(5):303–307. doi:10.1016/j.pediatrneurol.2006.06.006
  275. 275.
    Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, Torres AR Strong association of the third hypervariable region of HLA-DRβ1 with autism. J Neuroimmunol 67(2):97–102. doi:10.1016/0165-5728(96)00052-5
  276. 276.
    Mostafa GA, Shehab AA The link of C4B null allele to autism and to a family history of autoimmunity in Egyptian autistic children. J Neuroimmunol 223(1):115–119. doi:10.1016/j.jneuroim.2010.03.025
  277. 277.
    Ashwood P, Van de Water J (2004) Is autism an autoimmune disease? Autoimmun Rev 3(7–8):557–562. doi:10.1016/j.autrev.2004.07.036 PubMedCrossRefGoogle Scholar
  278. 278.
    Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: A new frontier for autism research. J Leukoc Biol 80(1):1–15. doi:10.1189/jlb.1205707 PubMedCrossRefGoogle Scholar
  279. 279.
    Chen M-H, Su T-P, Chen Y-S, Hsu J-W, Huang K-L, Chang W-H, Chen T-J, Bai Y-M (2013) Comorbidity of allergic and autoimmune diseases in patients with autism Spectrum disorder: A nationwide population-based study. Res Autism Spectr Disord 7(2):205–212. doi:10.1016/j.Rasd.2012.08.008 CrossRefGoogle Scholar
  280. 280.
    Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM, Riviello JJ, Robinson RG et al (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59(4):354–363. doi:10.1016/j.biopsych.2005.07.004 PubMedCrossRefGoogle Scholar
  281. 281.
    Croonenberghs J, Wauters A, Devreese K, Verkerk R, Scharpe S, Bosmans E, Egyed B, Deboutte D et al (2002) Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med 32(8):1457–1463PubMedCrossRefGoogle Scholar
  282. 282.
    Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J (2007) Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann N Y Acad Sci 1107:92–103. doi:10.1196/annals.1381.010 PubMedCrossRefGoogle Scholar
  283. 283.
    Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW (2006) Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol 178(1–2):149–155. doi:10.1016/j.jneuroim.2006.05.025 PubMedCrossRefGoogle Scholar
  284. 284.
    Atladottir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, Parner ET (2009) Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 124(2):687–694. doi:10.1542/peds.2008-2445 PubMedCrossRefGoogle Scholar
  285. 285.
    Brimberg L, Sadiq A, Gregersen PK, Diamond B (2013) Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol Psychiatry 18(11):1171–1177. doi:10.1038/mp.2013.101 PubMedCrossRefGoogle Scholar
  286. 286.
    Keil A, Daniels JL, Forssen U, Hultman C, Cnattingius S, Söderberg KC, Feychting M, Sparen P (2010) Parental autoimmune diseases associated with autism Spectrum disorders in offspring. Epidemiology 21(6):805–808. doi:10.1097/EDE.0b013e3181f26e3f PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M (2002) Activation of the inflammatory response system in autism. Neuropsychobiology 45(1):1–6PubMedCrossRefGoogle Scholar
  288. 288.
    Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK (2011) A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 6(5):e19488. doi:10.1371/journal.pone.0019488 PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Young AM, Campbell E, Lynch S, Suckling J, Powis SJ (2011) Aberrant NF-kappaB expression in autism spectrum condition: A mechanism for neuroinflammation. Front Psychol 2:27. doi:10.3389/fpsyt.2011.00027 CrossRefGoogle Scholar
  290. 290.
    Vargas D, Nascimbene C, Krishnan C, Zimmerman A, Pardo C (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  291. 291.
    Pramparo T, Pierce K, Lombardo MV, Carter Barnes C, Marinero S, Ahrens-Barbeau C, Murray SS, Lopez L et al (2015) Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practices. JAMA Psychiat 72(4):386–394. doi:10.1001/jamapsychiatry.2014.3008 CrossRefGoogle Scholar
  292. 292.
    Michel M, Schmidt MJ, Mirnics K (2012) Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol 72(10):1277–1287. doi:10.1002/dneu.22044 PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5. doi:10.1038/ncomms6748
  294. 294.
    Siniscalco D (2015) Commentary: The impact of Neuroimmune alterations in autism Spectrum disorder. Front Psychol 6:145. doi:10.3389/fpsyt.2015.00145 Google Scholar
  295. 295.
    Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W (2015) The impact of Neuroimmune alterations in autism Spectrum disorder. Front Psychol 6:121. doi:10.3389/fpsyt.2015.00121 Google Scholar
  296. 296.
    Cunningham C (2013) Microglia and neurodegeneration: The role of systemic inflammation. Glia 61:71–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Tir Na NogLlanelliUK
  2. 2.Department of Medicine, Hammersmith HospitalImperial College LondonLondonUK
  3. 3.Division of Child and Adolescent Neurology and Children’s Learning Institute, Department of PediatricsUniversity of TexasAustinUSA
  4. 4.Department of PsychiatryChulalongkorn UniversityBangkokThailand

Personalised recommendations