Molecular Neurobiology

, Volume 55, Issue 5, pp 4160–4184 | Cite as

Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions

  • Gerwyn Morris
  • Tatiana Barichello
  • Brendon Stubbs
  • Cristiano A. Köhler
  • André F. Carvalho
  • Michael Maes
Article

Abstract

Zika virus (ZIKV) is an emerging arbovirus of the genus Flaviviridae, which causes a febrile illness and has spread from across the Pacific to the Americas in a short timeframe. Convincing evidence has implicated the ZIKV to incident cases of neonatal microcephaly and a set of neurodevelopmental abnormalities referred to as the congenital Zika virus syndrome. In addition, emerging data points to an association with the ZIKV and the development of the so-called Guillain-Barre syndrome, an acute autoimmune polyneuropathy. Accumulating knowledge suggests that neurovirulent strains of the ZIKV have evolved from less pathogenic lineages of the virus. Nevertheless, mechanisms of neurovirulence and host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion of genetic and structural alterations in the ZIKV which could have contributed to the emergence of neurovirulent strains. In addition, a mechanistic framework of neuro-immune mechanisms related to the emergence of neuropathology after ZIKV infection is discussed. Recent advances in knowledge point to avenues for the development of a putative vaccine as well as novel therapeutic strategies. Nevertheless, there are unique unmet challenges that need to be addressed in this regard. Finally, a research agenda is proposed.

Keywords

Zika virus Neurodevelopment Microcephaly Guillain-Barre syndrome Perinatal infection Neurology Psychiatry Autoimmunity Cytokines 

Notes

Compliance with Ethical Standards

We confirm that we have read the journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines. Authors AFC and MM contributed equally as senior authors of this review article.

Author’s Contributions

All authors had contributed to the design and writing of this manuscript. Its final version was read and approved by all authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

There was no specific funding for this specific study.

References

  1. 1.
    Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I Isolations and serological specificity Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5):509–520PubMedCrossRefGoogle Scholar
  2. 2.
    Dick GW (1952) Zika virus. II Pathogenicity and physical properties Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5):521–534PubMedCrossRefGoogle Scholar
  3. 3.
    Wikan N, Smith DR (2016) Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 16(7):e119–e126. doi: 10.1016/s1473-3099(16)30010-x PubMedCrossRefGoogle Scholar
  4. 4.
    Macnamara FN (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48(2):139–145PubMedCrossRefGoogle Scholar
  5. 5.
    Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M (2014) Current Zika virus epidemiology and recent epidemics. Medecine et maladies infectieuses 44(7):302–307. doi: 10.1016/j.medmal.2014.04.008 PubMedCrossRefGoogle Scholar
  6. 6.
    Gatherer D, Kohl A (2016) Zika virus: a previously slow pandemic spreads rapidly through the Americas. The Journal of general virology 97(2):269–273. doi: 10.1099/jgv.0.000381 PubMedCrossRefGoogle Scholar
  7. 7.
    Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15(9):1347–1350. doi: 10.3201/eid1509.090442 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, Dar O, Mattes F et al (2016) Rapid spread of Zika virus in the Americas—implications for public health preparedness for mass gatherings at the 2016 Brazil olympic games. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases 44:11–15. doi: 10.1016/j.ijid.2016.02.001 CrossRefGoogle Scholar
  9. 9.
    Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P et al (2015) Biology of Zika virus infection in human skin cells. J Virol 89(17):8880–8896. doi: 10.1128/jvi.00354-15 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M et al (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543. doi: 10.1056/NEJMoa0805715 PubMedCrossRefGoogle Scholar
  11. 11.
    Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D (2014) Zika virus, French polynesia, South pacific, 2013. Emerg Infect Dis 20(6):1085–1086. doi: 10.3201/eid2006.140138 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hancock WT, Marfel M, Bel M (2014) Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20(11):1960. doi: 10.3201/eid2011.141380 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet H, Musso D, Ghawche F (2014) Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro surveillance: Bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 19 (9)Google Scholar
  14. 14.
    Watrin L, Ghawche F, Larre P, Neau JP, Mathis S, Fournier E (2016) Guillain-Barre syndrome (42 cases) occurring during a Zika virus outbreak in French Polynesia. Medicine 95(14):e3257. doi: 10.1097/md.0000000000003257 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bogoch II, Brady OJ, Kraemer MU, German M, Creatore MI, Kulkarni MA, Brownstein JS, Mekaru SR et al (2016) Anticipating the international spread of Zika virus from Brazil. Lancet (London, England) 387(10016):335–336. doi: 10.1016/s0140-6736(16)00080-5 CrossRefGoogle Scholar
  16. 16.
    Lazarus C, Guichard M, Philippe JM, Paux T, Vallet B (2016) The French experience of the threat posed by Zika virus. Lancet (London, England) 388(10039):9–11. doi: 10.1016/s0140-6736(16)30509-8 CrossRefGoogle Scholar
  17. 17.
    Meaney-Delman D, Hills SL, Williams C, Galang RR, Iyengar P, Hennenfent AK, Rabe IB, Panella A, Oduyebo T, Honein MA, Zaki S, Lindsey N, Lehman JA, Kwit N, Bertolli J, Ellington S, Igbinosa I, Minta AA, Petersen EE, Mead P, Rasmussen SA, Jamieson DJ (2016) Zika virus infection among U.S. pregnant travelers-August 2015-February 2016. MMWR morbidity and mortality weekly report 65 (8):211-214. Doi:10.15585/mmwr.mm6508e1
  18. 18.
    Swaminathan S, Schlaberg R, Lewis J, Hanson KE, Couturier MR (2016) Fatal Zika virus infection with secondary nonsexual transmission. N Engl J Med. doi: 10.1056/NEJMc1610613
  19. 19.
    Fisher D, Cutter J (2016) The inevitable colonisation of Singapore by Zika virus. BMC Med 14(1):188. doi: 10.1186/s12916-016-0737-9 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Diagne CT, Diallo D, Faye O, Ba Y, Faye O, Gaye A, Dia I, Faye O, Weaver SC, Sall AA, Diallo M (2015) Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC infectious diseases 15:492. doi: 10.1186/s12879-015-1231-2
  21. 21.
    Rocklov J, Quam MB, Sudre B, German M, Kraemer MU, Brady O, Bogoch II, Liu-Helmersson J et al (2016) Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine 9:250–256. doi: 10.1016/j.ebiom.2016.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Saiz JC, Vazquez-Calvo A, Blazquez AB, Merino-Ramos T, Escribano-Romero E, Martin-Acebes MA (2016) Zika virus: the latest newcomer. Front Microbiol 7:496. doi: 10.3389/fmicb.2016.00496 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lazear HM, Diamond MS (2016) Zika virus: new clinical syndromes and its emergence in the western hemisphere. J Virol 90(10):4864–4875. doi: 10.1128/jvi.00252-16 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science (New York, NY) 352(6287):816–818. doi: 10.1126/science.aaf6116 CrossRefGoogle Scholar
  25. 25.
    D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B, Piorkowski G, Maquart M, Descamps D et al (2016) Evidence of sexual transmission of Zika virus. N Engl J Med 374(22):2195–2198. doi: 10.1056/NEJMc1604449 PubMedCrossRefGoogle Scholar
  26. 26.
    Ventura CV, Fernandez MP, Gonzalez IA, Rivera-Hernandez DM, Lopez-Alberola R, Peinado M, Floren AA, Rodriguez PA et al (2016) First travel-associated congenital Zika syndrome in the US: ocular and neurological findings in the absence of microcephaly. Ophthalmic surgery, lasers & imaging retina 47(10):952–955. doi: 10.3928/23258160-20161004-09 CrossRefGoogle Scholar
  27. 27.
    Miranda-Filho Dde B, Martelli CM, Ximenes RA, Araujo TV, Rocha MA, Ramos RC, Dhalia R, Franca RF et al (2016) Initial description of the presumed congenital Zika syndrome. Am J Public Health 106(4):598–600. doi: 10.2105/ajph.2016.303115 PubMedCrossRefGoogle Scholar
  28. 28.
    Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med 374(20):1981–1987. doi: 10.1056/NEJMsr1604338 PubMedCrossRefGoogle Scholar
  29. 29.
    Boeuf P, Drummer HE, Richards JS, Scoullar MJ, Beeson JG (2016) The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact. BMC Med 14(1):112. doi: 10.1186/s12916-016-0660-0 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bell TM, Field EJ, Narang HK (1971) Zika virus infection of the central nervous system of mice. Archiv fur die gesamte Virusforschung 35(2):183–193PubMedCrossRefGoogle Scholar
  31. 31.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22. doi: 10.1038/nrmicro1067 PubMedCrossRefGoogle Scholar
  32. 32.
    Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable Zika virus. Nature 533(7603):425–428. doi: 10.1038/nature17994 PubMedCrossRefGoogle Scholar
  33. 33.
    Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 a resolution cryo-EM structure of Zika virus. Science (New York, NY) 352(6284):467–470. doi: 10.1126/science.aaf5316 CrossRefGoogle Scholar
  34. 34.
    Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S et al (2002) Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell 108(5):717–725PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science (New York, NY) 302 (5643):248. doi: 10.1126/science.1089316
  36. 36.
    Dong H, Fink K, Zust R, Lim SP, Qin CF, Shi PY (2014) Flavivirus RNA methylation. The Journal of general virology 95(Pt 4):763–778. doi: 10.1099/vir.0.062208-0 PubMedCrossRefGoogle Scholar
  37. 37.
    Kuno G, Chang GJ (2007) Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol 152(4):687–696. doi: 10.1007/s00705-006-0903-z PubMedCrossRefGoogle Scholar
  38. 38.
    Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB et al (2012) Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6(2):e1477. doi: 10.1371/journal.pntd.0001477 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Berthet N, Nakoune E, Kamgang B, Selekon B, Descorps-Declere S, Gessain A, Manuguerra JC, Kazanji M (2014) Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector borne and zoonotic diseases (Larchmont, NY) 14(12):862–865. doi: 10.1089/vbz.2014.1607 CrossRefGoogle Scholar
  40. 40.
    May M, Relich RF (2016) A comprehensive systems biology approach to studying Zika virus. PLoS One 11(9):e0161355. doi: 10.1371/journal.pone.0161355 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A (2009) Pathogenesis of flavivirus infections: Using and abusing the host cell. Cell Host Microbe 5(4):318–328. doi: 10.1016/j.chom.2009.04.001 PubMedCrossRefGoogle Scholar
  42. 42.
    Klema VJ, Padmanabhan R, Choi KH (2015) Flaviviral replication complex: coordination between RNA synthesis and 5′-RNA capping. Viruses 7(8):4640–4656. doi: 10.3390/v7082837 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bavia L, Mosimann AL, Aoki MN, Duarte Dos Santos CN (2016) A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 13:84. doi: 10.1186/s12985-016-0541-3 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Roby JA, Pijlman GP, Wilusz J, Khromykh AA (2014) Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses 6(2):404–427. doi: 10.3390/v6020404 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Clarke BD, Roby JA, Slonchak A, Khromykh AA (2015) Functional non-coding RNAs derived from the flavivirus 3′ untranslated region. Virus Res 206:53–61. doi: 10.1016/j.virusres.2015.01.026 PubMedCrossRefGoogle Scholar
  46. 46.
    Luo D, Vasudevan SG, Lescar J (2015) The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antivir Res 118:148–158. doi: 10.1016/j.antiviral.2015.03.014 PubMedCrossRefGoogle Scholar
  47. 47.
    Edeling MA, Diamond MS, Fremont DH (2014) Structural basis of Flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A 111(11):4285–4290. doi: 10.1073/pnas.1322036111 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, DelProposto J, Ogata CM et al (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science (New York, NY) 343(6173):881–885. doi: 10.1126/science.1247749 CrossRefGoogle Scholar
  49. 49.
    Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5):2396–2404. doi: 10.1128/jvi.80.5.2396-2404.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA (2008) Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82(10):4731–4741. doi: 10.1128/jvi.00002-08 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sironi M, Forni D, Clerici M, Cagliani R (2016) Nonstructural proteins are preferential positive selection targets in Zika virus and related Flaviviruses. PLoS Negl Trop Dis 10(9):e0004978. doi: 10.1371/journal.pntd.0004978 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Maringer K, Fernandez-Sesma A (2014) Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev 25(6):669–679. doi: 10.1016/j.cytogfr.2014.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Muylaert IR, Galler R, Rice CM (1997) Genetic analysis of the yellow fever virus NS1 protein: Identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71(1):291–298PubMedPubMedCentralGoogle Scholar
  54. 54.
    Oliveira ER, Mohana-Borges R, de Alencastro RB, Horta BA (2017) The flavivirus capsid protein: Structure, function and perspectives towards drug design. Virus Res 227:115–123. doi: 10.1016/j.virusres.2016.10.005 PubMedCrossRefGoogle Scholar
  55. 55.
    Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81(13):7136–7148. doi: 10.1128/jvi.00116-07 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Uncini A, Shahrizaila N, Kuwabara S (2016) Zika virus infection and Guillain-Barré syndrome: a review focused on clinical and electrophysiological subtypes. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp-2016-314310
  57. 57.
    Moura da Silva AA, Ganz JS, Sousa PD, Doriqui MJ, Ribeiro MR, Branco MD, Queiroz RC, Pacheco MJ et al (2016) Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg Infect Dis 22(11):1953–1956. doi: 10.3201/eid2211.160956 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhu Z, Chan JF, Tee KM, Choi GK, Lau SK, Woo PC, Tse H, Yuen KY (2016) Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerging microbes & infections 5:e22. doi: 10.1038/emi.2016.48 CrossRefGoogle Scholar
  59. 59.
    Whiteman MC, Wicker JA, Kinney RM, Huang CY, Solomon T, Barrett AD (2011) Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness. Vaccine 29(52):9702–9710. doi: 10.1016/j.vaccine.2011.09.036 PubMedCrossRefGoogle Scholar
  60. 60.
    Brinton MA, Basu M (2015) Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res 206:108–119. doi: 10.1016/j.virusres.2015.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Freire CCdM, Iamarino A, Neto DFdL, Sall AA, Zanotto PMdA (2015) Spread of the pandemic Zika virus lineage is associated with NS1 codon usage adaptation in humans. bioRxiv. doi: 10.1101/032839
  62. 62.
    Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D et al (2012) DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8(10):e1002934. doi: 10.1371/journal.ppat.1002934 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83(11):5408–5418. doi: 10.1128/jvi.02188-08 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA (2005) Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol 79(3):1934–1942. doi: 10.1128/jvi.79.3.1934-1942.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Roby JA, Setoh YX, Hall RA, Khromykh AA (2015) Post-translational regulation and modifications of flavivirus structural proteins. The Journal of general virology 96(Pt 7):1551–1569. doi: 10.1099/vir.0.000097 PubMedCrossRefGoogle Scholar
  66. 66.
    Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV (2016) RNA structure duplications and Flavivirus host adaptation. Trends Microbiol 24(4):270–283. doi: 10.1016/j.tim.2016.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR (2008) Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis 14(8):1232–1239. doi: 10.3201/eid1408.080287 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lee E, Leang SK, Davidson A, Lobigs M (2010) Both E protein glycans adversely affect dengue virus infectivity but are beneficial for virion release. J Virol 84(10):5171–5180. doi: 10.1128/jvi.01900-09 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Alen MM, Dallmeier K, Balzarini J, Neyts J, Schols D (2012) Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antivir Res 96(3):280–287. doi: 10.1016/j.antiviral.2012.10.007 PubMedCrossRefGoogle Scholar
  70. 70.
    Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA (2014) Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis 8(1):e2636. doi: 10.1371/journal.pntd.0002636 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Simon-Loriere E, Holmes EC (2011) Why do RNA viruses recombine? Nat Rev Microbiol 9(8):617–626. doi: 10.1038/nrmicro2614 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16(6):653–660. doi: 10.1016/s1473-3099(16)00095-5 PubMedCrossRefGoogle Scholar
  73. 73.
    Gupta AK, Kaur K, Rajput A, Dhanda SK, Sehgal M, Khan MS, Monga I, Dar SA et al (2016) ZikaVR: an integrated Zika virus resource for genomics, proteomics, phylogenetic and therapeutic analysis. Scientific reports 6:32713. doi: 10.1038/srep32713 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Woods CG, Parker A (2013) Investigating microcephaly. Arch Dis Child 98(9):707–713. doi: 10.1136/archdischild-2012-302882 PubMedCrossRefGoogle Scholar
  75. 75.
    Woods CG (2004) Human microcephaly. Curr Opin Neurobiol 14(1):112–117. doi: 10.1016/j.conb.2004.01.003 PubMedCrossRefGoogle Scholar
  76. 76.
    Vannucci RC, Barron TF, Vannucci SJ (2012) Craniometric measures of microcephaly using MRI. Early Hum Dev 88(3):135–140. doi: 10.1016/j.earlhumdev.2011.07.012 PubMedCrossRefGoogle Scholar
  77. 77.
    von der Hagen M, Pivarcsi M, Liebe J, von Bernuth H, Didonato N, Hennermann JB, Buhrer C, Wieczorek D et al (2014) Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 56(8):732–741. doi: 10.1111/dmcn.12425 PubMedCrossRefGoogle Scholar
  78. 78.
    Leroy JG, Frias JL (2005) Nonsyndromic microcephaly: an overview. Adv Pediatr 52:261–293PubMedCrossRefGoogle Scholar
  79. 79.
    Amin H, Singhal N, Sauve RS (1997) Impact of intrauterine growth restriction on neurodevelopmental and growth outcomes in very low birthweight infants. Acta paediatrica (Oslo, Norway: 1992) 86(3):306–314CrossRefGoogle Scholar
  80. 80.
    Courcet JB, Faivre L, Malzac P, Masurel-Paulet A, Lopez E, Callier P, Lambert L, Lemesle M et al (2012) The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy. J Med Genet 49(12):731–736. doi: 10.1136/jmedgenet-2012-101251 PubMedCrossRefGoogle Scholar
  81. 81.
    Abuelo D (2007) Microcephaly syndromes. Semin Pediatr Neurol 14(3):118–127. doi: 10.1016/j.spen.2007.07.003 PubMedCrossRefGoogle Scholar
  82. 82.
    Skull SA, Ruben AR, Walker AC (1997) Malnutrition and microcephaly in Australian aboriginal children. Med J Aust 166(8):412–414PubMedGoogle Scholar
  83. 83.
    Boppana SB, Ross SA, Fowler KB (2013) Congenital cytomegalovirus infection: clinical outcome. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 57(Suppl 4):S178–S181. doi: 10.1093/cid/cit629 CrossRefGoogle Scholar
  84. 84.
    Macfarlane DW, Boyd RD, Dodrill CB, Tufts E (1975) Intrauterine rubella, head size, and intellect. Pediatrics 55(6):797–801PubMedGoogle Scholar
  85. 85.
    Lambert SR (2007) Congenital rubella syndrome: the end is in sight. Br J Ophthalmol 91(11):1418–1419. doi: 10.1136/bjo.2007.117960 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Coyne CB, Lazear HM (2016) Zika virus—reigniting the TORCH. Nat Rev Microbiol 14(11):707–715. doi: 10.1038/nrmicro.2016.125 PubMedCrossRefGoogle Scholar
  87. 87.
    Moore CA, Weaver DD, Bull MJ (1990) Fetal brain disruption sequence. J Pediatr 116(3):383–386PubMedCrossRefGoogle Scholar
  88. 88.
    Gabis L, Gelman-Kohan Z, Mogilner M (1997) Microcephaly due to fetal brain disruption sequence. Case report Journal of perinatal medicine 25(2):213–215PubMedCrossRefGoogle Scholar
  89. 89.
    Brasil P, Pereira JP Jr, Raja Gabaglia C, Damasceno L, Wakimoto M, Ribeiro Nogueira RM, Carvalho de Sequeira P, Machado Siqueira A et al (2016) Zika virus infection in pregnant women in Rio de Janeiro—preliminary report. N Engl J Med. doi: 10.1056/NEJMoa1602412
  90. 90.
    Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DD, Cavalcanti DP, Pessoa A, Doriqui MJ, Neri JI, Neto JM, Wanderley HY, Cernach M, El-Husny AS, Pone MV, Serao CL, Sanseverino MT (2016) Possible association between Zika virus infection and microcephaly—Brazil, 2015. MMWR Morbidity and mortality weekly report 65 (3):59–62. doi: 10.15585/mmwr.mm6503e2
  91. 91.
    Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K et al (2016) Zika virus associated with microcephaly. N Engl J Med 374(10):951–958. doi: 10.1056/NEJMoa1600651 PubMedCrossRefGoogle Scholar
  92. 92.
    Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jaaskelainen AJ, Smura T, Rosenberg A, Hill DA et al (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374(22):2142–2151. doi: 10.1056/NEJMoa1601824 PubMedCrossRefGoogle Scholar
  93. 93.
    O'Leary DR, Kuhn S, Kniss KL, Hinckley AF, Rasmussen SA, Pape WJ, Kightlinger LK, Beecham BD et al (2006) Birth outcomes following West Nile virus infection of pregnant women in the United States: 2003–2004. Pediatrics 117(3):e537–e545. doi: 10.1542/peds.2005-2024 PubMedCrossRefGoogle Scholar
  94. 94.
    Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau V-M et al (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 17(9):1102–1108. doi: 10.1038/ni.3515 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM (2016) Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: Tip of the iceberg? Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 47(1):6–7. doi: 10.1002/uog.15831 CrossRefGoogle Scholar
  96. 96.
    Costa F, Sarno M, Khouri R, de Paula FB, Siqueira I, Ribeiro GS, Ribeiro HC, Campos GS et al (2016) Emergence of congenital Zika syndrome: viewpoint from the front lines. Ann Intern Med 164(10):689–691. doi: 10.7326/m16-0332 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chan JF, Choi GK, Yip CC, Cheng VC, Yuen KY (2016) Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease. The Journal of infection 72(5):507–524. doi: 10.1016/j.jinf.2016.02.011 PubMedCrossRefGoogle Scholar
  98. 98.
    Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, Salje H, Van Kerkhove MD et al (2016) Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet (London, England) 387(10033):2125–2132. doi: 10.1016/s0140-6736(16)00651-6 CrossRefGoogle Scholar
  99. 99.
    Pacheco O, Beltrán M, Nelson CA, Valencia D, Tolosa N, Farr SL, Padilla AV, Tong VT, Cuevas EL, Espinosa-Bode A, Pardo L, Rico A, Reefhuis J, González M, Mercado M, Chaparro P, Martínez Duran M, Rao CY, Muñoz MM, Powers AM, Cuéllar C, Helfand R, Huguett C, Jamieson DJ, Honein MA, Ospina Martínez ML Zika Virus Disease in Colombia — Preliminary Report. New England Journal of Medicine 0 (0):null. doi: 10.1056/NEJMoa1604037
  100. 100.
    Paixao ES, Barreto F, Teixeira Mda G, Costa Mda C, Rodrigues LC (2016) History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health 106(4):606–612. doi: 10.2105/ajph.2016.303112 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    de Araújo TVB, Rodrigues LC, de Alencar Ximenes RA, de Barros Miranda-Filho D, Montarroyos UR, de Melo APL, Valongueiro S, de Albuquerque MdFPM, Souza WV, Braga C, Filho SPB, Cordeiro MT, Vazquez E, Di Cavalcanti Souza Cruz D, Henriques CMP, Bezerra LCA, da Silva Castanha PM, Dhalia R, Marques-Júnior ETA, Martelli CMT Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. The Lancet Infectious Diseases. doi: 10.1016/S1473-3099(16)30318-8
  102. 102.
    Corona-Rivera JR, Corona-Rivera E, Romero-Velarde E, Hernandez-Rocha J, Bobadilla-Morales L, Corona-Rivera A (2001) Report and review of the fetal brain disruption sequence. Eur J Pediatr 160(11):664–667PubMedCrossRefGoogle Scholar
  103. 103.
    Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J et al (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18(5):587–590. doi: 10.1016/j.stem.2016.02.016 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165(5):1238–1254. doi: 10.1016/j.cell.2016.04.032 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19(2):258–265. doi: 10.1016/j.stem.2016.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M et al (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5):1081–1091. doi: 10.1016/j.cell.2016.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brault J-B, Khou C, Basset J, Coquand L, Fraisier V, Frenkiel M-P, Goud B, Manuguerra J-C et al (2016) Comparative analysis between Flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex. EBioMedicine 10:71–76. doi: 10.1016/j.ebiom.2016.07.018 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19(1):120–126. doi: 10.1016/j.stem.2016.04.017 PubMedCrossRefGoogle Scholar
  109. 109.
    Rolfe AJ, Bosco DB, Wang J, Nowakowski RS, Fan J, Ren Y (2016) Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell & Bioscience 6(1):42. doi: 10.1186/s13578-016-0110-x CrossRefGoogle Scholar
  110. 110.
    De Miranda J, Yaddanapudi K, Hornig M, Villar G, Serge R, Lipkin WI (2010) Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 1 (4). doi: 10.1128/mBio.00176-10
  111. 111.
    Forrest CM, Khalil OS, Pisar M, Smith RA, Darlington LG, Stone TW (2012) Prenatal activation of toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Molecular brain 5:22. doi: 10.1186/1756-6606-5-22 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Macedo DS, Araujo DP, Sampaio LR, Vasconcelos SM, Sales PM, Sousa FC, Hallak JE, Crippa JA et al (2012) Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: a systematic review. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 45(3):179–186PubMedPubMedCentralGoogle Scholar
  113. 113.
    Duan X, Kang E, Liu CY, Ming GL, Song H (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18(1):108–115. doi: 10.1016/j.conb.2008.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain J Neurol 135(Pt 5):1348–1369. doi: 10.1093/brain/aws019 CrossRefGoogle Scholar
  115. 115.
    Kahoud RJ, Elsen GE, Hevner RF, Hodge RD (2014) Conditional ablation of Tbr2 results in abnormal development of the olfactory bulbs and subventricular zone-rostral migratory stream. Developmental dynamics: an official publication of the American Association of Anatomists 243(3):440–450. doi: 10.1002/dvdy.24090 CrossRefGoogle Scholar
  116. 116.
    Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. doi: 10.1016/j.tins.2011.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lakatosova S, Ostatnikova D (2012) Reelin and its complex involvement in brain development and function. Int J Biochem Cell Biol 44(9):1501–1504. doi: 10.1016/j.biocel.2012.06.002 PubMedCrossRefGoogle Scholar
  118. 118.
    Borrell V, Calegari F (2014) Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length. Neurosci Res 86:14–24. doi: 10.1016/j.neures.2014.04.004 PubMedCrossRefGoogle Scholar
  119. 119.
    Park S (2013) Brain-region specific apoptosis triggered by Eph/ephrin signaling. Experimental neurobiology 22(3):143–148. doi: 10.5607/en.2013.22.3.143 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Barak B, Feldman N, Okun E (2014) Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front Neurosci 8:272. doi: 10.3389/fnins.2014.00272 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. The journal of neuroscience: the official journal of the Society for Neuroscience 22 (7):2478-2486. Doi:20026268Google Scholar
  122. 122.
    Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H, Millward JM, Landmann R et al (2006) Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. The Journal of neuroscience: the official journal of the Society for Neuroscience 26(49):12826–12837. doi: 10.1523/jneurosci.4937-05.2006 CrossRefGoogle Scholar
  123. 123.
    Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lu J, Kosaras B, Sidman RL et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175(2):209–215. doi: 10.1083/jcb.200606016 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088. doi: 10.1038/ncb1629 PubMedCrossRefGoogle Scholar
  125. 125.
    Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA et al (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803. doi: 10.1073/pnas.0702553104 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. Journal of molecular neuroscience: MN 29(3):185–194. doi: 10.1385/jmn:29:3:185 PubMedCrossRefGoogle Scholar
  127. 127.
    Lathia JD, Okun E, Tang SC, Griffioen K, Cheng A, Mughal MR, Laryea G, Selvaraj PK, ffrench-Constant C, Magnus T, Arumugam TV, Mattson MP (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. The Journal of neuroscience: the official journal of the Society for Neuroscience 28 (51):13978–13984. doi: 10.1523/jneurosci.2140-08.2008
  128. 128.
    Kaul D, Habbel P, Derkow K, Kruger C, Franzoni E, Wulczyn FG, Bereswill S, Nitsch R et al (2012) Expression of toll-like receptors in the developing brain. PLoS One 7(5):e37767. doi: 10.1371/journal.pone.0037767 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR et al (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 107(35):15625–15630. doi: 10.1073/pnas.1005807107 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yaddanapudi K, De Miranda J, Hornig M, Lipkin WI (2011) Toll-like receptor 3 regulates neural stem cell proliferation by modulating the sonic hedgehog pathway. PLoS One 6(10):e26766. doi: 10.1371/journal.pone.0026766 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Martinez C, Cornejo VH, Lois P, Ellis T, Solis NP, Wainwright BJ, Palma V (2013) Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source. PLoS One 8(6):e65818. doi: 10.1371/journal.pone.0065818 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhang Y, Hu W (2012) NFκB signaling regulates embryonic and adult neurogenesis. Frontiers in biology 7 (4): 10.1007/s11515-11012-11233-z. doi: 10.1007/s11515-012-1233-z
  133. 133.
    Boersma MC, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK (2011) A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. The Journal of neuroscience: the official journal of the Society for Neuroscience 31(14):5414–5425. doi: 10.1523/jneurosci.2456-10.2011 CrossRefGoogle Scholar
  134. 134.
    Bayless NL, Greenberg RS, Swigut T, Wysocka J, Blish CA (2016) Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe 20(4):423–428. doi: 10.1016/j.chom.2016.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Li H, Saucedo-Cuevas L, Shresta S, Gleeson JG (2016) The neurobiology of Zika virus. Neuron 92(5):949–958. doi: 10.1016/j.neuron.2016.11.031 PubMedCrossRefGoogle Scholar
  136. 136.
    Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M (2016) Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain J Neurol 139(Pt 2):317–337. doi: 10.1093/brain/awv371 CrossRefGoogle Scholar
  137. 137.
    Ogen-Shtern N, Ben David T, Lederkremer GZ (2016) Protein aggregation and ER stress. Brain research 1648 (Pt B):658-666. doi: 10.1016/j.brainres.2016.03.044
  138. 138.
    Bueter W, Dammann O, Leviton A (2009) Endoplasmic reticulum stress, inflammation, and perinatal brain damage. Pediatr Res 66(5):487–494. doi: 10.1203/PDR.0b013e3181baa083 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Fribley A, Zhang K, Kaufman RJ (2009) Regulation of apoptosis by the unfolded protein response. Methods in molecular biology (Clifton, NJ) 559:191-204. doi: 10.1007/978-1-60327-017-5_14
  140. 140.
    Shah SZ, Zhao D, Khan SH, Yang L (2015) Unfolded protein response pathways in neurodegenerative diseases. Journal of molecular neuroscience: MN 57(4):529–537. doi: 10.1007/s12031-015-0633-3 PubMedCrossRefGoogle Scholar
  141. 141.
    Halliday M, Mallucci GR (2015) Review: modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol Appl Neurobiol 41(4):414–427. doi: 10.1111/nan.12211 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W (2016) Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab. doi: 10.1177/0271678x16650218
  143. 143.
    Tang X, Liang X, Li M, Guo T, Duan N, Wang Y, Rong G, Yang L et al (2015) ATF6 pathway of unfolded protein response mediates advanced oxidation protein product-induced hypertrophy and epithelial-to-mesenchymal transition in HK-2 cells. Mol Cell Biochem 407(1–2):197–207. doi: 10.1007/s11010-015-2469-0 PubMedCrossRefGoogle Scholar
  144. 144.
    Paul D, Bartenschlager R (2013) Architecture and biogenesis of plus-strand RNA virus replication factories. World journal of virology 2(2):32–48. doi: 10.5501/wjv.v2.i2.32 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Martin-Acebes MA, Blazquez AB, Jimenez de Oya N, Escribano-Romero E, Saiz JC (2011) West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. PLoS One 6(9):e24970. doi: 10.1371/journal.pone.0024970 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J, Bartenschlager R, Marcello A (2013) Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J Virol 87(11):6469–6481. doi: 10.1128/jvi.03456-12 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ (2014) Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J Virol 88(9):4687–4697. doi: 10.1128/jvi.00118-14 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q et al (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494(7436):201–206. doi: 10.1038/nature11866 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Godin JD, Creppe C, Laguesse S, Nguyen L (2016) Emerging roles for the unfolded protein response in the developing nervous system. Trends Neurosci 39(6):394–404. doi: 10.1016/j.tins.2016.04.002 PubMedCrossRefGoogle Scholar
  150. 150.
    Frank CL, Ge X, Xie Z, Zhou Y, Tsai LH (2010) Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem 285(43):33324–33337. doi: 10.1074/jbc.M110.140699 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Martinez S, Andreu A, Mecklenburg N, Echevarria D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18. doi: 10.3389/fnana.2013.00018 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kawada K, Iekumo T, Saito R, Kaneko M, Mimori S, Nomura Y, Okuma Y (2014) Aberrant neuronal differentiation and inhibition of dendrite outgrowth resulting from endoplasmic reticulum stress. J Neurosci Res 92(9):1122–1133. doi: 10.1002/jnr.23389 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wei X, Howell AS, Dong X, Taylor CA, Cooper RC, Zhang J, Zou W, Sherwood DR, Shen K (2015) The unfolded protein response is required for dendrite morphogenesis. eLife 4:e06963. doi: 10.7554/eLife.06963
  154. 154.
    Laguesse S, Creppe C, Nedialkova DD, Prevot PP, Borgs L, Huysseune S, Franco B, Duysens G et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35(5):553–567. doi: 10.1016/j.devcel.2015.11.005 PubMedCrossRefGoogle Scholar
  155. 155.
    Mimura N, Yuasa S, Soma M, Jin H, Kimura K, Goto S, Koseki H, Aoe T (2008) Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol Cell Biol 28(1):293–301. doi: 10.1128/mcb.00473-07 PubMedCrossRefGoogle Scholar
  156. 156.
    Alimov A, Wang H, Liu M, Frank JA, Xu M, Ou X, Luo J (2013) Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods. Metab Brain Dis 28(4):667–676. doi: 10.1007/s11011-013-9430-2 PubMedCrossRefGoogle Scholar
  157. 157.
    Hershey T, Lugar HM, Shimony JS, Rutlin J, Koller JM, Perantie DC, Paciorkowski AR, Eisenstein SA et al (2012) Early brain vulnerability in Wolfram syndrome. PLoS One 7(7):e40604. doi: 10.1371/journal.pone.0040604 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Falivelli G, De Jaco A, Favaloro FL, Kim H, Wilson J, Dubi N, Ellisman MH, Abrahams BS et al (2012) Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation. Hum Mol Genet 21(21):4761–4773. doi: 10.1093/hmg/dds320 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Scheper W, Hoozemans JJ (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331. doi: 10.1007/s00401-015-1462-8 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN et al (2016) Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 44(18):8610–8620. doi: 10.1093/nar/gkw765 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Islam Z, Gilbert M, Mohammad QD, Klaij K, Li J, van Rijs W, Tio-Gillen AP, Talukder KA et al (2012) Guillain-Barre syndrome-related Campylobacter jejuni in Bangladesh: ganglioside mimicry and cross-reactive antibodies. PLoS One 7(8):e43976. doi: 10.1371/journal.pone.0043976 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wakerley BR, Uncini A, Yuki N (2014) Guillain-Barre and Miller Fisher syndromes—new diagnostic classification. Nat Rev Neurol 10(9):537–544. doi: 10.1038/nrneurol.2014.138 PubMedCrossRefGoogle Scholar
  163. 163.
    Wakerley BR, Yuki N (2013) Infectious and noninfectious triggers in Guillain-Barre syndrome. Expert Rev Clin Immunol 9(7):627–639. doi: 10.1586/1744666x.2013.811119 PubMedCrossRefGoogle Scholar
  164. 164.
    Nachamkin I, Arzarte Barbosa P, Ung H, Lobato C, Gonzalez Rivera A, Rodriguez P, Garcia Briseno A, Cordero LM et al (2007) Patterns of Guillain-Barre syndrome in children: results from a Mexican population. Neurology 69(17):1665–1671. doi: 10.1212/01.wnl.0000265396.87983.bd PubMedCrossRefGoogle Scholar
  165. 165.
    Godschalk PC, Kuijf ML, Li J, St Michael F, Ang CW, Jacobs BC, Karwaski MF, Brochu D et al (2007) Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect Immun 75(3):1245–1254. doi: 10.1128/iai.00872-06 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Houliston RS, Vinogradov E, Dzieciatkowska M, Li J, St Michael F, Karwaski MF, Brochu D, Jarrell HC et al (2011) Lipooligosaccharide of Campylobacter jejuni: similarity with multiple types of mammalian glycans beyond gangliosides. J Biol Chem 286(14):12361–12370. doi: 10.1074/jbc.M110.181750 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Kolter T (2012) Ganglioside biochemistry. ISRN biochemistry 2012:506160. doi: 10.5402/2012/506160 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Ang CW, Jacobs BC, Laman JD (2004) The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol 25(2):61–66. doi: 10.1016/j.it.2003.12.004 PubMedCrossRefGoogle Scholar
  169. 169.
    Yuki N (1997) Molecular mimicry between gangliosides and lipopolysaccharides of Campylobacter jejuni isolated from patients with Guillain-Barre syndrome and Miller Fisher syndrome. The Journal of infectious diseases 176(Suppl 2):S150–S153PubMedCrossRefGoogle Scholar
  170. 170.
    Dalakas MC (2015) Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta 1852(4):658–666. doi: 10.1016/j.bbadis.2014.06.013 PubMedCrossRefGoogle Scholar
  171. 171.
    Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain J Neurol 125(Pt 12):2591–2625CrossRefGoogle Scholar
  172. 172.
    Ang CW, Yuki N, Jacobs BC, Koga M, Van Doorn PA, Schmitz PI, Van Der Meche FG (1999) Rapidly progressive, predominantly motor Guillain-Barre syndrome with anti-GalNAc-GD1a antibodies. Neurology 53(9):2122–2127PubMedCrossRefGoogle Scholar
  173. 173.
    Kusunoki S, Chiba A, Kanazawa I (1999) Anti-GQ1b IgG antibody is associated with ataxia as well as ophthalmoplegia. Muscle Nerve 22(8):1071–1074PubMedCrossRefGoogle Scholar
  174. 174.
    Tam CC, Rodrigues LC, Petersen I, Islam A, Hayward A, O'Brien SJ (2006) Incidence of Guillain-Barre syndrome among patients with Campylobacter infection: a general practice research database study. The Journal of infectious diseases 194(1):95–97. doi: 10.1086/504294 PubMedCrossRefGoogle Scholar
  175. 175.
    Poropatich KO, Walker CL, Black RE (2010) Quantifying the association between Campylobacter infection and Guillain-Barre syndrome: a systematic review. J Health Popul Nutr 28(6):545–552PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Anaya J-M, Ramirez-Santana C, Salgado-Castaneda I, Chang C, Ansari A, Gershwin ME (2016) Zika virus and neurologic autoimmunity: the putative role of gangliosides. BMC Med 14(1):1–3. doi: 10.1186/s12916-016-0601-y CrossRefGoogle Scholar
  177. 177.
    van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA (2014) Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 10(8):469–482. doi: 10.1038/nrneurol.2014.121 PubMedCrossRefGoogle Scholar
  178. 178.
    Nyati KK, Prasad KN (2014) Role of cytokines and toll-like receptors in the immunopathogenesis of Guillain-Barre syndrome. Mediat Inflamm 2014:758639. doi: 10.1155/2014/758639 CrossRefGoogle Scholar
  179. 179.
    Zhang HL, Zheng XY, Zhu J (2013) Th1/Th2/Th17/Treg cytokines in Guillain-Barre syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev 24(5):443–453. doi: 10.1016/j.cytogfr.2013.05.005 PubMedCrossRefGoogle Scholar
  180. 180.
    Lu MO, Zhu J (2011) The role of cytokines in Guillain-Barre syndrome. J Neurol 258(4):533–548. doi: 10.1007/s00415-010-5836-5 PubMedCrossRefGoogle Scholar
  181. 181.
    Kivity S, Arango MT, Ehrenfeld M, Tehori O, Shoenfeld Y, Anaya JM, Agmon-Levin N (2014) Infection and autoimmunity in Sjogren's syndrome: a clinical study and comprehensive review. J Autoimmun 51:17–22. doi: 10.1016/j.jaut.2014.02.008 PubMedCrossRefGoogle Scholar
  182. 182.
    Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC, Hsu TK, Liu HS, Liu CC et al (2011) Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Experimental biology and medicine (Maywood, NJ) 236(5):515–523. doi: 10.1258/ebm.2011.010339 CrossRefGoogle Scholar
  183. 183.
    Liu IJ, Chiu CY, Chen YC, Wu HC (2011) Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J Biol Chem 286(11):9726–9736. doi: 10.1074/jbc.M110.170993 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Cheng HJ, Luo YH, Wan SW, Lin CF, Wang ST, Hung NT, Liu CC, Ho TS et al (2015) Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients. AmJTrop Med Hyg 92(5):989–995. doi: 10.4269/ajtmh.14-0162 CrossRefGoogle Scholar
  185. 185.
    Chuang YC, Lin J, Lin YS, Wang S, Yeh TM (2016) Dengue virus nonstructural protein 1-induced antibodies cross-react with human plasminogen and enhance its activation. Journal of immunology (Baltimore, Md: 1950) 196(3):1218–1226. doi: 10.4049/jimmunol.1500057 CrossRefGoogle Scholar
  186. 186.
    Leis AA, Szatmary G, Ross MA, Stokic DS (2014) West nile virus infection and myasthenia gravis. Muscle Nerve 49(1):26–29. doi: 10.1002/mus.23869 PubMedCrossRefGoogle Scholar
  187. 187.
    Greco M, Cofano P, Lobreglio G (2016) Seropositivity for West Nile virus antibodies in patients affected by myasthenia gravis. Journal of clinical medicine research 8 (3):196-201. Doi:10.14740/jocmr2413w
  188. 188.
    Dourado ME, Felix RH, da Silva WK, Queiroz JW, Jeronimo SM (2012) Clinical characteristics of Guillain-Barre syndrome in a tropical country: a Brazilian experience. Acta Neurol Scand 125(1):47–53. doi: 10.1111/j.1600-0404.2011.01503.x PubMedCrossRefGoogle Scholar
  189. 189.
    Asnis DS, Conetta R, Teixeira AA, Waldman G, Sampson BA (2000) The West Nile virus outbreak of 1999 in New York: the flushing hospital experience. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 30(3):413–418. doi: 10.1086/313737 CrossRefGoogle Scholar
  190. 190.
    dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, Coelho GE, Badaró R, Cortez J, Ospina M, Pimentel R, Masis R, Hernandez F, Lara B, Montoya R, Jubithana B, Melchor A, Alvarez A, Aldighieri S, Dye C, Espinal MA Zika Virus and the Guillain–Barré Syndrome — Case Series from Seven Countries. New England Journal of Medicine 0 (0):null. doi:doi: 10.1056/NEJMc1609015
  191. 191.
    Oehler E, Fournier E, Leparc-Goffart I, Larre P, Cubizolle S, Sookhareea C, Lastere S, Ghawche F (2015) Increase in cases of Guillain-Barre syndrome during a chikungunya outbreak, French Polynesia, 2014 to 2015. Euro surveillance: bulletin Europeen sur les maladies transmissibles =. European communicable disease bulletin 20(48):30079. doi: 10.2807/1560-7917.es.2015.20.48.30079 Google Scholar
  192. 192.
    Brasil P, Sequeira PC, Freitas AD, Zogbi HE, Calvet GA, de Souza RV, Siqueira AM, de Mendonca MC, Nogueira RM, de Filippis AM, Solomon T (2016) Guillain-Barre syndrome associated with Zika virus infection. Lancet (London, England) 387 (10026):1482. doi: 10.1016/s0140-6736(16)30058-7
  193. 193.
    Roze B, Najioullah F, Ferge JL, Apetse K, Brouste Y, Cesaire R, Fagour C, Fagour L et al (2016) Zika virus detection in urine from patients with Guillain-Barre syndrome on Martinique, January 2016. Euro surveillance: bulletin Europeen sur les maladies transmissibles =. European communicable disease bulletin 21(9). doi: 10.2807/1560-7917.es.2016.21.9.30154
  194. 194.
    Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub T, Baudouin L et al (2016) Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet (London, England) 387(10027):1531–1539. doi: 10.1016/s0140-6736(16)00562-6 CrossRefGoogle Scholar
  195. 195.
    Parra B, Lizarazo J, Jiménez-Arango JA, Zea-Vera AF, González-Manrique G, Vargas J, Angarita JA, Zuñiga G et al (2016) Guillain–Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med 375(16):1513–1523. doi: 10.1056/NEJMoa1605564 PubMedCrossRefGoogle Scholar
  196. 196.
    Willison HJ, Jacobs BC, van Doorn PA (2016) Guillain-Barre syndrome. Lancet (London, England) 388(10045):717–727. doi: 10.1016/s0140-6736(16)00339-1 CrossRefGoogle Scholar
  197. 197.
    Muñoz-Jordán JL, Fredericksen BL (2010) How Flaviviruses activate and suppress the interferon response. Viruses 2(2):676–691. doi: 10.3390/v2020676 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Lubick Kirk J, Robertson Shelly J, McNally Kristin L, Freedman Brett A, Rasmussen Angela L, Taylor RT, Walts Avram D, Tsuruda S, Sakai M, Ishizuka M, Boer Elena F, Foster Erin C, Chiramel Abhilash I, Addison Conrad B, Green R, Kastner Daniel L, Katze Michael G, Holland Steven M, Forlino A, Freeman Alexandra F, Boehm M, Yoshii K, Best Sonja M Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell host & microbe 18 (1):61–74. doi: 10.1016/j.chom.2015.06.007
  199. 199.
    Guo JT, Hayashi J, Seeger C (2005) West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol 79(3):1343–1350. doi: 10.1128/jvi.79.3.1343-1350.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, Boer E, Wolfinbarger JB et al (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79(20):12828–12839. doi: 10.1128/jvi.79.20.12828-12839.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, Walts AD, Tsuruda S et al (2015) Flavivirus antagonism of type I interferon signaling reveals Prolidase as a regulator of IFNAR1 surface expression. Cell Host Microbe 18(1):61–74. doi: 10.1016/j.chom.2015.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Parlato S, Romagnoli G, Spadaro F, Canini I, Sirabella P, Borghi P, Ramoni C, Filesi I et al (2010) LOX-1 as a natural IFN-alpha-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood 115(8):1554–1563. doi: 10.1182/blood-2009-07-234468 PubMedCrossRefGoogle Scholar
  203. 203.
    Coro ES, Chang WL, Baumgarth N (2006) Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. Journal of immunology (Baltimore, Md: 1950) 176(7):4343–4351CrossRefGoogle Scholar
  204. 204.
    Kalinke U, Prinz M (2012) Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS. Immunol Cell Biol 90(5):505–509PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P et al (2009) T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 65(5):499–509. doi: 10.1002/ana.21652 PubMedCrossRefGoogle Scholar
  206. 206.
    Ramgolam VS, Sha Y, Jin J, Zhang X, Markovic-Plese S (2009) IFN-beta inhibits human Th17 cell differentiation. Journal of immunology (Baltimore, Md: 1950) 183(8):5418–5427. doi: 10.4049/jimmunol.0803227 CrossRefGoogle Scholar
  207. 207.
    Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S (2009) IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. Journal of immunology (Baltimore, Md: 1950) 182(6):3928–3936. doi: 10.4049/jimmunol.0802226 CrossRefGoogle Scholar
  208. 208.
    Tao Y, Zhang X, Chopra M, Kim M-J, Buch KR, Kong D, Jin J, Tang Y et al (2014) The role of endogenous IFN-β in the regulation of Th17 responses in patients with relapsing-remitting multiple sclerosis. J Immunol 192(12):5610–5617. doi: 10.4049/jimmunol.1302580 PubMedCrossRefGoogle Scholar
  209. 209.
    Ejlerskov P, Hultberg Jeanette G, Wang J, Carlsson R, Ambjørn M, Kuss M, Liu Y, Porcu G et al (2015) Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson’s disease-like dementia. Cell 163(2):324–339. doi: 10.1016/j.cell.2015.08.069 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Feng X, Han D, Kilaru BK, Franek BS, Niewold TB, Reder AT (2012) Inhibition of interferon-beta responses in multiple sclerosis immune cells associated with high-dose statins. Arch Neurol 69(10):1303–1309. doi: 10.1001/archneurol.2012.465 PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Yamaguchi KD, Ruderman DL, Croze E, Wagner TC, Velichko S, Reder AT, Salamon H (2008) IFN-beta-regulated genes show abnormal expression in therapy-naive relapsing-remitting MS mononuclear cells: gene expression analysis employing all reported protein-protein interactions. J Neuroimmunol 195(1–2):116–120. doi: 10.1016/j.jneuroim.2007.12.007 PubMedCrossRefGoogle Scholar
  212. 212.
    Bornsen L, Romme Christensen J, Ratzer R, Hedegaard C, Sondergaard HB, Krakauer M, Hesse D, Nielsen CH et al (2015) Endogenous interferon-beta-inducible gene expression and interferon-beta-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis. PLoS One 10(3):e0118830. doi: 10.1371/journal.pone.0118830 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Reder AT, Feng X (2014) How type I interferons work in multiple sclerosis and other diseases: Some unexpected mechanisms. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 34(8):589–599. doi: 10.1089/jir.2013.0158 CrossRefGoogle Scholar
  214. 214.
    Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YC, Skinner SM, Zhang JZ et al (2009) Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T cells in MS. Eur J Immunol 39(9):2525–2536. doi: 10.1002/eji.200838879 PubMedCrossRefGoogle Scholar
  215. 215.
    Zhang X, Tao Y, Troiani L, Markovic-Plese S (2011) Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. Journal of immunology (Baltimore, Md: 1950) 187(6):3431–3437. doi: 10.4049/jimmunol.1100580 CrossRefGoogle Scholar
  216. 216.
    Babaloo Z, Aliparasti MR, Babaiea F, Almasi S, Baradaran B, Farhoudi M (2015) The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol Lett 164(2):76–80. doi: 10.1016/j.imlet.2015.01.001 PubMedCrossRefGoogle Scholar
  217. 217.
    Rostami A, Ciric B (2013) Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 333(1–2):76–87. doi: 10.1016/j.jns.2013.03.002 PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Liang SL, Wang WZ, Huang S, Wang XK, Zhang S, Wu Y (2012) Th17 helper cell and T-cell immunoglobulin and mucin domain 3 involvement in Guillain-Barre syndrome. Immunopharmacol Immunotoxicol 34(6):1039–1046. doi: 10.3109/08923973.2012.697469 PubMedCrossRefGoogle Scholar
  219. 219.
    Wu X, Wang J, Liu K, Zhu J, Zhang HL (2016) Are Th17 cells and their cytokines a therapeutic target in Guillain-Barre syndrome? Expert Opin Ther Targets 20(2):209–222. doi: 10.1517/14728222.2016.1086751 PubMedCrossRefGoogle Scholar
  220. 220.
    Lanteri MC, x, Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, Heitman JW, Custer B, Hirschkorn DF, Tobler LH, Kiely N, Prince HE, Ndhlovu LC, Nixon DF, Kamel HT, Kelvin DJ, Busch MP, Rudensky AY, Diamond MS, Norris PJ Tregs control the development of symptomatic West Nile virus infection in humans and mice. The Journal of Clinical Investigation 119 (11):3266–3277. doi: 10.1172/JCI39387
  221. 221.
    Tillu H, Tripathy AS, Reshmi PV, Cecilia D (2016) Altered profile of regulatory T cells and associated cytokines in mild and moderate dengue. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology 35(3):453–461. doi: 10.1007/s10096-015-2561-0 CrossRefGoogle Scholar
  222. 222.
    Lühn K, Simmons CP, Moran E, Dung NTP, Chau TNB, Quyen NTH, Thao LTT, Van Ngoc T et al (2007) Increased frequencies of CD4(+)CD25(high) regulatory T cells in acute dengue infection. J Exp Med 204(5):979–985. doi: 10.1084/jem.20061381 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Lin AE, Mak TW (2007) The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr Opin Immunol 19(6):665–673. doi: 10.1016/j.coi.2007.10.002 PubMedCrossRefGoogle Scholar
  224. 224.
    Nurieva RI, Zheng S, Jin W, Chung Y, Zhang Y, Martinez GJ, Reynolds JM, Wang S-L et al (2010) The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation. Immunity 32(5):670–680. doi: 10.1016/j.immuni.2010.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sanchez-Seco MP et al (2016) Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19(6):882–890. doi: 10.1016/j.chom.2016.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Tappe D, Perez-Giron JV, Zammarchi L, Rissland J, Ferreira DF, Jaenisch T, Gomez-Medina S, Gunther S et al (2016) Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol 205(3):269–273. doi: 10.1007/s00430-015-0445-7 PubMedCrossRefGoogle Scholar
  227. 227.
    Campanati L, Higa LM, Delvecchio R, Pezzuto P, Valadão AL, Monteiro FL, Ventura GM, Veríssimo C, Aguiar RS, De Filippis AMB, Tanuri A (2016) The impact of African and Brazilian Zika virus isolates on neuroprogenitors. bioRxiv. doi: 10.1101/046599
  228. 228.
    Sinha S, Prasad KN, Jain D, Nyati KK, Pradhan S, Agrawal S (2010) Immunoglobulin IgG fc-receptor polymorphisms and HLA class II molecules in Guillain-Barre syndrome. Acta Neurol Scand 122(1):21–26. doi: 10.1111/j.1600-0404.2009.01229.x PubMedCrossRefGoogle Scholar
  229. 229.
    Sang D, Chen Q, Liu X, Qu H, Wei D, Yin L, Zhang L (2012) Fc receptor like 3 in Chinese patients of Han nationality with Guillain-Barre syndrome. J Neuroimmunol 246(1–2):65–68. doi: 10.1016/j.jneuroim.2012.03.006 PubMedCrossRefGoogle Scholar
  230. 230.
    Jiao H, Wang W, Wang H, Wu Y, Wang L (2012) Tumor necrosis factor alpha 308 G/A polymorphism and Guillain-Barré syndrome risk. Mol Biol Rep 39(2):1537–1540. doi: 10.1007/s11033-011-0892-1 PubMedCrossRefGoogle Scholar
  231. 231.
    Caporale CM, Papola F, Fioroni MA, Aureli A, Giovannini A, Notturno F, Adorno D, Caporale V et al (2006) Susceptibility to Guillain-Barre syndrome is associated to polymorphisms of CD1 genes. J Neuroimmunol 177(1–2):112–118. doi: 10.1016/j.jneuroim.2006.05.018 PubMedCrossRefGoogle Scholar
  232. 232.
    Jin PP, Sun LL, Ding BJ, Qin N, Zhou B, Xia F, Li L, Liu LJ et al (2015) Human leukocyte antigen DQB1 (HLA-DQB1) polymorphisms and the risk for Guillain-Barre syndrome: a systematic review and meta-analysis. PLoS One 10(7):e0131374. doi: 10.1371/journal.pone.0131374 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Wu LY, Zhou Y, Qin C, Hu BL (2012) The effect of TNF-alpha, FcgammaR and CD1 polymorphisms on Guillain-Barre syndrome risk: evidences from a meta-analysis. J Neuroimmunol 243(1–2):18–24. doi: 10.1016/j.jneuroim.2011.12.003 PubMedCrossRefGoogle Scholar
  234. 234.
    van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA (2014) Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 10(8):469–482. doi: 10.1038/nrneurol.2014.121 http://www.nature.com/nrneurol/journal/v10/n8/abs/nrneurol.2014.121.html#supplementary-information PubMedCrossRefGoogle Scholar
  235. 235.
    Fekih-Mrissa N, Mrad M, Riahi A, Sayeh A, Zaouali J, Gritli N, Mrissa R (2014) Association of HLA-DR/DQ polymorphisms with Guillain-Barre syndrome in Tunisian patients. Clin Neurol Neurosurg 121:19–22. doi: 10.1016/j.clineuro.2014.03.014 PubMedCrossRefGoogle Scholar
  236. 236.
    Monos DS, Papaioakim M, Ho TW, Li CY, McKhann GM (1997) Differential distribution of HLA alleles in two forms of Guillain-Barre syndrome. The Journal of infectious diseases 176(Suppl 2):S180–S182PubMedCrossRefGoogle Scholar
  237. 237.
    van der Pol WL, van den Berg LH, Scheepers RH, van der Bom JG, van Doorn PA, van Koningsveld R, van den Broek MC, Wokke JH et al (2000) IgG receptor IIa alleles determine susceptibility and severity of Guillain-Barre syndrome. Neurology 54(8):1661–1665PubMedCrossRefGoogle Scholar
  238. 238.
    van Doorn PA (2013) Diagnosis, treatment and prognosis of Guillain-Barre syndrome (GBS). Presse medicale (Paris, France: 1983) 42(6 Pt 2):e193–e201. doi: 10.1016/j.lpm.2013.02.328 CrossRefGoogle Scholar
  239. 239.
    Magira EE, Papaioakim M, Nachamkin I, Asbury AK, Li CY, Ho TW, Griffin JW, McKhann GM et al (2003) Differential distribution of HLA-DQ beta/DR beta epitopes in the two forms of Guillain-Barre syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): Identification of DQ beta epitopes associated with susceptibility to and protection from AIDP. Journal of immunology (Baltimore, Md: 1950) 170(6):3074–3080CrossRefGoogle Scholar
  240. 240.
    Parra B, Lizarazo J, Jiménez-Arango JA, Zea-Vera AF, González-Manrique G, Vargas J, Angarita JA, Zuñiga G, Lopez-Gonzalez R, Beltran CL, Rizcala KH, Morales MT, Pacheco O, Ospina ML, Kumar A, Cornblath DR, Muñoz LS, Osorio L, Barreras P, Pardo CA Guillain–Barré Syndrome Associated with Zika Virus Infection in Colombia. New England Journal of Medicine 0 (0):null. doi: 10.1056/NEJMoa1605564
  241. 241.
    Flipse J, Wilschut J, Smit JM (2013) Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic (Copenhagen, Denmark) 14(1):25–35. doi: 10.1111/tra.12012 CrossRefGoogle Scholar
  242. 242.
    Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, Trautmann L, Michael SF, Isern S (2016) Dengue virus antibodies enhance Zika virus infection. bioRxiv. doi: 10.1101/050112
  243. 243.
    Butt AM, Nasrullah I, Qamar R, Tong Y (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerging microbes & infections 5:e107. doi: 10.1038/emi.2016.106 CrossRefGoogle Scholar
  244. 244.
    Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12(1):32–42PubMedCrossRefGoogle Scholar
  245. 245.
    Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98(2):192–208. doi: 10.1016/j.antiviral.2013.03.008 PubMedCrossRefGoogle Scholar
  246. 246.
    Moratorio G, Iriarte A, Moreno P, Musto H, Cristina J (2013) A detailed comparative analysis on the overall codon usage patterns in West Nile virus. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 14:396–400. doi: 10.1016/j.meegid.2013.01.001 PubMedCrossRefGoogle Scholar
  247. 247.
    Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62(5):551–563. doi: 10.1007/s00239-005-0221-1 PubMedCrossRefGoogle Scholar
  248. 248.
    Rastogi M, Sharma N, Singh SK (2016) Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 13:131. doi: 10.1186/s12985-016-0590-7 PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Chua JJ, Bhuvanakantham R, Chow VT, Ng ML (2005) Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3beta protein. Virus Res 112(1–2):85–94. doi: 10.1016/j.virusres.2005.03.025 PubMedCrossRefGoogle Scholar
  250. 250.
    Foley JF (2007) STAT3 regulates the generation of Th17 cells. Science signaling 2007 (380):tw113-tw113. doi: 10.1126/stke.3802007tw113
  251. 251.
    Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, Hipkiss EL, Getnet D et al (2007) Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. Journal of immunology (Baltimore, Md: 1950) 179(7):4313–4317CrossRefGoogle Scholar
  252. 252.
    Ho HH, Ivashkiv LB (2006) Role of STAT3 in type I interferon responses: Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem 281(20):14111–14118. doi: 10.1074/jbc.M511797200 PubMedCrossRefGoogle Scholar
  253. 253.
    Brown WC, Akey DL, Konwerski JR, Tarrasch JT, Skiniotis G, Kuhn RJ, Smith JL (2016) Extended surface for membrane association in Zika virus NS1 structure. Nat Struct Mol Biol 23(9):865–867. doi: 10.1038/nsmb.3268 http://www.nature.com/nsmb/journal/v23/n9/abs/nsmb.3268.html#supplementary-information PubMedCrossRefGoogle Scholar
  254. 254.
    Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, DelProposto J, Ogata CM et al (2014) Flavivirus NS1 crystal structures reveal a surface for membrane association and regions of interaction with the immune system. Science (New York, NY) 343(6173):881–885. doi: 10.1126/science.1247749 CrossRefGoogle Scholar
  255. 255.
    Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR (2015) Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science translational medicine 7 (304):304ra142. doi: 10.1126/scitranslmed.aaa3863
  256. 256.
    Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K (2007) Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun 362(4):1051–1056. doi: 10.1016/j.bbrc.2007.08.137 PubMedCrossRefGoogle Scholar
  257. 257.
    Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S, Diamond MS, Atkinson JP (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207(4):793–806. doi: 10.1084/jem.20092545 PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Zipfel PF, Hellwage J, Friese MA, Hegasy G, Jokiranta ST, Meri S (1999) Factor H and disease: a complement regulator affects vital body functions. Mol Immunol 36(4–5):241–248PubMedCrossRefGoogle Scholar
  259. 259.
    Amorim JH, Diniz MO, Cariri FA, Rodrigues JF, Bizerra RS, Goncalves AJ, de Barcelos Alves AM, de Souza Ferreira LC (2012) Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine 30(5):837–845. doi: 10.1016/j.vaccine.2011.12.034 PubMedCrossRefGoogle Scholar
  260. 260.
    Ishikawa T, Wang G, Widman DG, Infante E, Winkelmann ER, Bourne N, Mason PW (2011) Enhancing the utility of a prM/E-expressing chimeric vaccine for Japanese encephalitis by addition of the JEV NS1 gene. Vaccine 29(43):7444–7455. doi: 10.1016/j.vaccine.2011.07.058 PubMedCrossRefGoogle Scholar
  261. 261.
    Lin YL, Chen LK, Liao CL, Yeh CT, Ma SH, Chen JL, Huang YL, Chen SS et al (1998) DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 72(1):191–200PubMedPubMedCentralGoogle Scholar
  262. 262.
    Lin CF, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, Liu CC, Chiu SC et al (2002) Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. Journal of immunology (Baltimore, Md: 1950) 169(2):657–664CrossRefGoogle Scholar
  263. 263.
    Cheng HJ, Lei HY, Lin CF, Luo YH, Wan SW, Liu HS, Yeh TM, Lin YS (2009) Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol Immunol 47(2–3):398–406. doi: 10.1016/j.molimm.2009.08.033 PubMedCrossRefGoogle Scholar
  264. 264.
    Chuang YC, Lin YS, Liu HS, Wang JR, Yeh TM (2013) Antibodies against thrombin in dengue patients contain both anti-thrombotic and pro-fibrinolytic activities. Thromb Haemost 110(2):358–365. doi: 10.1160/th13-02-0149 PubMedCrossRefGoogle Scholar
  265. 265.
    Kochakarn T, Kotanan N, Kümpornsin K, Loesbanluechai D, Thammasatta M, Auewarakul P, Wilairat P, Chookajorn T (2016) Comparative genome analysis between southeast Asian and South American Zika viruses. Asian Pacific Journal of Tropical Medicine 9 (11):1048–1054. doi:doi: 10.1016/j.apjtm.2016.10.002
  266. 266.
    Acosta EG, Bartenschlager R (2016) Paradoxical role of antibodies in dengue virus infections: Considerations for prophylactic vaccine development. Expert review of vaccines 15(4):467–482. doi: 10.1586/14760584.2016.1121814 PubMedCrossRefGoogle Scholar
  267. 267.
    de Alwis R, Williams KL, Schmid MA, Lai CY, Patel B, Smith SA, Crowe JE, Wang WK et al (2014) Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog 10(10):e1004386. doi: 10.1371/journal.ppat.1004386 PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, Sukupolvi-Petty S, Navarro-Sanchez E et al (2010) The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8(3):271–283. doi: 10.1016/j.chom.2010.08.007 PubMedCrossRefGoogle Scholar
  269. 269.
    Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R et al (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84(18):9227–9239. doi: 10.1128/jvi.01087-10 PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O'Brien KM, Nelson CA et al (2010) The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6(4):e1000823. doi: 10.1371/journal.ppat.1000823 PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Lai CJ, Goncalvez AP, Men R, Wernly C, Donau O, Engle RE, Purcell RH (2007) Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol 81(23):12766–12774. doi: 10.1128/jvi.01420-07 PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Flingai S, Plummer EM, Patel A, Shresta S, Mendoza JM, Broderick KE, Sardesai NY, Muthumani K et al (2015) Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Scientific reports 5:12616. doi: 10.1038/srep12616 PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Sasaki T, Setthapramote C, Kurosu T, Nishimura M, Asai A, Omokoko MD, Pipattanaboon C, Pitaksajjakul P et al (2013) Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antivir Res 98(3):423–431. doi: 10.1016/j.antiviral.2013.03.018 PubMedCrossRefGoogle Scholar
  274. 274.
    Klinman DM, Takeshita F, Kamstrup S, Takeshita S, Ishii K, Ichino M, Yamada H (2000) DNA vaccines: capacity to induce auto-immunity and tolerance. Dev Biol 104:45–51Google Scholar
  275. 275.
    Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788. doi: 10.1038/nrg2432 PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science translational medicine 7 (304):304ra141. doi: 10.1126/scitranslmed.aaa3787
  277. 277.
    De Giglio L, Gasperini C, Tortorella C, Trojano M, Pozzilli C (2015) Natalizumab discontinuation and disease restart in pregnancy: a case series. Acta Neurol Scand 131(5):336–340. doi: 10.1111/ane.12364 PubMedCrossRefGoogle Scholar
  278. 278.
    Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M (2012) IgG placental transfer in healthy and pathological pregnancies. Clinical & developmental immunology 2012:985646. doi: 10.1155/2012/985646 CrossRefGoogle Scholar
  279. 279.
    Tao Y, Zhang X, Chopra M, Kim MJ, Buch KR, Kong D, Jin J, Tang Y et al (2014) The role of endogenous IFN-beta in the regulation of Th17 responses in patients with relapsing-remitting multiple sclerosis. Journal of immunology (Baltimore, Md: 1950) 192(12):5610–5617. doi: 10.4049/jimmunol.1302580 CrossRefGoogle Scholar
  280. 280.
    Zhang X, Markovic-Plese S (2010) Interferon beta inhibits the Th17 cell-mediated autoimmune response in patients with relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg 112(7):641–645. doi: 10.1016/j.clineuro.2010.04.020 PubMedCrossRefGoogle Scholar
  281. 281.
    Kraus J, Oschmann P (2006) The impact of interferon-beta treatment on the blood-brain barrier. Drug Discov Today 11(15–16):755–762. doi: 10.1016/j.drudis.2006.06.008 PubMedCrossRefGoogle Scholar
  282. 282.
    Muller M, Frese A, Nassenstein I, Hoppen M, Marziniak M, Ringelstein EB, Kim KS, Schabitz WR et al (2012) Serum from interferon-beta-1b-treated patients with early multiple sclerosis stabilizes the blood-brain barrier in vitro. Multiple sclerosis (Houndmills, Basingstoke, England) 18(2):236–239. doi: 10.1177/1352458511416837 CrossRefGoogle Scholar
  283. 283.
    Gonzalez-Quevedo A, Carriera R, O«SQ»Farrill Z, Luis I, Becquer R, Luis Gonzalez R (2009) An appraisal of blood-cerebrospinal fluid barrier dysfunction during the course of Guillain Barré syndrome. Neurol India 57 (3):288–294. doi: 10.4103/0028-3886.53282
  284. 284.
    Romero RS, Lünzmann C, Bugge J-P (2014) Pregnancy outcomes in patients exposed to interferon beta-1b. J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp-2014-308113
  285. 285.
    Waschbisch A, Sanderson N, Krumbholz M, Vlad G, Theil D, Schwab S, Maurer M, Derfuss T (2014) Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS One 9(12):e115488. doi: 10.1371/journal.pone.0115488 PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Golan D, Halhal B, Glass-Marmor L, Staun-Ram E, Rozenberg O, Lavi I, Dishon S, Barak M et al (2013) Vitamin D supplementation for patients with multiple sclerosis treated with interferon-beta: a randomized controlled trial assessing the effect on flu-like symptoms and immunomodulatory properties. BMC Neurol 13:60–60. doi: 10.1186/1471-2377-13-60 PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Feng X, Wang Z, Causevic S, Howlett-Prieto Q, Rubin D, Einhorn N, Reder A (2016) Vitamin D enhances interferon-beta response in multiple sclerosis (P3.103). Neurology 86(16 Supplement)Google Scholar
  288. 288.
    Lange CM, Gouttenoire J, Duong FH, Morikawa K, Heim MH, Moradpour D (2014) Vitamin D receptor and Jak-STAT signaling crosstalk results in calcitriol-mediated increase of hepatocellular response to IFN-alpha. Journal of immunology (Baltimore, Md : 1950) 192(12):6037–6044. doi: 10.4049/jimmunol.1302296 CrossRefGoogle Scholar
  289. 289.
    Mithal A, Kalra S (2014) Vitamin D supplementation in pregnancy. Indian Journal of Endocrinology and Metabolism 18(5):593–596. doi: 10.4103/2230-8210.139204 PubMedPubMedCentralGoogle Scholar
  290. 290.
    Hamzaoui A, Berraïes A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K (2014) Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children. Immunobiology 219(11):873–879. doi: 10.1016/j.imbio.2014.07.009 PubMedCrossRefGoogle Scholar
  291. 291.
    Reihani H, Rastin M, Sahebari M, Mahmoudi M, Ghoryani M, Abdollahi N, Tabasi NS, Zamani Taghizadeh rabe s, Lavi Arab F, Faraji F Effects of Vit D on Th17 cells and related cytokines in lupus erythematosus patients. Front Immunol doi: 10.3389/conf.fimmu.2013.02.00597
  292. 292.
    Sotirchos ES, Bhargava P, Eckstein C, Van Haren K, Baynes M, Ntranos A, Gocke A, Steinman L et al (2016) Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology 86(4):382–390. doi: 10.1212/wnl.0000000000002316 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Tir Na NogLlanelliUK
  2. 2.Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences UnitUniversity of Southern Santa Catarina (UNESC)CriciúmaBrazil
  3. 3.Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  4. 4.Neuroscience Graduate ProgramThe University of Texas Graduate School of Biomedical Sciences at HoustonHoustonUSA
  5. 5.Physiotherapy Department, South London and Maudsley NHS Foundation TrustLondonUK
  6. 6.Health Service and Population Research Department, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
  7. 7.Faculty of Health, Social Care and EducationAnglia Ruskin UniversityChelmsfordUK
  8. 8.Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of MedicineFederal University of CearáFortalezaBrazil
  9. 9.IMPACT Strategic Research Centre, School of Medicine, Barwon HealthDeakin UniversityGeelongAustralia
  10. 10.Health Sciences Postgraduate Program, Health Sciences CenterState University of LondrinaLondrinaBrazil
  11. 11.Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  12. 12.RevitalisWaalreThe Netherlands
  13. 13.Department of PsychiatryMedical University of PlovdivPlovdivBulgaria

Personalised recommendations