Advertisement

Molecular Neurobiology

, Volume 55, Issue 6, pp 4825–4833 | Cite as

6-OHDA Induces Oxidation of F-box Protein Fbw7β by Chaperone-Mediated Autophagy in Parkinson’s Model

  • Xiufeng Wang
  • Heng Zhai
  • Fang WangEmail author
Article

Abstract

Parkinson’s disease (PD) is the most common movement disorder disease, and its pathological feature is the degenerative loss of dopaminergic neurons in the substantia nigra compacta (SNc). In this study, we investigated whether distinct stress conditions target F-box protein Fbw7β via converging mechanisms. Our results showed that the 6-hyroxydopamine (6-OHDA), which causes PD in animals’ models, led to decreased stability of Fbw7β in DA neuronal SN4741 cells. Further experiments suggested that oxidized Fbw7β bound to heat-shock cognate protein 70 kDa, the key regulator for chaperone-mediated autophagy (CMA), at a higher affinity. Oxidative stress also increased the level of lysosomal-associated membrane protein 2A (LAMP2A), the rate-limiting receptor for CMA substrate flux, and stimulated CMA activity. These changes resulted in accelerated degradation of Fbw7β. 6-OHDA induced Fbw7β oxidation and increased LAMP2A in the SNc region of the mouse models. Consistently, the levels of oxidized Fbw7β were higher in postmortem PD brains compared with the controls. These findings for the first time revealed the specific mechanism of ubiquitin ligases, oxidative stress, and CMA-mediated protein degradation, to provide a new theoretical basis for further clarifying the mechanism of PD.

Keywords

Chaperone-mediated autophagy Fbw7β Oxidative stress Parkinson’s disease Dopaminergic neurons 

Notes

Acknowledgements

The authors thank Ms. Lin Zhang for her English proof reading. This project was supported by grant from the National Natural Science Foundation of China (81471377).

Author Contribution

Xiufeng Wang, acquisition of data, literature research, and manuscript preparation; Heng Zhai, acquisition of data; Fang Wang, study concept and design, critical revision of the manuscript for important intellectual content, and study supervision.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2017_686_Fig6_ESM.jpg (62 kb)
Supplementary Fig. S1

The overexpression of Fbw7β was confirmed by western blot. SN4741 cells were inoculated into six-well plate to culture till 80% fusion and the pGCSIL vector encoding the mouse Fbw-7β and control was transfected into SN4741 cells (JPEG 62 kb)

12035_2017_686_MOESM1_ESM.tif (2.3 mb)
High-resolution image (TIFF 2374 kb)
12035_2017_686_Fig7_ESM.jpg (181 kb)
Supplementary Fig. S2

Motor activity examination after 6-OHDA lesioning. Amphetamine (2.5 mg/kg)-induced rotations were counted after 6-OHDA lesioning, as described in the supplementary methods. a Time course of rotational behavior. b Total number of rotations in 60 min. Values shown are means ± SD of three experiments (total nine mice in each group). * P < 0.05 (JPEG 181 kb)

12035_2017_686_MOESM2_ESM.tif (2.1 mb)
High-resolution image (TIFF 2189 kb)
12035_2017_686_Fig8_ESM.jpg (216 kb)
Supplementary Fig. S3

Levels of Fbw7β in the SNc region of 6-OHDA-treated mice and PD patients. a Lysates prepared from 6-OHDA-treated mice brains were analyzed for Fbw7β by western blot (* P < 0.05). b Fbw7β levels in the brain of human PD patients analyzed by western blot (JPEG 216 kb)

12035_2017_686_MOESM3_ESM.tif (6.8 mb)
High-resolution image (TIFF 7000 kb)
12035_2017_686_Fig9_ESM.jpg (56 kb)
Supplementary Fig. S4

The oxidization level of HMGB1 in PD patients and control. The lysates were prepared from the striata of postmortem PD patients and controls (JPEG 56 kb)

12035_2017_686_MOESM4_ESM.tif (3.6 mb)
High-resolution image (TIFF 3661 kb)
12035_2017_686_MOESM5_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)

References

  1. 1.
    Kalia LV, Lang AE (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol 12(2):65–66. doi: 10.1038/nrneurol.2015.249 CrossRefPubMedGoogle Scholar
  2. 2.
    Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ De l'Association Medicale Canadienne 188(16):1157–1165. doi: 10.1503/cmaj.151179 CrossRefGoogle Scholar
  3. 3.
    Gratwicke J, Jahanshahi M, Foltynie T (2015) Parkinson’s disease dementia: a neural networks perspective. Brain 138(Pt 6):1454–1476. doi: 10.1093/brain/awv104 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang B, Abraham N, Gao G, Yang Q (2016) Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Transl Neurodegener 5:19. doi: 10.1186/s40035-016-0065-1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25(1):37–45. doi: 10.1016/j.tcb.2014.09.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6):867–880. doi: 10.1080/15548627.2015.1034410 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Joven J, Guirro M, Marine-Casado R, Rodriguez-Gallego E, Menendez JA (2014) Autophagy is an inflammation-related defensive mechanism against disease. Adv Exp Med Biol 824:43–59. doi: 10.1007/978-3-319-07320-0_6 CrossRefPubMedGoogle Scholar
  8. 8.
    Orogo AM, Gustafsson AB (2015) Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res 116(3):489–503. doi: 10.1161/CIRCRESAHA.116.303791 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9(6):701–719CrossRefPubMedGoogle Scholar
  10. 10.
    Hu Z, Yang B, Mo X, Xiao H (2015) Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol 52(3):1190–1209. doi: 10.1007/s12035-014-8921-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Zare-Shahabadi A, Masliah E, Johnson GV, Rezaei N (2015) Autophagy in Alzheimer’s disease. Rev Neurosci 26(4):385–395. doi: 10.1515/revneuro-2014-0076 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454. doi: 10.1038/nrneurol.2013.132 CrossRefPubMedGoogle Scholar
  13. 13.
    Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38(1):26–35. doi: 10.1016/j.tins.2014.09.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JK, Shin JH, Lee JE, Choi EJ (2015) Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta 1852(11):2517–2524. doi: 10.1016/j.bbadis.2015.08.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18(11):879–886. doi: 10.1111/cns.12005 CrossRefPubMedGoogle Scholar
  16. 16.
    Lipinski MM, Wu J, Faden AI, Sarkar C (2015) Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal 23(6):565–577. doi: 10.1089/ars.2015.6306 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi: 10.1038/nature04724 CrossRefPubMedGoogle Scholar
  18. 18.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi: 10.1038/nature04723 CrossRefPubMedGoogle Scholar
  19. 19.
    Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417. doi: 10.1016/j.tcb.2012.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283(35):23731–23738. doi: 10.1074/jbc.M801918200 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406. doi: 10.1038/nn.3350 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7(1):29–39. doi: 10.1513/pats.200909-102JS CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91. doi: 10.3389/fnana.2015.00091 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018 CrossRefPubMedGoogle Scholar
  25. 25.
    Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI (2013) Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 33(18):3627–3643. doi: 10.1128/MCB.00535-13 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cai Z, Zeng W, Tao K, E Zhen, Wang B, Yang Q (2015) Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 31 (4):452–458. doi: 10.1007/s12264-015-1540-x
  27. 27.
    Johansson S, Lee IH, Olson L, Spenger C (2005) Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 128(Pt 12):2961–2976. doi: 10.1093/brain/awh644 CrossRefPubMedGoogle Scholar
  28. 28.
    Magraoui FE, Reidick C, Meyer HE, Platta HW (2015) Autophagy-related deubiquitinating enzymes involved in health and disease. Cell 4(4):596–621. doi: 10.3390/cells4040596 CrossRefGoogle Scholar
  29. 29.
    Chen S (2014) Chinese guidelines for the diagnosis criteria and treatment of Parkinson’s disease (3rd edition). Chin J Neurol 47(6):428–433. doi: 10.3760/cma.j.issn.1006-7876.2014.06 Google Scholar
  30. 30.
    Gao L, She H, Li W, Zeng J, Zhu J, Jones DP, Mao Z, Gao G et al (2014) Oxidation of survival factor MEF2D in neuronal death and Parkinson’s disease. Antioxid Redox Signal 20(18):2936–2948. doi: 10.1089/ars.2013.5399 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Song J, Kim J (2016) Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Front Aging Neurosci 8:65. doi: 10.3389/fnagi.2016.00065 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32. doi: 10.1016/j.pneurobio.2013.04.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Saha T (2012) LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8(11):1643–1656. doi: 10.4161/auto.21654 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang S, Gui XH, Huang LP, Deng MZ, Fang RM, Ke XH, He YP, Li L et al (2016) Neuroprotective effects of beta-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol 53(1):83–94. doi: 10.1007/s12035-014-8950-z CrossRefPubMedGoogle Scholar
  35. 35.
    Huang L, Xue Y, Feng D, Yang R, Nie T, Zhu G, Tao K, Gao G et al (2017) Blockade of RyRs in the ER attenuates 6-OHDA-induced calcium overload, cellular hypo-excitability and apoptosis in dopaminergic neurons. Front Cell Neurosci 11:52. doi: 10.3389/fncel.2017.00052 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations