Advertisement

Molecular Neurobiology

, Volume 55, Issue 6, pp 4777–4787 | Cite as

Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism

  • Marcos Roberto de Oliveira
  • Flávia de Bittencourt Brasil
  • Cristina Ribas Fürstenau
Article

Abstract

Sulforaphane (SFN; C6H11NOS2) is an isothiocyanate found in cruciferous vegetables, such as broccoli, kale, and radish. SFN exhibits antioxidant, anti-apoptotic, anti-tumor, and anti-inflammatory activities in different cell types. However, it was not previously demonstrated whether and how this natural compound would exert mitochondrial protection experimentally. Therefore, we investigated here the effects of a pretreatment (for 30 min) with SFN at 5 μM on mitochondria obtained from human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2) at 300 μM for 24 h. We found that SFN prevented loss of viability in H2O2-treated SH-SY5Y cells. Furthermore, SFN decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes of H2O2-exposed cells. Importantly, SFN enhanced the levels of both cellular and mitochondrial glutathione (GSH). SFN also suppressed the H2O2-mediated inhibition of mitochondrial components involved in the maintenance of the bioenergetics state, such as aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase, as well as complexes I and V. Consequently, SFN prevented the decline induced by H2O2 on the levels of ATP in SH-SY5Y cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by using small interfering RNA (siRNA) abolished the mitochondrial and cellular protection elicited by SFN. Therefore, SFN abrogated the H2O2-induced mitochondrial impairment by an Nrf2-dependent manner.

Keywords

Sulforaphane Mitochondria Tricarboxylic acid cycle Oxidative phosphorylation Nrf2 

Notes

Acknowledgements

This work was supported by CNPq. FBB receives financial support from the FOPESQ/UFF.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560CrossRefPubMedGoogle Scholar
  2. 2.
    Bornhövd C, Vogel F, Neupert W, Reichert AS (2006) Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. J Biol Chem 281:13990–13998CrossRefPubMedGoogle Scholar
  3. 3.
    Van Bergen NJ, Blake RE, Crowston JG, Trounce IA (2014) Oxidative phosphorylation measurement in cell lines and tissues. Mitochondrion 15:24–33. doi: 10.1016/j.mito.2014.03.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Fernández-Checa JC, García-Ruiz C, Colell A, Morales A, Marí M, Miranda M, Ardite E (1998) Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 8:7–11CrossRefPubMedGoogle Scholar
  5. 5.
    Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond Ser B Biol Sci 360:2335–2345CrossRefGoogle Scholar
  6. 6.
    Quijano C, Trujillo M, Castro L, Trostchansky A (2016) Interplay between oxidant species and energy metabolism. Redox Biol 8:28–42. doi: 10.1016/j.redox.2015.11.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Gibson GE, Blass JP, Beal MF, Bunik V (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 31:43–63CrossRefPubMedGoogle Scholar
  8. 8.
    Adam-Vizi V, Tretter L (2013) The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem Int 62:757–763. doi: 10.1016/j.neuint.2013.01.012 CrossRefPubMedGoogle Scholar
  9. 9.
    Kasote DM, Hegde MV, Katyare SS (2013) Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 39:392–406. doi: 10.1002/biof.1093 CrossRefPubMedGoogle Scholar
  10. 10.
    de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66. doi: 10.1016/j.neuint.2015.12.006 CrossRefPubMedGoogle Scholar
  11. 11.
    de Oliveira MR (2016) Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol Lett 258:185–191. doi: 10.1016/j.toxlet.2016.07.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem IN PRESS doi. doi: 10.1146/annurev-biochem-061516-045037
  13. 13.
    Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219CrossRefPubMedGoogle Scholar
  14. 14.
    Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14CrossRefPubMedGoogle Scholar
  15. 15.
    Brigelius-Flohé R, Kipp A (2009) Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta 1790:1555–1568. doi: 10.1016/j.bbagen.2009.03.006 CrossRefPubMedGoogle Scholar
  16. 16.
    Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020 CrossRefPubMedGoogle Scholar
  17. 17.
    Salinas AE, Wong MG (1999) Glutathione S-transferases—a review. Curr Med Chem 6:279–309PubMedGoogle Scholar
  18. 18.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  19. 19.
    Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta 1830:3317–3328. doi: 10.1016/j.bbagen.2012.10.018 CrossRefPubMedGoogle Scholar
  20. 20.
    Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M (2014) The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084. doi: 10.1007/s12035-014-8705-x CrossRefPubMedGoogle Scholar
  21. 21.
    Perry TL, Godin DV, Hansen S (1982) Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310CrossRefPubMedGoogle Scholar
  22. 22.
    Adams JD Jr, Klaidman LK, Odunze IN, Shen HC, Miller CA (1991) Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol 14:213–226CrossRefPubMedGoogle Scholar
  23. 23.
    Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355CrossRefPubMedGoogle Scholar
  24. 24.
    Liddell JR, White AR (2017) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int IN PRESS doi. doi: 10.1016/j.neuint.2017.05.016
  25. 25.
    Fernández-Checa JC, Kaplowitz N, García-Ruiz C, Colell A, Miranda M, Marí M, Ardite E, Morales A (1997) GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Phys 273:G7–G17CrossRefGoogle Scholar
  26. 26.
    de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860:727–745. doi: 10.1016/j.bbagen.2016.01.017 CrossRefPubMedGoogle Scholar
  27. 27.
    de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826. doi: 10.1016/j.biotechadv.2016.04.004 CrossRefPubMedGoogle Scholar
  28. 28.
    de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34:532–549. doi: 10.1016/j.biotechadv.2015.12.014 CrossRefPubMedGoogle Scholar
  29. 29.
    Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2017) Resveratrol and brain mitochondria: a review. Mol Neurobiol IN PRESS doi. doi: 10.1007/s12035-017-0448-z
  30. 30.
    Baird L, Swift S, Llères D, Dinkova-Kostova AT (2014) Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol Adv 32:1133–1144. doi: 10.1016/j.biotechadv.2014.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188. doi: 10.1016/j.freeradbiomed.2015.04.036 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou R, Lin J, Wu D (2014) Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim Biophys Acta 1840:209–218. doi: 10.1016/j.bbagen.2013.09.018 CrossRefPubMedGoogle Scholar
  33. 33.
    de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. doi: 10.1016/j.tiv.2015.12.005 CrossRefPubMedGoogle Scholar
  34. 34.
    Copple IM, Dinkova-Kostova AT, Kensler TW, Liby KT, Wigley WC (2017) NRF2 as an emerging therapeutic target. Oxidative Med Cell Longev 2017:8165458. doi: 10.1155/2017/8165458 CrossRefGoogle Scholar
  35. 35.
    de Oliveira MR, da Costa FG, Peres A, Bosco SM (2017) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SH-SY5Y cells: role for Nrf2. Mol Neurobiol IN PRESS doi. doi: 10.1007/s12035-016-0372-7
  36. 36.
    de Oliveira MR, da Costa FG, Brasil FB, Peres A (2017) Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 Axis in SH-SY5Y cells. Mol Neurobiol IN PRESS doi. doi: 10.1007/s12035-016-0380-7
  37. 37.
    Atamna H, Mackey J, Dhahbi JM (2012) Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 38:158–166CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592. doi: 10.1016/j.biotechadv.2012.09.005 CrossRefPubMedGoogle Scholar
  39. 39.
    Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116. doi: 10.1016/j.mito.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    de Oliveira MR (2016) Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 29:35–44. doi: 10.1016/j.mito.2016.05.005 CrossRefPubMedGoogle Scholar
  41. 41.
    Amjad AI, Parikh RA, Appleman LJ, Hahm ER, Singh K, Singh SV (2015) Broccoli-derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside. Curr Pharmacol Rep 1:382–390CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Houghton CA, Fassett RG, Coombes JS (2016) Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician's expectation be matched by the reality? Oxidative Med Cell Longev 2016:7857186. doi: 10.1155/2016/7857186 CrossRefGoogle Scholar
  43. 43.
    Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. Biochim Biophys Acta 1810:888–894. doi: 10.1016/j.bbagen.2011.06.004 CrossRefPubMedGoogle Scholar
  44. 44.
    Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y (2015) Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxidative Med Cell Longev 2015:407580. doi: 10.1155/2015/407580 CrossRefGoogle Scholar
  45. 45.
    Denzer I, Münch G, Friedland K (2016) Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharmacol Res 103:80–94. doi: 10.1016/j.phrs.2015.11.019 CrossRefPubMedGoogle Scholar
  46. 46.
    Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93CrossRefPubMedGoogle Scholar
  47. 47.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  48. 48.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231CrossRefPubMedGoogle Scholar
  49. 49.
    de Oliveira MR, da Rocha RF, Moreira JC (2012) Increased susceptibility of mitochondria isolated from frontal cortex and hippocampus of vitamin A-treated rats to non-aggregated amyloid-β peptides 1-40 and 1-42. Acta Neuropsychiatr 24:101–108. doi: 10.1111/j.1601-5215.2011.00588.x CrossRefPubMedGoogle Scholar
  50. 50.
    Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L et al (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34:227–234. doi: 10.1007/s10571-013-0006-9
  51. 51.
    Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92CrossRefPubMedGoogle Scholar
  52. 52.
    de Oliveira MR, da Rocha RF, Stertz L, Fries GR, de Oliveira DL, Kapczinski F, Moreira JC (2011) Total and mitochondrial nitrosative stress, decreased brain-derived neurotrophic factor (BDNF) levels and glutamate uptake, and evidence of endoplasmic reticulum stress in the hippocampus of vitamin A-treated rats. Neurochem Res 36:506–517. doi: 10.1007/s11064-010-0372-3 CrossRefPubMedGoogle Scholar
  53. 53.
    de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. doi: 10.1016/j.cbi.2015.11.003 CrossRefPubMedGoogle Scholar
  54. 54.
    de Oliveira MR, Schuck PF, Bosco SM (2016) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in Paraquat-treated human neuroblastoma SH-SY5Y cells. Mol Neurobiol IN PRESS doi. doi: 10.1007/s12035-016-0009-x
  55. 55.
    Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli-Forti G, Hrelia P (2009) Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem 111:1161–1171. doi: 10.1111/j.1471-4159.2009.06394.x CrossRefPubMedGoogle Scholar
  56. 56.
    Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20:8972–8979CrossRefPubMedGoogle Scholar
  57. 57.
    Gibson GE, Kingsbury AE, Xu H, Lindsay JG, Daniel S, Foster OJ, Lees AJ, Blass JP (2003) Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson’s disease. Neurochem Int 43:129–135CrossRefPubMedGoogle Scholar
  58. 58.
    Naseri NN, Xu H, Bonica J, Vonsattel JP, Cortes EP, Park LC, Arjomand J, Gibson GE (2015) Abnormalities in the tricarboxylic acid cycle in Huntington disease and in a Huntington disease mouse model. J Neuropathol Exp Neurol 74:527–537. doi: 10.1097/NEN.0000000000000197 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sandoval-Acuña C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90. doi: 10.1016/j.abb.2014.05.017 CrossRefPubMedGoogle Scholar
  60. 60.
    Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. doi: 10.1016/j.cotox.2016.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT (2014) Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457:415–424. doi: 10.1042/BJ20130863 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2:761–770. doi: 10.1242/bio.20134853
  63. 63.
    Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marcos Roberto de Oliveira
    • 1
  • Flávia de Bittencourt Brasil
    • 2
  • Cristina Ribas Fürstenau
    • 3
  1. 1.Departamento de Química/ICETUniversidade Federal de Mato Grosso (UFMT)CuiabaBrazil
  2. 2.Universidade Federal FluminenseRio de JaneiroBrazil
  3. 3.Instituto de Genética e Bioquímica (INGEB)Universidade Federal de Uberlândia (UFU)Patos de MinasBrazil

Personalised recommendations