Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis

  • Cristiano A. Köhler
  • Thiago H. Freitas
  • Brendon Stubbs
  • Michael Maes
  • Marco Solmi
  • Nicola Veronese
  • Nayanna Q. de Andrade
  • Gerwyn Morris
  • Brisa S. Fernandes
  • André R. Brunoni
  • Nathan Herrmann
  • Charles L. Raison
  • Brian J. Miller
  • Krista L. Lanctôt
  • André F. Carvalho
Article

Abstract

Mounting evidence suggests that aberrations in immune-inflammatory pathways contribute to the pathophysiology of major depressive disorder (MDD), and individuals with MDD may have elevated levels of predominantly pro-inflammatory cytokines and C-reactive protein. In addition, previous meta-analyses suggest that antidepressant drug treatment may decrease peripheral levels of interleukin-1 beta (IL-1β) and IL-6. Recently, several new studies examining the effect of antidepressants on these cytokines have been published, and so we performed an updated meta-analysis of studies that measured peripheral levels of cytokines and chemokines during antidepressant treatment in patients with MDD. The PubMed/MEDLINE, EMBASE, and PsycInfo databases were searched from inception through March 9, 2017. Forty-five studies met inclusion criteria (N = 1517). Peripheral levels of IL-6, tumor necrosis factor-alpha (TNF-α), IL-1β, IL-10, IL-2, IL-4, interferon-γ, IL-8, the C-C motif ligand 2 chemokine (CCL-2), CCL-3, IL-1 receptor antagonist, IL-13, IL-17, IL-5, IL-7, and the soluble IL-2 receptor were measured in at least three datasets and thus were meta-analyzed. Antidepressant treatment significantly decreased peripheral levels of IL-6 (Hedges g = −0.454, P <0.001), TNF-α (g = −0.202, P = 0.015), IL-10 (g = −0.566, P = 0.012), and CCL-2 (g = −1.502, P = 0.006). These findings indicate that antidepressants decrease several markers of peripheral inflammation. However, this meta-analysis did not provide evidence that reductions in peripheral inflammation are associated with antidepressant treatment response although few studies provided separate data for treatment responders and non-responders.

Keywords

Depression Meta-analysis Antidepressant Cytokines Chemokines Inflammation 

Supplementary material

12035_2017_632_MOESM1_ESM.docx (688 kb)
ESM 1(DOCX 688 kb)

References

  1. 1.
    Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. doi:10.1038/nri.2015.5 CrossRefPubMedGoogle Scholar
  2. 2.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785. doi:10.1016/j.neubiorev.2011.12.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31. doi:10.1016/j.it.2005.11.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115. doi:10.1016/j.neubiorev.2014.02.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M, Veronese N, Herrmann N, Raison CL, Miller BJ, Lanctot KL, Carvalho AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. doi:10.1111/acps.12698
  7. 7.
    Li X, Frye MA, Shelton RC (2012) Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 37(1):77–101. doi:10.1038/npp.2011.198 CrossRefGoogle Scholar
  8. 8.
    Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48:261–267. doi:10.1016/j.pnpbp.2013.10.018 CrossRefGoogle Scholar
  9. 9.
    Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26(3):469–479. doi:10.1016/j.bbi.2011.12.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 36(12):2452–2459. doi:10.1038/npp.2011.132 CrossRefGoogle Scholar
  11. 11.
    Hiles SA, Baker AL, de Malmanche T, Attia J (2012) Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med 42(10):2015–2026. doi:10.1017/s0033291712000128 CrossRefPubMedGoogle Scholar
  12. 12.
    Carvalho LA, Torre JP, Papadopoulos AS, Poon L, Juruena MF, Markopoulou K, Cleare AJ, Pariante CM (2013) Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord 148(1):136–140. doi:10.1016/j.jad.2012.10.036 CrossRefPubMedGoogle Scholar
  13. 13.
    Fornaro M, Rocchi G, Escelsior A, Contini P, Martino M (2013) Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J Affect Disord 145(3):300–307. doi:10.1016/j.jad.2012.08.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Pariante CM (2016) Absolute measurements of macrophage migration inhibitory factor and interleukin-1-beta mRNA levels accurately predict treatment response in depressed patients. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). doi:10.1093/ijnp/pyw045
  15. 15.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 339:b2700. doi:10.1136/bmj.b2700 CrossRefGoogle Scholar
  16. 16.
    Bakkalbasi N, Bauer K, Glover J, Wang L (2006) Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomedical digital libraries 3:7. doi:10.1186/1742-5581-3-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn (DSM-5), 5th edn. American Psychiatric AssociationGoogle Scholar
  18. 18.
    World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. World Health Organization, GenevaGoogle Scholar
  19. 19.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. doi:10.1186/1471-2288-5-13 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826CrossRefPubMedGoogle Scholar
  21. 21.
    Patsopoulos NA, Evangelou E, Ioannidis JP (2009) Heterogeneous views on heterogeneity. Int J Epidemiol 38(6):1740–1742. doi:10.1093/ije/dyn235 CrossRefPubMedGoogle Scholar
  22. 22.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  23. 23.
    Cohen J (1992) A power primer. Psychol Bull 112(1):155–159CrossRefPubMedGoogle Scholar
  24. 24.
    Carvalho AF, Kohler CA, Fernandes BS, Quevedo J, Miskowiak KW, Brunoni AR, Machado-Vieira R, Maes M et al (2016) Bias in emerging biomarkers for bipolar disorder. Psychol Med 46(11):2287–2297. doi:10.1017/s0033291716000957 CrossRefPubMedGoogle Scholar
  25. 25.
    Carvalho AF, Kohler CA, Brunoni AR, Miskowiak KW, Herrmann N, Lanctot KL, Hyphantis TN, Quevedo J et al (2016) Bias in peripheral depression biomarkers. Psychother Psychosom 85(2):81–90. doi:10.1159/000441457 CrossRefPubMedGoogle Scholar
  26. 26.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315(7109):629–634CrossRefGoogle Scholar
  27. 27.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenthal R (1979) The file drawer problem and tolerance for null results. Psychol Bull 86(3):638CrossRefGoogle Scholar
  29. 29.
    Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573. doi:10.1002/sim.1187 CrossRefPubMedGoogle Scholar
  30. 30.
    Hernandez ME, Mendieta D, Martinez-Fong D, Loria F, Moreno J, Estrada I, Bojalil R, Pavon L (2008) Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 18(12):917–924. doi:10.1016/j.euroneuro.2008.08.001 CrossRefGoogle Scholar
  31. 31.
    Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 25(10):1532–1543. doi:10.1016/j.euroneuro.2015.06.007 CrossRefGoogle Scholar
  32. 32.
    Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709. doi:10.1038/mp.2016.3 CrossRefPubMedGoogle Scholar
  33. 33.
    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215. doi:10.1016/j.bbi.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eyre HA, Air T, Pradhan A, Johnston J, Lavretsky H, Stuart MJ, Baune BT (2016) A meta-analysis of chemokines in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 68:1–8. doi:10.1016/j.pnpbp.2016.02.006 CrossRefGoogle Scholar
  35. 35.
    Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320. doi:10.1176/appi.ajp.2009.10030434 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Riazi K, Galic MA, Kentner AC (2015) Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. 35(12):4942–4952. doi:10.1523/jneurosci.4485-14.2015
  37. 37.
    Eyre H, Baune BT (2012) Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 37(9):1397–1416. doi:10.1016/j.psyneuen.2012.03.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA psychiatry 70(1):31–41. doi:10.1001/2013.jamapsychiatry.4 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Miller AH, Haroon E, Felger JC (2016) Therapeutic implications of brain-immune interactions: treatment in translation. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. doi:10.1038/npp.2016.167
  40. 40.
    Wohleb ES, Delpech JC (2016) Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog Neuro-Psychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2016.04.013
  41. 41.
    Mills CD (2015) Anatomy of a discovery: m1 and m2 macrophages. Front Immunol 6:212. doi:10.3389/fimmu.2015.00212 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Durairaj H, Steury MD, Parameswaran N (2015) Paroxetine differentially modulates LPS-induced TNFalpha and IL-6 production in mouse macrophages. Int Immunopharmacol 25(2):485–492. doi:10.1016/j.intimp.2015.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ge S, Song L, Serwanski DR, Kuziel WA, Pachter JS (2008) Transcellular transport of CCL2 across brain microvascular endothelial cells. J Neurochem 104(5):1219–1232. doi:10.1111/j.1471-4159.2007.05056.x CrossRefPubMedGoogle Scholar
  44. 44.
    Wohleb ES, Franklin T, Iwata M, Duman RS (2016) Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 17(8):497–511. doi:10.1038/nrn.2016.69 CrossRefPubMedGoogle Scholar
  45. 45.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10(7):490–500. doi:10.1038/nri2785 CrossRefPubMedGoogle Scholar
  46. 46.
    Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, Leonard B (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66. doi:10.1186/1741-7015-10-66 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Uher R, Mors O, Hauser J, Rietschel M, Maier W, Kozel D, Henigsberg N, Souery D et al (2009) Body weight as a predictor of antidepressant efficacy in the GENDEP project. J Affect Disord 118(1–3):147–154. doi:10.1016/j.jad.2009.02.013 CrossRefPubMedGoogle Scholar
  48. 48.
    Orenes-Pinero E, Pineda J, Roldan V, Hernandez-Romero D, Marco P, Tello-Montoliu A, Sogorb F, Valdes M et al (2015) Effects of body mass index on the lipid profile and biomarkers of inflammation and a fibrinolytic and prothrombotic state. J Atheroscler Thromb 22(6):610–617. doi:10.5551/jat.26161 CrossRefPubMedGoogle Scholar
  49. 49.
    Slyepchenko A, Brunoni AR, McIntyre RS, Quevedo J, Carvalho AF (2016) The adverse effects of smoking on health outcomes in bipolar disorder: a review and synthesis of biological mechanisms. Curr Mol Med 16(2):187–205CrossRefPubMedGoogle Scholar
  50. 50.
    Liu CS, Carvalho AF, McIntyre RS (2014) Towards a “metabolic” subtype of major depressive disorder: shared pathophysiological mechanisms may contribute to cognitive dysfunction. CNS & neurological disorders drug targets 13(10):1693–1707CrossRefGoogle Scholar
  51. 51.
    Slyepchenko A, Maes M, Machado-Vieira R, Anderson G, Solmi M, Sanz Y, Berk M, Kohler CA et al (2016) Intestinal dysbiosis, gut hyperpermeability and bacterial translocation: missing links between depression, obesity and type 2 diabetes. Curr Pharm Des 22(40):6087–6106CrossRefPubMedGoogle Scholar
  52. 52.
    Slyepchenko A, Maes M, Jacka FN, Kohler CA, Barichello T, McIntyre RS, Berk M, Grande I et al (2017) Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 86(1):31–46. doi:10.1159/000448957 CrossRefPubMedGoogle Scholar
  53. 53.
    Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20(1):32–47. doi:10.1038/mp.2014.163 CrossRefPubMedGoogle Scholar
  54. 54.
    Eller T, Vasar V, Shlik J, Maron E (2009) The role of IL-2 and soluble IL-2R in depression and antidepressant response. Current opinion in investigational drugs (London, England : 2000) 10(7):638–643Google Scholar
  55. 55.
    Jarventausta K, Sorri A, Kampman O, Bjorkqvist M, Tuohimaa K, Hamalainen M, Moilanen E, Leinonen E et al (2017) Changes in interleukin-6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression. Acta Psychiatr Scand 135(1):87–92. doi:10.1111/acps.12665 CrossRefPubMedGoogle Scholar
  56. 56.
    Guloksuz S, Rutten BP, Arts B, van Os J, Kenis G (2014) The immune system and electroconvulsive therapy for depression. The journal of ECT 30(2):132–137. doi:10.1097/yct.0000000000000127 CrossRefPubMedGoogle Scholar
  57. 57.
    Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M (2017) The new field of ‘precision psychiatry’. BMC Med 15(1):80. doi:10.1186/s12916-017-0849-x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cristiano A. Köhler
    • 1
  • Thiago H. Freitas
    • 1
  • Brendon Stubbs
    • 2
    • 3
  • Michael Maes
    • 4
    • 5
    • 6
    • 7
    • 8
  • Marco Solmi
    • 9
    • 10
  • Nicola Veronese
    • 10
    • 11
  • Nayanna Q. de Andrade
    • 1
  • Gerwyn Morris
    • 4
  • Brisa S. Fernandes
    • 4
    • 12
  • André R. Brunoni
    • 13
    • 14
    • 15
  • Nathan Herrmann
    • 16
    • 17
  • Charles L. Raison
    • 18
    • 19
  • Brian J. Miller
    • 20
  • Krista L. Lanctôt
    • 16
    • 17
    • 21
  • André F. Carvalho
    • 1
    • 22
  1. 1.Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of MedicineFortalezaBrazil
  2. 2.Physiotherapy Department, South London and MaudsleyNHS Foundation TrustLondonUK
  3. 3.Health Service and Population Research Department, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
  4. 4.IMPACT Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia
  5. 5.Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  6. 6.Department of Psychiatry, Faculty of MedicineState University of LondrinaLondrinaBrazil
  7. 7.Department of PsychiatryMedical University PlovdivPlovdivBulgaria
  8. 8.RevitalisWaalreThe Netherlands
  9. 9.Department of NeurosciencesUniversity of PadovaPadovaItaly
  10. 10.Institute of Clinical Research and Education in Medicine (IREM)PaduaItaly
  11. 11.National Research Council, Neuroscience Institute, Aging BranchPadovaItaly
  12. 12.Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of BiochemistryFederal University of Rio Grande do SulPorto AlegreBrazil
  13. 13.Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University HospitalUniversity of São PauloSão PauloBrazil
  14. 14.Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of PsychiatryFaculty of Medicine of University of São PauloSão PauloBrazil
  15. 15.Laboratory of Neuroscience (LIM27), Department and Institute of PsychiatryUniversity of São PauloSão PauloBrazil
  16. 16.Neuropsychopharmacology Research GroupHurvitz Brain Sciences Program Sunnybrook Research InstituteTorontoCanada
  17. 17.Department of PsychiatryUniversity of TorontoTorontoCanada
  18. 18.Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin-MadisonMadisonUSA
  19. 19.Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin-MadisonMadisonUSA
  20. 20.Department of Psychiatry & Health BehaviorGeorgia Regents UniversityAugustaUSA
  21. 21.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
  22. 22.Department of Clinical Medicine, Faculty of MedicineFederal University of CearáFortalezaBrazil

Personalised recommendations