Molecular Neurobiology

, Volume 55, Issue 5, pp 4453–4462 | Cite as

Tibolone Preserves Mitochondrial Functionality and Cell Morphology in Astrocytic Cells Treated with Palmitic Acid

  • Yeimy González-Giraldo
  • Luis Miguel Garcia-Segura
  • Valentina Echeverria
  • George E. Barreto
Article

Abstract

Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.

Keywords

Astrocytes Palmitic acid Tibolone Mitochondria Morphology 

Notes

Acknowledgments

YG-G is supported by a PhD fellowship from Centro de Estudios Interdisciplinarios Básicos y Aplicados CEIBA (Rodolfo Llinás Program). We acknowledge support from Ministerio de Economía y Competitividad (MINECO), Spain (grant no. BFU2014-51836-C2-1-R), CIBERFES, and Fondos FEDER.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G (2007) Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 34(1):34–39. doi: 10.1016/j.mcn.2006.09.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. doi: 10.1038/ncpneuro0355 CrossRefPubMedGoogle Scholar
  3. 3.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. doi: 10.1007/s00401-009-0619-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378. doi: 10.3389/fncel.2014.00378 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620. doi: 10.1016/j.it.2016.06.006 CrossRefPubMedGoogle Scholar
  6. 6.
    Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E (2007) Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 7:46. doi: 10.1186/1471-244X-7-46 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. doi: 10.1016/j.biopsych.2008.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Belot N, Rorive S, Doyen I, Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390CrossRefPubMedGoogle Scholar
  10. 10.
    Mao X, Moerman-Herzog AM, Wang W, Barger SW (2006) Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 281(47):35863–35872. doi: 10.1074/jbc.M604166200 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gasque P, Chan P, Mauger C, Schouft MT, Singhrao S, Dierich MP, Morgan BP, Fontaine M (1996) Identification and characterization of complement C3 receptors on human astrocytes. J Immunol 156(6):2247–2255PubMedGoogle Scholar
  12. 12.
    Landolfi C, Soldo L, Polenzani L, Apicella C, Capezzone de Joannon A, Coletta I, Di Cesare F, Brufani M et al (1998) Inflammatory molecule release by beta-amyloid-treated T98G astrocytoma cells: role of prostaglandins and modulation by paracetamol. Eur J Pharmacol 360(1):55–64CrossRefPubMedGoogle Scholar
  13. 13.
    Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2017) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol. doi: 10.1007/s12035-017-0481-y
  14. 14.
    Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16(1):17–29. doi: 10.1038/nrn3856 CrossRefPubMedGoogle Scholar
  15. 15.
    Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 144:5–26. doi: 10.1016/j.pneurobio.2016.06.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Kloosterboer HJ (2001) Tibolone: a steroid with a tissue-specific mode of action. J Steroid Biochem Mol Biol 76(1–5):231–238CrossRefPubMedGoogle Scholar
  17. 17.
    Kloosterboer HJ (2004) Tissue-selectivity: the mechanism of action of tibolone. Maturitas 48(Suppl 1):S30–S40. doi: 10.1016/j.maturitas.2004.02.012 CrossRefPubMedGoogle Scholar
  18. 18.
    de Gooyer ME, Kleyn GT, Smits KC, Ederveen AG, Verheul HA, Kloosterboer HJ (2001) Tibolone: a compound with tissue specific inhibitory effects on sulfatase. Mol Cell Endocrinol 183(1–2):55–62CrossRefPubMedGoogle Scholar
  19. 19.
    Guzman CB, Zhao C, Deighton-Collins S, Kleerekoper M, Benjamins JA, Skafar DF (2007) Agonist activity of the 3-hydroxy metabolites of tibolone through the oestrogen receptor in the mouse N20.1 oligodendrocyte cell line and normal human astrocytes. J Neuroendocrinol 19(12):958–965. doi: 10.1111/j.1365-2826.2007.01611.x CrossRefPubMedGoogle Scholar
  20. 20.
    Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM (2014) Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 389(1–2):48–57. doi: 10.1016/j.mce.2014.01.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. doi: 10.1016/j.mce.2016.05.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen JC, Killcross AS, Jenkins TA (2014) Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 8:375. doi: 10.3389/fnins.2014.00375 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Martin-Jimenez CA, Gaitan-Vaca DM, Echeverria V, Gonzalez J, Barreto GE (2016) Relationship between obesity, Alzheimer's disease, and Parkinson's disease: an astrocentric view. Mol Neurobiol. doi: 10.1007/s12035-016-0193-8
  24. 24.
    Jayaraman A, Lent-Schochet D, Pike CJ (2014) Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function. J Neuroinflammation 11:162. doi: 10.1186/s12974-014-0162-y CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, Weller K, Ellacott KL (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 35:33–42. doi: 10.1016/j.bbi.2013.06.007 CrossRefPubMedGoogle Scholar
  26. 26.
    Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin N Am 37(3):635–646, viii-ix. doi: 10.1016/j.ecl.2008.06.007 CrossRefGoogle Scholar
  27. 27.
    Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. doi: 10.1016/j.bbi.2014.04.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J et al (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59(9):2171–2177. doi: 10.2337/db09-0138 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gonzalez-Barroso MM, Rial E (2009) The role of fatty acids in the activity of the uncoupling proteins. Curr Chem Biol 3(2):180–188. doi: 10.2174/187231309788166451 Google Scholar
  30. 30.
    Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120(6):1060–1071. doi: 10.1111/j.1471-4159.2012.07660.x PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kwon B, Lee HK, Querfurth HW (2014) Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta 1843(7):1402–1413. doi: 10.1016/j.bbamcr.2014.04.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu L, Chan C (2014) IPAF inflammasome is involved in interleukin-1beta production from astrocytes, induced by palmitate; implications for Alzheimer's disease. Neurobiol Aging 35(2):309–321. doi: 10.1016/j.neurobiolaging.2013.08.016 CrossRefPubMedGoogle Scholar
  33. 33.
    Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM et al (2014) Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 66(6):1106–1113. doi: 10.1016/j.pharep.2014.07.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer's disease. J Neurosci Off J Soc Neurosci 31(41):14820–14830. doi: 10.1523/JNEUROSCI.3883-11.2011 CrossRefGoogle Scholar
  35. 35.
    Fraser T, Tayler H, Love S (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer's disease. Neurochem Res 35(3):503–513. doi: 10.1007/s11064-009-0087-5 CrossRefPubMedGoogle Scholar
  36. 36.
    Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol 58:5.61.1–5.61.18. doi: 10.1002/0471141755.ph0561s58
  37. 37.
    Yue G, Shi G, Azaro MA, Yang Q, Hu G, Luo M, Yin K, Nagele RG et al (2008) Lipopolysaccharide (LPS) potentiates hydrogen peroxide toxicity in T98G astrocytoma cells by suppression of anti-oxidative and growth factor gene expression. BMC Genomics 9:608. doi: 10.1186/1471-2164-9-608 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144 Pt B:294–303. doi: 10.1016/j.jsbmb.2014.07.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE (2015) PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 27(4):355–367. doi: 10.1007/s12640-014-9509-5 CrossRefPubMedGoogle Scholar
  40. 40.
    Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE (2016) Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 8:152. doi: 10.3389/fnagi.2016.00152 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kong JY, Rabkin SW (2002) Palmitate-induced cardiac apoptosis is mediated through CPT-1 but not influenced by glucose and insulin. Am J Phys Heart Circ Phys 282(2):H717–H725. doi: 10.1152/ajpheart.00257.2001 Google Scholar
  42. 42.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50(2):98–115. doi: 10.2144/000113610 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A J Int Soc Anal Cytol 79(6):405–425. doi: 10.1002/cyto.a.21061 CrossRefGoogle Scholar
  44. 44.
    Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296. doi: 10.1016/j.expneurol.2012.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pirici D, Mogoanta L, Margaritescu O, Pirici I, Tudorica V, Coconu M (2009) Fractal analysis of astrocytes in stroke and dementia. Romanian J Morphol Embryol Rev Roum Morphol Embryol 50(3):381–390Google Scholar
  46. 46.
    Karperien AL, Jelinek HF (2015) Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Front Bioeng Biotechnol 3(51). doi: 10.3389/fbioe.2015.00051
  47. 47.
    Fernandez E, Jelinek HF (2001) Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24(4):309–321. doi: 10.1006/meth.2001.1201 CrossRefPubMedGoogle Scholar
  48. 48.
    Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837(4):408–417. doi: 10.1016/j.bbabio.2013.10.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241. doi: 10.1016/j.freeradbiomed.2008.04.029 CrossRefPubMedGoogle Scholar
  50. 50.
    Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurother J Am Soc Exp Neurother 7(4):494–506. doi: 10.1016/j.nurt.2010.07.003 CrossRefGoogle Scholar
  51. 51.
    Sekar S, McDonald J, Cuyugan L, Aldrich J, Kurdoglu A, Adkins J, Serrano G, Beach TG et al (2015) Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 36(2):583–591. doi: 10.1016/j.neurobiolaging.2014.09.027 CrossRefPubMedGoogle Scholar
  52. 52.
    Catts VS, Wong J, Fillman SG, Fung SJ, Shannon Weickert C (2014) Increased expression of astrocyte markers in schizophrenia: association with neuroinflammation. Aust N Z J Psychiatry 48(8):722–734. doi: 10.1177/0004867414531078 CrossRefPubMedGoogle Scholar
  53. 53.
    Santiago JA, Littlefield AM, Potashkin JA (2016) Integrative transcriptomic meta-analysis of Parkinson's disease and depression identifies NAMPT as a potential blood biomarker for de novo Parkinson's disease. Sci Rep 6:34579. doi: 10.1038/srep34579 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gibbs RB, Edwards D, Lazar N, Nelson D, Talameh J (2006) Effects of long-term hormone treatment and of tibolone on monoamines and monoamine metabolites in the brains of ovariectomised, cynomologous monkeys. J Neuroendocrinol 18(9):643–654. doi: 10.1111/j.1365-2826.2006.01463.x CrossRefPubMedGoogle Scholar
  55. 55.
    Qiu J, Bosch MA, Ronnekleiv OK, Kloosterboer HJ, Kelly MJ (2008) Tibolone rapidly attenuates the GABAB response in hypothalamic neurones. J Neuroendocrinol 20(12):1310–1318. doi: 10.1111/j.1365-2826.2008.01789.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    de Aguiar RB, Dickel OE, Cunha RW, Monserrat JM, Barros DM, Martinez PE (2008) Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9(5):285–298. doi: 10.1007/s10522-008-9137-7 CrossRefPubMedGoogle Scholar
  57. 57.
    Belenichev IF, Odnokoz OV, Pavlov SV, Belenicheva OI, Polyakova EN (2012) The neuroprotective activity of tamoxifen and tibolone during glutathione depletion in vitro. Neurochem J 6(3):202–212. doi: 10.1134/s181971241203004x CrossRefGoogle Scholar
  58. 58.
    Pinto-Almazan R, Rivas-Arancibia S, Farfan-Garcia ED, Rodriguez-Martinez E, Guerra-Araiza C (2014) Neuroprotective effects of tibolone against oxidative stress induced by ozone exposure. Rev Neurol 58(10):441–448PubMedGoogle Scholar
  59. 59.
    Farfan-Garcia ED, Castillo-Hernandez MC, Pinto-Almazan R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C (2014) Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res 39(9):1776–1786. doi: 10.1007/s11064-014-1385-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Beltran-Campos V, Diaz-Ruiz A, Padilla-Gomez E, Aguilar Zavala H, Rios C, Diaz Cintra S (2015) Effect of tibolone on dendritic spine density in the rat hippocampus. Neurologia 30(7):401–406. doi: 10.1016/j.nrl.2014.03.002 CrossRefPubMedGoogle Scholar
  61. 61.
    de Medeiros AR, Lamas AZ, Caliman IF, Dalpiaz PL, Firmes LB, de Abreu GR, Moyses MR, Lemos EM et al (2012) Tibolone has anti-inflammatory effects in estrogen-deficient female rats on the natriuretic peptide system and TNF-alpha. Regul Pept 179(1–3):55–60. doi: 10.1016/j.regpep.2012.08.015 CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Z, Liu D, Wang J, Liu S, Gao M, Ling EA, Hao A (2012) Cytoprotective effects of melatonin on astroglial cells subjected to palmitic acid treatment in vitro. J Pineal Res 52(2):253–264. doi: 10.1111/j.1600-079X.2011.00952.x CrossRefPubMedGoogle Scholar
  63. 63.
    Patil S, Melrose J, Chan C (2007) Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur J Neurosci 26(8):2131–2141. doi: 10.1111/j.1460-9568.2007.05797.x CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Joseph JW, Koshkin V, Saleh MC, Sivitz WI, Zhang CY, Lowell BB, Chan CB, Wheeler MB (2004) Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279(49):51049–51056. doi: 10.1074/jbc.M409189200 CrossRefPubMedGoogle Scholar
  65. 65.
    Fauconnier J, Andersson DC, Zhang SJ, Lanner JT, Wibom R, Katz A, Bruton JD, Westerblad H (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56(4):1136–1142. doi: 10.2337/db06-0739 CrossRefPubMedGoogle Scholar
  66. 66.
    Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB (2002) Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Phys Heart Circ Phys 282(2):H656–H664. doi: 10.1152/ajpheart.00726.2001 Google Scholar
  67. 67.
    Blazquez C, Geelen MJ, Velasco G, Guzman M (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 489(2–3):149–153CrossRefPubMedGoogle Scholar
  68. 68.
    Sun Y, Ren M, Gao GQ, Gong B, Xin W, Guo H, Zhang XJ, Gao L et al (2008) Chronic palmitate exposure inhibits AMPKalpha and decreases glucose-stimulated insulin secretion from beta-cells: modulation by fenofibrate. Acta Pharmacol Sin 29(4):443–450. doi: 10.1111/j.1745-7254.2008.00717.x CrossRefPubMedGoogle Scholar
  69. 69.
    Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ (2014) Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 15(6):10334–10349. doi: 10.3390/ijms150610334 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest 122(6):1958–1959CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richter C (1999) Ceramide induces cytochrome c release from isolated mitochondria: importance of mitochondrial redox state. J Biol Chem 274(10):6080–6084CrossRefPubMedGoogle Scholar
  72. 72.
    Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14(3):597–606. doi: 10.1038/sj.cdd.4402020 CrossRefPubMedGoogle Scholar
  73. 73.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi: 10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatr 18(6):567–588. doi: 10.1177/1073858411423441 Google Scholar
  75. 75.
    Lee CY, Dallerac G, Ezan P, Anderova M, Rouach N (2016) Glucose tightly controls morphological and functional properties of astrocytes. Front Aging Neurosci 8:82. doi: 10.3389/fnagi.2016.00082 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kongsui R, Beynon SB, Johnson SJ, Walker FR (2014) Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflammation 11:182. doi: 10.1186/s12974-014-0182-7 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Swagell CD, Henly DC, Morris CP (2005) Expression analysis of a human hepatic cell line in response to palmitate. Biochem Biophys Res Commun 328(2):432–441. doi: 10.1016/j.bbrc.2004.12.188 CrossRefPubMedGoogle Scholar
  78. 78.
    Torres-Aleman I, Rejas MT, Pons S, Garcia-Segura LM (1992) Estradiol promotes cell shape changes and glial fibrillary acidic protein redistribution in hypothalamic astrocytes in vitro: a neuronal-mediated effect. Glia 6(3):180–187. doi: 10.1002/glia.440060305 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotá D.C.Colombia
  2. 2.Instituto Cajal, CSICMadridSpain
  3. 3.CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
  4. 4.Fac. Cs de la SaludUniversidad San SebastiánConcepciónChile
  5. 5.Bay Pines VA Health Care SystemBay PinesUSA
  6. 6.Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile

Personalised recommendations