Advertisement

Molecular Neurobiology

, Volume 55, Issue 6, pp 4788–4801 | Cite as

Role of the Golgi Apparatus in the Blood-Brain Barrier: Golgi Protection May Be a Targeted Therapy for Neurological Diseases

  • Shuwen Deng
  • Hui Liu
  • Ke Qiu
  • Hong You
  • Qiang Lei
  • Wei LuEmail author
Article

Abstract

The blood-brain barrier (BBB) protects the brain from toxic material in the blood, provides nutrients for brain tissues, and screens harmful substances from the brain. The specific brain microvascular endothelial cells (BMVECs), tight junction between endothelial cells, and astrocytes ensure proper function of the central nervous system (CNS). Pathological factors disrupt the integrity of the BBB by destroying the normal function of endothelial cells and decreasing the production of tight junction proteins or the expression of proteins specifically localized on astrocytes. Interestingly, fragmentation of the Golgi apparatus is observed in neurological diseases and is involved in the destruction of the BBB function. The Golgi acts as a processing center in which proteins are transported after being processed in the endoplasmic reticulum. Besides reprocessing, classifying, and packaging proteins, the Golgi apparatus (GA) also acts as a signaling platform and calcium pool. In this review, we summarized the current literature on the potential relationship between the Golgi and endothelial cells, tight junction, and astrocytes. The normal function of the BBB is maintained as long as the normal function and morphology of the GA are not disturbed. Furthermore, we speculate that protecting the Golgi may be a novel therapeutic approach to protect the BBB and treat neurological diseases due to BBB dysfunction.

Keywords

Golgi apparatus Blood-brain barrier Neurological diseases Function 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation (Grant 81571181) China P.R.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417PubMedCrossRefGoogle Scholar
  2. 2.
    Thornhill MH, Haskard DO (1990) IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. J Immunol 145(3):865–872PubMedGoogle Scholar
  3. 3.
    Pigott R et al (1991) Structural and functional studies of the endothelial activation antigen endothelial leucocyte adhesion molecule-1 using a panel of monoclonal antibodies. J Immunol 147(1):130–135PubMedGoogle Scholar
  4. 4.
    Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38(6):323–337CrossRefGoogle Scholar
  5. 5.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185PubMedCrossRefGoogle Scholar
  6. 6.
    Persidsky Y et al (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J NeuroImmune Pharmacol 1(3):223–236PubMedCrossRefGoogle Scholar
  7. 7.
    Bernacki J et al (2008) Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 60(5):600–622PubMedGoogle Scholar
  8. 8.
    Ma S, Kwon HJ, Huang Z (2012) A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS One 7(10):e48001PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nielsen S et al (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180PubMedCrossRefGoogle Scholar
  10. 10.
    Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225(4667):1174–1175PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nagelhus EA et al (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26(1):47–54PubMedCrossRefGoogle Scholar
  12. 12.
    Cheslow L, Alvarez JI (2016) Glial-endothelial crosstalk regulates blood-brain barrier function. Curr Opin Pharmacol 26:39–46PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson C et al (2011) The Golgi apparatus: an organelle with multiple complex functions. Biochem J 433(1):1–9PubMedCrossRefGoogle Scholar
  14. 14.
    Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10PubMedCrossRefGoogle Scholar
  15. 15.
    Missiaen L et al (2007) Calcium in the Golgi apparatus. Cell Calcium 41(5):405–416PubMedCrossRefGoogle Scholar
  16. 16.
    Dolman NJ, Tepikin AV (2006) Calcium gradients and the Golgi. Cell Calcium 40(5–6):505–512PubMedCrossRefGoogle Scholar
  17. 17.
    Luini A, Parashuraman S (2016) Signaling at the Golgi: sensing and controlling the membrane fluxes. Curr Opin Cell Biol 39:37–42PubMedCrossRefGoogle Scholar
  18. 18.
    Mayinger P (2011) Signaling at the Golgi. Cold Spring Harb Perspect Biol:3(5)Google Scholar
  19. 19.
    Ranftler C et al (2017) Golgi apparatus dis- and reorganizations studied with the aid of 2-deoxy-d-glucose and visualized by 3D-electron tomography. Histochem Cell Biol 147(4):415–438PubMedCrossRefGoogle Scholar
  20. 20.
    Kotani R et al (2017) Decrease of amyloid-beta levels by curcumin derivative via modulation of amyloid-beta protein precursor trafficking. J Alzheimers Dis 56(2):529–542PubMedCrossRefGoogle Scholar
  21. 21.
    Haass C et al (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Choy RW, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (Abeta) production in the trans-Golgi network. Proc Natl Acad Sci U S A 109(30):E2077–E2082PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246(1–2):21–30PubMedCrossRefGoogle Scholar
  24. 24.
    Joshi G et al (2014) Abeta-induced Golgi fragmentation in Alzheimer’s disease enhances Abeta production. Proc Natl Acad Sci U S A 111(13):E1230–E1239PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sun KH et al (2008) Novel genetic tools reveal Cdk5’s major role in Golgi fragmentation in Alzheimer’s disease. Mol Biol Cell 19(7):3052–3069PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Jiang Q et al (2014) Golgin-84-associated Golgi fragmentation triggers tau hyperphosphorylation by activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase. Neurobiol Aging 35(6):1352–1363PubMedCrossRefGoogle Scholar
  27. 27.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272PubMedCrossRefGoogle Scholar
  28. 28.
    Fujita Y et al (2006) Fragmentation of Golgi apparatus of nigral neurons with alpha-synuclein-positive inclusions in patients with Parkinson’s disease. Acta Neuropathol 112(3):261–265PubMedCrossRefGoogle Scholar
  29. 29.
    Chia R et al (2014) Phosphorylation of LRRK2 by casein kinase 1alpha regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun 5:5827PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Miura E et al (2014) VPS35 dysfunction impairs lysosomal degradation of alpha-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis 71:1–13PubMedCrossRefGoogle Scholar
  31. 31.
    Kubo SI et al (2001) Parkin is associated with cellular vesicles. J Neurochem 78(1):42–54PubMedCrossRefGoogle Scholar
  32. 32.
    Rabouille C, Haase G (2015) Editorial: Golgi pathology in neurodegenerative diseases. Front Neurosci 9:489PubMedGoogle Scholar
  33. 33.
    Schreij AM, Fon EA, McPherson PS (2016) Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 73(8):1529–1545PubMedCrossRefGoogle Scholar
  34. 34.
    Sahlender DA et al (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169(2):285–295PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kaur SJ, McKeown SR, Rashid S (2016) Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577(2):109–118PubMedCrossRefGoogle Scholar
  36. 36.
    Vlug AS et al (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22(8):1881–1894PubMedCrossRefGoogle Scholar
  37. 37.
    MacDonald ME, Ambrose CM, Duyao MP et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983Google Scholar
  38. 38.
    Sbodio JI et al (2013) Golgi protein ACBD3 mediates neurotoxicity associated with Huntington’s disease. Cell Rep 4(5):890–897PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Machamer CE (2015) The Golgi complex in stress and death. Front Neurosci 9:421PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sbodio JI et al (2006) GCP60 preferentially interacts with a caspase-generated golgin-160 fragment. J Biol Chem 281(38):27924–27931PubMedCrossRefGoogle Scholar
  41. 41.
    Li LH et al (2013) The Golgi apparatus: panel point of cytosolic Ca(2+) regulation. Neurosignals 21(3–4):272–284PubMedCrossRefGoogle Scholar
  42. 42.
    Braiterman LT et al (2014) Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B. Proc Natl Acad Sci U S A 111(14):E1364–E1373PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kaneko Y et al (2016) Kainic acid-induced Golgi complex fragmentation/dispersal shifts the proteolysis of reelin in primary rat neuronal cells: an in vitro model of early stage epilepsy. Mol Neurobiol 53(3):1874–1883PubMedCrossRefGoogle Scholar
  44. 44.
    Campadelli G et al (1993) Fragmentation and dispersal of Golgi proteins and redistribution of glycoproteins and glycolipids processed through the Golgi apparatus after infection with herpes simplex virus 1. Proc Natl Acad Sci U S A 90(7):2798–2802PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sutter E et al (2012) Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology 429(2):124–135PubMedCrossRefGoogle Scholar
  46. 46.
    Gonatas, N.K., The Golgi apparatus in disease, in The Golgi apparatus, E.G. Berger and J. Roth, Editors. 1997, Birkhäuser Basel: Basel. p. 247–273.Google Scholar
  47. 47.
    Lavi E et al (1996) Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus. Virology 221(2):325–334PubMedCrossRefGoogle Scholar
  48. 48.
    Cruciani V, Leithe E, Mikalsen SO (2003) Ilimaquinone inhibits gap-junctional communication prior to Golgi fragmentation and block in protein transport. Exp Cell Res 287(1):130–142PubMedCrossRefGoogle Scholar
  49. 49.
    Basu R et al (2015) Mouse hepatitis virus infection remodels connexin43-mediated gap junction intercellular communication in vitro and in vivo. J Virol 90(5):2586–2599PubMedCrossRefGoogle Scholar
  50. 50.
    Tress O et al (2011) Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans. PLoS Genet 7(7):e1002146PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chatterjee D et al (2013) Microglia play a major role in direct viral-induced demyelination. Clin Dev Immunol 2013:510396PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhong B et al (2015) Hsp20 protects against oxygen-glucose deprivation/reperfusion-induced Golgi fragmentation and apoptosis through Fas/FasL pathway. Oxidative Med Cell Longev 2015:606934CrossRefGoogle Scholar
  53. 53.
    Li T et al (2014) Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus. Mol Neurobiol 49(3):1449–1459PubMedCrossRefGoogle Scholar
  54. 54.
    You H et al (2014) Reduction in ischemic cerebral infarction is mediated through golgi phosphoprotein 3 and Akt/mTOR signaling following salvianolate administration. Curr Neurovasc Res 11(2):107–113PubMedCrossRefGoogle Scholar
  55. 55.
    Li T et al (2016) GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury. Mol Neurobiol 53(2):1377–1385PubMedCrossRefGoogle Scholar
  56. 56.
    Fan J et al (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26(6):523–534PubMedCrossRefGoogle Scholar
  57. 57.
    Hu Z et al (2007) The study of Golgi apparatus in Alzheimer’s disease. Neurochem Res 32(8):1265–1277PubMedCrossRefGoogle Scholar
  58. 58.
    Martins T et al (2013) Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells. Neuropharmacology 65:74–82PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 190(2):446–455PubMedCrossRefGoogle Scholar
  60. 60.
    Sharma HS et al (2000) Role of nitric oxide in blood-brain barrier permeability, brain edema and cell damage following hyperthermic brain injury. An experimental study using EGB-761 and Gingkolide B pretreatment in the rat. Acta Neurochir Suppl 76:81–86PubMedGoogle Scholar
  61. 61.
    Wu M, Tsirka SE (2009) Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis. Glia 57(11):1204–1215PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bulnes S et al (2010) The role of eNOS in vascular permeability in ENU-induced gliomas. Acta Neurochir Suppl 106:277–282PubMedCrossRefGoogle Scholar
  63. 63.
    Han F, Shirasaki Y, Fukunaga K (2006) Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 99(1):97–106PubMedCrossRefGoogle Scholar
  64. 64.
    Yamauchi A et al (2007) An inhibitory role of nitric oxide in the dynamic regulation of the blood-brain barrier function. Cell Mol Neurobiol 27(3):263–270PubMedCrossRefGoogle Scholar
  65. 65.
    Koenig H et al (1992) Capillary NMDA receptors regulate blood-brain barrier function and breakdown. Brain Res 588(2):297–303PubMedCrossRefGoogle Scholar
  66. 66.
    Mayhan WG (1999) VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Phys 276(5 Pt 1):C1148–C1153CrossRefGoogle Scholar
  67. 67.
    Sullivan JC, Pollock JS (2003) NOS 3 subcellular localization in the regulation of nitric oxide production. Acta Physiol Scand 179(2):115–122PubMedCrossRefGoogle Scholar
  68. 68.
    Ortiz PA, Garvin JL (2003) Trafficking and activation of eNOS in epithelial cells. Acta Physiol Scand 179(2):107–114PubMedCrossRefGoogle Scholar
  69. 69.
    Yeh DC et al (1999) Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2+)-calmodulin. J Biol Chem 274(46):33148–33154PubMedCrossRefGoogle Scholar
  70. 70.
    Feron O et al (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273(6):3125–3128PubMedCrossRefGoogle Scholar
  71. 71.
    Michel T, Li GK, Busconi L (1993) Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 90(13):6252–6256PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu J, Hughes TE, Sessa WC (1997) The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol 137(7):1525–1535PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fernandez-Hernando C et al (2006) Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol 174(3):369–377PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mueller KE, Wolf K (2015) C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells. Cell Microbiol 17(1):119–130PubMedCrossRefGoogle Scholar
  75. 75.
    Dobrogowska DH et al (1998) Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J Neurocytol 27(3):163–173PubMedCrossRefGoogle Scholar
  76. 76.
    Narasimhan P et al (2009) VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40(4):1467–1473PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fischer S et al (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63(1):70–80PubMedCrossRefGoogle Scholar
  78. 78.
    Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedCrossRefGoogle Scholar
  79. 79.
    Argaw AT et al (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106(6):1977–1982PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Fischer S et al (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Phys 276(4 Pt 1):C812–C820CrossRefGoogle Scholar
  81. 81.
    Gonzalez-Velazquez W, Gonzalez-Mendez R, Rodriguez-del Valle N (2012) Characterization and ligand identification of a membrane progesterone receptor in fungi: existence of a novel PAQR in Sporothrix schenckii. BMC Microbiol 12:194PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Luo X et al (2008) Characterization of the topology and functional domains of RKTG. Biochem J 414(3):399–406PubMedCrossRefGoogle Scholar
  83. 83.
    Wang L et al (2013) PAQR3 has modulatory roles in obesity, energy metabolism, and leptin signaling. Endocrinology 154(12):4525–4535PubMedCrossRefGoogle Scholar
  84. 84.
    Wang X et al (2013) PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110alpha to the Golgi apparatus. Diabetes 62(2):444–456PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zhang Y et al (2010) RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma. Oncogene 29(39):5404–5415PubMedCrossRefGoogle Scholar
  86. 86.
    Argaw AT et al (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177(8):5574–5584PubMedCrossRefGoogle Scholar
  87. 87.
    Yang MC et al (2016) Salvianolic acid B improves the disruption of high glucose-mediated brain microvascular endothelial cells via the ROS/HIF-1alpha/VEGF and miR-200b/VEGF signaling pathways. Neurosci Lett 630:233–240PubMedCrossRefGoogle Scholar
  88. 88.
    Jaffe EA et al (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52(11):2745–2756PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Noubade R et al (2008) von-Willebrand factor influences blood brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis. Am J Pathol 173(3):892–900PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Suidan GL et al (2013) Endothelial von Willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol 33(9):2112–2120PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu, X., et al., von Willebrand factor contributes to poor outcome in a mouse model of intracerebral haemorrhage. Sci Rep, 2016. 6: p. 35901.Google Scholar
  92. 92.
    Califano F et al (2000) Clinical importance of thrombomodulin serum levels. Eur Rev Med Pharmacol Sci 4(3):59–66PubMedGoogle Scholar
  93. 93.
    Scharf RE (2015) Von Willebrand factor, hemostasis and inflammation. Hamostaseologie 35(3):209–210PubMedGoogle Scholar
  94. 94.
    Dhanesha N et al (2016) Endothelial cell-derived von Willebrand factor is the major determinant that mediates von Willebrand factor-dependent acute ischemic stroke by promoting postischemic thrombo-inflammation. Arterioscler Thromb Vasc Biol 36(9):1829–1837PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sporn LA et al (1991) Rickettsia rickettsii infection of cultured endothelial cells induces release of large von Willebrand factor multimers from Weibel-Palade bodies. Blood 78(10):2595–2602PubMedGoogle Scholar
  96. 96.
    Brill A (2012) Stroke-associated inflammation: is von Willebrand factor a ‘bad guy’? J Thromb Haemost 10(8):1662–1664PubMedCrossRefGoogle Scholar
  97. 97.
    Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12PubMedCrossRefGoogle Scholar
  98. 98.
    Kovacs ZI et al (2017) Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A 114(1):E75–e84PubMedCrossRefGoogle Scholar
  99. 99.
    Kangwantas K, Pinteaux E, Penny J (2016) The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 13:25PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jumnongprakhon P et al (2016) Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells. Brain Res 1646:182–192PubMedCrossRefGoogle Scholar
  101. 101.
    Rondaij MG et al (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26(5):1002–1007PubMedCrossRefGoogle Scholar
  102. 102.
    Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Metcalf DJ et al (2008) Formation and function of Weibel-Palade bodies. J Cell Sci 121(Pt 1):19–27PubMedCrossRefGoogle Scholar
  104. 104.
    Ferraro F et al (2014) A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev Cell 29(3):292–304PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mourik MJ et al (2015) Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus. Blood 125(22):3509–3516PubMedCrossRefGoogle Scholar
  106. 106.
    Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRefGoogle Scholar
  107. 107.
    Chang CC et al (2012) Mediating effects of aryl-hydrocarbon receptor and RhoA in altering brain vascular integrity: the therapeutic potential of statins. Am J Pathol 181(1):211–221PubMedCrossRefGoogle Scholar
  108. 108.
    Allen C, Srivastava K, Bayraktutan U (2010) Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction. Stroke 41(9):2056–2063PubMedCrossRefGoogle Scholar
  109. 109.
    Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2(2):133–142PubMedCrossRefGoogle Scholar
  110. 110.
    Yamamoto M et al (2008) Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172(2):521–533PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Xiaolu D et al (2011) Role of p115RhoGEF in lipopolysaccharide-induced mouse brain microvascular endothelial barrier dysfunction. Brain Res 1387:1–7PubMedCrossRefGoogle Scholar
  112. 112.
    Park, J.C., et al., Annexin A1 restores Abeta1-42-induced blood-brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell, 2016.Google Scholar
  113. 113.
    Li Z et al (2012) Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier. J Mol Neurosci 48(1):291–301PubMedCrossRefGoogle Scholar
  114. 114.
    Yang C et al (2016) Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides 81:29–37PubMedCrossRefGoogle Scholar
  115. 115.
    Stamatovic SM et al (2006) Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281(13):8379–8388PubMedCrossRefGoogle Scholar
  116. 116.
    Camire RB et al (2014) Biphasic modulation of paracellular claudin-5 expression in mouse brain endothelial cells is mediated through the phosphoinositide-3-kinase/AKT pathway. J Pharmacol Exp Ther 351(3):654–662PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Li Z et al (2016) Low-dose endothelial monocyte-activating polypeptide-II increases blood-tumor barrier permeability by activating the RhoA/ROCK/PI3K signaling pathway. J Mol Neurosci 59(2):193–202PubMedCrossRefGoogle Scholar
  118. 118.
    Norman JC et al (1998) ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J Cell Biol 143(7):1981–1995PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Schlienger S, Campbell S, Claing A (2014) ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol Biol Cell 25(1):17–29PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Boulay PL et al (2008) ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. J Biol Chem 283(52):36425–36434PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Honda A et al (2005) Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J Cell Biol 168(7):1039–1051PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Saraceno C et al (2014) SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis 5:e1547PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Misuth, M., et al., Estimation of PKCdelta autophosphorylation in U87 MG glioma cells: combination of experimental, conceptual and numerical approaches. J Biophotonics, 2016.Google Scholar
  124. 124.
    Long, M. and J.C. Simpson, Rho GTPases operating at the Golgi complex: implications for membrane traffic and cancer biology. Tissue Cell, 2016.Google Scholar
  125. 125.
    Joshi G, Bekier ME 2nd, Wang Y (2015) Golgi fragmentation in Alzheimer’s disease. Front Neurosci 9:340PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Reiling JH et al (2013) A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 15(12):1473–1485PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Cau J, Hall A (2005) Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118(Pt 12):2579–2587PubMedCrossRefGoogle Scholar
  128. 128.
    Wang B et al (2005) Polarized trafficking of E-cadherin is regulated by Rac1 and Cdc42 in Madin-Darby canine kidney cells. Am J Physiol Cell Physiol 288(6):C1411–C1419PubMedCrossRefGoogle Scholar
  129. 129.
    Tanos BE et al (2015) IQGAP1 controls tight junction formation through differential regulation of claudin recruitment. J Cell Sci 128(5):853–862PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    ElAli A, Hermann DM (2012) Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathol 22(2):175–187PubMedCrossRefGoogle Scholar
  131. 131.
    Shen Y et al (2008) Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 283(8):5127–5137PubMedCrossRefGoogle Scholar
  132. 132.
    Tanos BE, Yeaman C, Rodriguez-Boulan E (2016) An emerging role for IQGAP1 in tight junction control. Small GTPases:1–9Google Scholar
  133. 133.
    Baschieri F et al (2014) Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5:4839PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kodani A et al (2009) GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Mol Biol Cell 20(4):1192–1200PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Mo XY, Li T, Hu ZP (2013) Decreased levels of cell-division cycle 42 (Cdc42) protein in peripheral lymphocytes from ischaemic stroke patients are associated with Golgi apparatus function. J Int Med Res 41(3):642–653PubMedCrossRefGoogle Scholar
  136. 136.
    Marchi N et al (2012) Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 53(11):1877–1886PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Marchi N et al (2004) Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Med 2:37PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Stamatovic SM et al (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4(1):e1154641PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Weekman EM, Wilcock DM (2015) Matrix metalloproteinase in blood-brain barrier breakdown in dementia. J Alzheimers Dis 49(4):893–903CrossRefGoogle Scholar
  140. 140.
    Wang R et al (2015) GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating MMP-2 and MMP-9. Cell Physiol Biochem 35(3):969–982PubMedCrossRefGoogle Scholar
  141. 141.
    Figueiredo EG, Welling LC, Teixeira MJ (2014) Neurogenesis and astrocytes activation in the treatment of cerebrovascular diseases. World Neurosurg 82(5):544–545Google Scholar
  142. 142.
    Martin-Jimenez CA et al (2017) Genome-scale reconstruction of the human astrocyte metabolic network. Front Aging Neurosci 9:23PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145PubMedCrossRefGoogle Scholar
  144. 144.
    Okun E et al (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292PubMedCrossRefGoogle Scholar
  145. 145.
    Cortese M, Sinclair C, Pulendran B (2014) Translating glycolytic metabolism to innate immunity in dendritic cells. Cell Metab 19(5):737–739PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Latz E et al (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277(49):47834–47843PubMedCrossRefGoogle Scholar
  147. 147.
    Thieblemont N, Wright SD (1999) Transport of bacterial lipopolysaccharide to the Golgi apparatus. J Exp Med 190(4):523–534PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ranftler C et al (2015) 2-Deoxy-d-glucose treatment changes the Golgi apparatus architecture without blocking synthesis of complex lipids. Histochem Cell Biol 143(4):369–380PubMedCrossRefGoogle Scholar
  149. 149.
    Lee, S.H. and K. Suk, Emerging roles of protein kinases in microglia-mediated neuroinflammation. Biochem Pharmacol, 2017.Google Scholar
  150. 150.
    Tohidpour A et al (2017) Neuroinflammation and infection: molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 7:276PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sepulveda MR, Wuytack F, Mata AM (2012) High levels of Mn(2)(+) inhibit secretory pathway Ca(2)(+)/Mn(2)(+)-ATPase (SPCA) activity and cause Golgi fragmentation in neurons and glia. J Neurochem 123(5):824–836PubMedCrossRefGoogle Scholar
  152. 152.
    Zhu J, Yan J, Thornhill WB (2014) The Kv1.3 potassium channel is localized to the cis-Golgi and Kv1.6 is localized to the endoplasmic reticulum in rat astrocytes. FEBS J 281(15):3433–3445PubMedCrossRefGoogle Scholar
  153. 153.
    Takeuchi Y et al (2000) Identification of the isoforms of Ca(2+)/calmodulin-dependent protein kinase II in rat astrocytes and their subcellular localization. J Neurochem 74(6):2557–2567PubMedCrossRefGoogle Scholar
  154. 154.
    Grimaldi M (2006) Astrocytes refill intracellular Ca2+ stores in the absence of cytoplasmic [Ca2+] elevation: a functional rather than a structural ability. J Neurosci Res 84(8):1738–1749PubMedCrossRefGoogle Scholar
  155. 155.
    Murin R et al (2006) Distribution of secretory pathway Ca2+ ATPase (SPCA1) in neuronal and glial cell cultures. Cell Mol Neurobiol 26(7–8):1355–1365PubMedGoogle Scholar
  156. 156.
    Bataveljic D et al (2014) Novel molecular biomarkers at the blood-brain barrier in ALS. Biomed Res Int 2014:907545PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Asavapanumas N, Verkman AS (2014) Neuromyelitis optica pathology in rats following intraperitoneal injection of NMO-IgG and intracerebral needle injury. Acta Neuropathol Commun 2:48PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ximenes-da-Silva A (2016) Metal ion toxins and brain aquaporin-4 expression: an overview. Front Neurosci 10:233PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Bataveljic D et al (2012) Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia 60(12):1991–2003PubMedCrossRefGoogle Scholar
  160. 160.
    Chen RH et al (2016) Expression of aquaporin 4 in diffuse brain injury of rats. Fa Yi Xue Za Zhi 32(1):18–20 25 PubMedGoogle Scholar
  161. 161.
    Arnspang EC et al (2013) Aquaporin-3 and aquaporin-4 are sorted differently and separately in the trans-Golgi network. PLoS One 8(9):e73977PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kadohira I et al (2008) Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes. Biochem Biophys Res Commun 377(2):463–468PubMedCrossRefGoogle Scholar
  163. 163.
    Madrid R et al (2001) Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes. EMBO J 20(24):7008–7021PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Bellouze S et al (2014) Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. Hum Mol Genet 23(22):5961–5975PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Neurology, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations