Molecular Neurobiology

, Volume 55, Issue 6, pp 4763–4776 | Cite as

Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons

  • Juan Andrés Parga
  • María García-Garrote
  • Salvador Martínez
  • Ángel Raya
  • José Luis Labandeira-GarcíaEmail author
  • Jannette Rodríguez-Pallares


Mesenchymal stromal cells (MSCs) have been shown to have useful properties for cell therapy and have been proposed for treatment of neurodegenerative diseases, including Parkinson’s disease. However, the mechanisms involved in recovering dopaminergic neurons are not clear. The present study aims to evaluate the pathways and molecules involved in the neuroprotective effect of MSCs. We analyzed the viability of dopaminergic cells from different sources in response to conditioned medium derived from bone marrow MSC (MSC-CM). MSC-CM increased the viability of dopaminergic cells of rat and human origins, having both neuroprotective and neurorescue activities against effects of dopaminergic neurotoxin 6-hydroxydopamine. We found that lipid removal, inhibition of the prostaglandin E2 receptor 2 (EP2), and its signaling pathway were able to block the effects of MSC-CM on a pure population of dopaminergic neurons. Moreover, in primary mesencephalic cultures and hiPSC-derived neurons, inhibition of EP2 signaling caused a reduction in the number of dopaminergic neurons obtained in culture. Taken together, our results demonstrate for the first time the involvement of prostaglandin signaling from MSC in dopaminergic neuron survival through EP2 receptors, and suggest new approaches for treatment of Parkinson’s disease.


Prostaglandin Parkinson’s disease Dopaminergic neurons Mesenchymal stromal cells Neuroprotection 



We thank Dr. Wei-Dong Le for providing the Mes23.5 dopaminergic cell line. We thank Pilar Aldrey, Iria Novoa, and Cristina Gianzo for their technical assistance. Grant sponsors of this work are Spanish Ministry of Economy and Competitiveness (BFU2015-70523), Spanish Ministry of Health (RD12/0019/0020, RD16/0011/0016, and CIBERNED), Galician Government (XUGA and Centro singular de investigación de Galicia acreditación 2016-2019, ED431G/05), and European Regional Development Fund (ERDF).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All experiments using animals were carried out in accordance with the European Communities Council Directive 2010/63/EU, Directive 86/609/ EEC and Spanish RD 526/2014, and were approved by the corresponding committee at the University of Santiago de Compostela.

Experiments using human-derived cells were approved by the corresponding committees of the Spanish Advisory Committee for Human Tissue and Cell Donation and Use and of the University of Santiago de Compostela, and authorized by the local government

Supplementary material

12035_2017_681_Fig7_ESM.gif (86 kb)
Supplementary Fig. 1

Representative pictures of positive and negative controls for the antibodies CD44 and CD90. A large number of erythrocytes and a few nucleated cells stained with CD44 and Hoechst (A). Cardiac fibroblasts stained with CD90 and Hoechst (B). MSC (C) stained with the same protocol used in (A) and (B), but without primary antibody. This protocol results in no green staining together with Hoechst-positive cellular nuclei (blue). Scale bar, 50 μm (A,C), and 25 μm (B). (GIF 85 kb)

12035_2017_681_MOESM1_ESM.tif (2.9 mb)
High Resolution Image (TIFF 2994 kb)


  1. 1.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319. doi: 10.1016/j.stem.2008.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131. doi: 10.1038/nrm3049 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi: 10.1080/14653240600855905 CrossRefPubMedGoogle Scholar
  4. 4.
    Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716. doi: 10.1016/j.stem.2012.05.015 CrossRefPubMedGoogle Scholar
  5. 5.
    Hoban DB, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 303:402–411. doi: 10.1016/j.neuroscience.2015.07.014 CrossRefPubMedGoogle Scholar
  6. 6.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi: 10.1002/jcb.20886 CrossRefPubMedGoogle Scholar
  7. 7.
    Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, Mancardi G, Uccelli A et al (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110(5):1674–1684. doi: 10.1111/j.1471-4159.2009.06268.x CrossRefPubMedGoogle Scholar
  8. 8.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21(2):216–225. doi: 10.1038/cdd.2013.158 CrossRefPubMedGoogle Scholar
  9. 9.
    Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13(4):392–402. doi: 10.1016/j.stem.2013.09.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Glavaski-Joksimovic A, Bohn MC (2013) Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp Neurol 247:25–38. doi: 10.1016/j.expneurol.2013.03.016 CrossRefPubMedGoogle Scholar
  11. 11.
    Gonzalez C, Bonilla S, Flores AI, Cano E, Liste I (2016) An update on human stem cell-based therapy in Parkinson’s disease. Curr Stem Cell Res Ther 11(7):561–568CrossRefPubMedGoogle Scholar
  12. 12.
    Rodriguez-Pallares J, Rodriguez-Perez AI, Munoz A, Parga JA, Toledo-Aral JJ, Labandeira-Garcia JL (2016) Effects of rho kinase inhibitors on grafts of dopaminergic cell precursors in a rat model of Parkinson’s disease. Stem Cells Transl Med. doi: 10.5966/sctm.2015-0182
  13. 13.
    Rodriguez-Pallares J, Joglar B, Munoz-Manchado AB, Villadiego J, Toledo-Aral JJ, Labandeira-Garcia JL (2012) Cografting of carotid body cells improves the long-term survival, fiber outgrowth and functional effects of grafted dopaminergic neurons. Regen Med 7(3):309–322. doi: 10.2217/rme.12.22 CrossRefPubMedGoogle Scholar
  14. 14.
    Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F et al (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6):1433–1440. doi: 10.1634/stemcells.2005-0393 CrossRefPubMedGoogle Scholar
  15. 15.
    Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J et al (2016) A compendium of preparation and application of stem cells in Parkinson’s disease: current status and future prospects. Front Aging Neurosci 8:117. doi: 10.3389/fnagi.2016.00117 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Offen D, Barhum Y, Levy YS, Burshtein A, Panet H, Cherlow T, Melamed E (2007) Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. J Neural Transm Suppl 72:133–143CrossRefGoogle Scholar
  17. 17.
    Phinney DG, Prockop DJ (2007) Concise review: Mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902. doi: 10.1634/stemcells.2007-0637 CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmed HH, Salem AM, Atta HM, Eskandar EF, Farrag AR, Ghazy MA, Salem NA, Aglan HA (2016) Updates in the pathophysiological mechanisms of Parkinson’s disease: emerging role of bone marrow mesenchymal stem cells. World J Stem Cells 8(3):106–117. doi: 10.4252/wjsc.v8.i3.106 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bouchez G, Sensebe L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P et al (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52(7):1332–1342. doi: 10.1016/j.neuint.2008.02.003 CrossRefPubMedGoogle Scholar
  20. 20.
    McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG (2008) Autologous transplants of adipose-derived adult stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210(1):14–29. doi: 10.1016/j.expneurol.2007.10.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, Lambertenghi Deliliers G, Polli E et al (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 1311:12–27. doi: 10.1016/j.brainres.2009.11.041 CrossRefPubMedGoogle Scholar
  22. 22.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40(2):415–423. doi: 10.1016/j.nbd.2010.07.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Hudon-David F, Bouzeghrane F, Couture P, Thibault G (2007) Thy-1 expression by cardiac fibroblasts: lack of association with myofibroblast contractile markers. J Mol Cell Cardiol 42(5):991–1000. doi: 10.1016/j.yjmcc.2007.02.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez-Pallares J, Rey P, Soto-Otero R, Labandeira-Garcia JL (2001) N-Acetylcysteine enhances production of dopaminergic neurons from mesencephalic-derived precursor cells. Neuroreport 12(18):3935–3938CrossRefPubMedGoogle Scholar
  26. 26.
    Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL (2012) Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age (Dordr) 34(4):863–880. doi: 10.1007/s11357-011-9284-7 CrossRefGoogle Scholar
  27. 27.
    Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4(5):380–395. doi: 10.1002/emmm.201200215 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974. doi: 10.1038/nbt1001-971 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang P, Xia N, Reijo Pera RA (2014) Directed dopaminergic neuron differentiation from human pluripotent stem cells. J Vis Exp 91:51737. doi: 10.3791/51737 Google Scholar
  30. 30.
    Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103(1):145–156PubMedGoogle Scholar
  31. 31.
    Li P, Lu J, Kaur C, Sivakumar V, Tan KL, Ling EA (2009) Expression of cyclooxygenase-1/-2, microsomal prostaglandin-E synthase-1 and E-prostanoid receptor 2 and regulation of inflammatory mediators by PGE(2) in the amoeboid microglia in hypoxic postnatal rats and murine BV-2 cells. Neuroscience 164(3):948–962. doi: 10.1016/j.neuroscience.2009.08.044 CrossRefPubMedGoogle Scholar
  32. 32.
    Hoshino T, Nakaya T, Homan T, Tanaka K, Sugimoto Y, Araki W, Narita M, Narumiya S et al (2007) Involvement of prostaglandin E2 in production of amyloid-beta peptides both in vitro and in vivo. J Biol Chem 282(45):32676–32688. doi: 10.1074/jbc.M703087200 CrossRefPubMedGoogle Scholar
  33. 33.
    Shintani A, Nakao N, Kakishita K, Itakura T (2007) Protection of dopamine neurons by bone marrow stromal cells. Brain Res 1186:48–55. doi: 10.1016/j.brainres.2007.09.086 CrossRefPubMedGoogle Scholar
  34. 34.
    Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96. doi: 10.1016/j.brainres.2011.10.038 CrossRefPubMedGoogle Scholar
  35. 35.
    Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70. doi: 10.1038/emm.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57(1):13–23. doi: 10.1002/glia.20731 CrossRefPubMedGoogle Scholar
  37. 37.
    Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453. doi: 10.1016/j.exphem.2009.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yan K, Zhang R, Sun C, Chen L, Li P, Liu Y, Peng L, Sun H et al (2013) Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One 8(12):e84116. doi: 10.1371/journal.pone.0084116 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL (2014) Inhibition of the microglial response is essential for the neuroprotective effects of rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 85:1–8. doi: 10.1016/j.neuropharm.2014.05.021 CrossRefPubMedGoogle Scholar
  40. 40.
    Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285. doi: 10.1016/j.biochi.2013.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy 18(1):13–24. doi: 10.1016/j.jcyt.2015.10.008 CrossRefPubMedGoogle Scholar
  42. 42.
    Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114(6):1569–1580. doi: 10.1111/j.1471-4159.2009.06553.x CrossRefPubMedGoogle Scholar
  43. 43.
    Yang WH, Yang C, Xue YQ, Lu T, Reiser J, Zhao LR, Duan WM (2013) Regulated expression of lentivirus-mediated GDNF in human bone marrow-derived mesenchymal stem cells and its neuroprotection on dopaminergic cells in vitro. PLoS One 8(5):e64389. doi: 10.1371/journal.pone.0064389 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C (2007) Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 50(1):243–250. doi: 10.1016/j.neuint.2006.08.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759–767CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Seroogy KB, Lundgren KH, Tran TMD, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342(3):321–334. doi: 10.1002/cne.903420302 CrossRefPubMedGoogle Scholar
  47. 47.
    Aoyama M, Asai K, Shishikura T, Kawamoto T, Miyachi T, Yokoi T, Togari H, Wada Y et al (2001) Human neuroblastomas with unfavorable biologies express high levels of brain-derived neurotrophic factor mRNA and a variety of its variants. Cancer Lett 164(1):51–60CrossRefPubMedGoogle Scholar
  48. 48.
    Numan S, Gall CM, Seroogy KB (2005) Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J Mol Neurosci 27(2):245–260. doi: 10.1385/JMN:27:2:245 CrossRefPubMedGoogle Scholar
  49. 49.
    Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V et al (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15(10):3244–3250. doi: 10.1158/1078-0432.CCR-08-1815 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sarchielli E, Marini M, Ambrosini S, Peri A, Mazzanti B, Pinzani P, Barletta E, Ballerini L et al (2014) Multifaceted roles of BDNF and FGF2 in human striatal primordium development. An in vitro study. Exp Neurol 257:130–147. doi: 10.1016/j.expneurol.2014.04.021 CrossRefPubMedGoogle Scholar
  51. 51.
    Fidaleo M, Fanelli F, Ceru MP, Moreno S (2014) Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARalpha) and its lipid ligands. Curr Med Chem 21(24):2803–2821CrossRefPubMedGoogle Scholar
  52. 52.
    Denis I, Potier B, Heberden C, Vancassel S (2015) Omega-3 polyunsaturated fatty acids and brain aging. Curr Opin Clin Nutr Metab Care 18(2):139–146. doi: 10.1097/MCO.0000000000000141 CrossRefPubMedGoogle Scholar
  53. 53.
    Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N (2015) Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta 1851(4):397–413. doi: 10.1016/j.bbalip.2014.08.006 CrossRefPubMedGoogle Scholar
  54. 54.
    Bazan NG (2005) Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 32(1):89–103. doi: 10.1385/MN:32:1:089 CrossRefPubMedGoogle Scholar
  55. 55.
    Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS One 7(8):e41880. doi: 10.1371/journal.pone.0041880 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pyszko JA, Strosznajder JB (2014) The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease. Folia Neuropathol 52(3):260–269CrossRefPubMedGoogle Scholar
  57. 57.
    Munoz-Saez E, de Munck GE, Arahuetes Portero RM, Vicente F, Ortiz-Lopez FJ, Cantizani J, Gomez Miguel B (2015) Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y). Neurosci Lett 593:83–89. doi: 10.1016/j.neulet.2015.03.010 CrossRefPubMedGoogle Scholar
  58. 58.
    Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL (2012) Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain 135(Pt 1):124–138. doi: 10.1093/brain/awr320 CrossRefPubMedGoogle Scholar
  59. 59.
    Garrido-Gil P, Joglar B, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL (2012) Involvement of PPAR-gamma in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson’s disease. J Neuroinflammation 9:38. doi: 10.1186/1742-2094-9-38 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260. doi: 10.1186/s12967-014-0260-8 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL et al (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7:e2062. doi: 10.1038/cddis.2015.327 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Abumaree M, Al Jumah M, Pace RA, Kalionis B (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev 8(2):375–392. doi: 10.1007/s12015-011-9312-0 CrossRefPubMedGoogle Scholar
  63. 63.
    Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O (2012) Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One 7(10):e46956. doi: 10.1371/journal.pone.0046956 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318(1):149–161. doi: 10.1007/s00441-004-0944-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Jiang J, Dingledine R (2013) Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci 34(7):413–423. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  66. 66.
    Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17(8):2746–2755CrossRefPubMedGoogle Scholar
  67. 67.
    Bilak M, Wu L, Wang Q, Haughey N, Conant K, St Hillaire C, Andreasson K (2004) PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 56(2):240–248. doi: 10.1002/ana.20179 CrossRefPubMedGoogle Scholar
  68. 68.
    Carrasco E, Werner P, Casper D (2008) Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress. Neurosci Lett 441(1):44–49. doi: 10.1016/j.neulet.2008.05.111 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li Q, Sun W, Wang X, Zhang K, Xi W, Gao P (2015) Skin-derived mesenchymal stem cells alleviate atherosclerosis via modulating macrophage function. Stem Cells Transl Med 4(11):1294–1301. doi: 10.5966/sctm.2015-0020 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24(1):257–268. doi: 10.1523/JNEUROSCI.4485-03.2004 CrossRefPubMedGoogle Scholar
  71. 71.
    Echeverria V, Clerman A, Dore S (2005) Stimulation of PGE receptors EP2 and EP4 protects cultured neurons against oxidative stress and cell death following beta-amyloid exposure. Eur J Neurosci 22(9):2199–2206. doi: 10.1111/j.1460-9568.2005.04427.x CrossRefPubMedGoogle Scholar
  72. 72.
    Carrasco E, Casper D, Werner P (2007) PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res 85(14):3109–3117. doi: 10.1002/jnr.21425 CrossRefPubMedGoogle Scholar
  73. 73.
    Li X, Rose SE, Montine KS, Keene CD, Montine TJ (2013) Antagonism of neuronal prostaglandin E(2) receptor subtype 1 mitigates amyloid beta neurotoxicity in vitro. J NeuroImmune Pharmacol 8(1):87–93. doi: 10.1007/s11481-012-9380-1 CrossRefPubMedGoogle Scholar
  74. 74.
    Mohan S, Narumiya S, Dore S (2015) Neuroprotective role of prostaglandin PGE2 EP2 receptor in hemin-mediated toxicity. Neurotoxicology 46:53–59. doi: 10.1016/j.neuro.2014.10.012 CrossRefPubMedGoogle Scholar
  75. 75.
    Zhen G, Kim YT, Li RC, Yocum J, Kapoor N, Langer J, Dobrowolski P, Maruyama T et al (2012) PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer’s disease. Neurobiol Aging 33(9):2215–2219. doi: 10.1016/j.neurobiolaging.2011.09.017 CrossRefPubMedGoogle Scholar
  76. 76.
    Dey I, Lejeune M, Chadee K (2006) Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 149(6):611–623. doi: 10.1038/sj.bjp.0706923 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Juan Andrés Parga
    • 1
    • 2
  • María García-Garrote
    • 1
    • 2
  • Salvador Martínez
    • 3
  • Ángel Raya
    • 4
    • 5
    • 6
  • José Luis Labandeira-García
    • 1
    • 2
    Email author
  • Jannette Rodríguez-Pallares
    • 1
    • 2
  1. 1.Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUSUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
  3. 3.Neuroscience InstituteUniversity Miguel Hernandez (UMH-CSIC)AlicanteSpain
  4. 4.Center of Regenerative Medicine in Barcelona (CMRB)BarcelonaSpain
  5. 5.Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
  6. 6.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations