Molecular Neurobiology

, Volume 55, Issue 5, pp 3725–3738 | Cite as

Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats

  • Rita Soares
  • Filipa F. Ribeiro
  • Sara Xapelli
  • Tânia Genebra
  • Maria F. Ribeiro
  • Ana M. Sebastião
  • Cecília M. P. Rodrigues
  • Susana SoláEmail author


Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.


Mitochondrial stress Neural stem cell fate Neurogenesis Proliferation TUDCA 



The authors wish to thank M.Sc. Ana Moreira and Rui Rodrigues as well as Dr. Rita Aroeira (Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal) for their assistance in neurosphere cultures and immunohistochemistry. We would also like to thank all members of the iMed.ULisboa and iMM laboratories for insightful discussions. This work was supported by grant UID/DTP/04138/2013 from Fundação para a Ciência e Tecnologia, Lisbon, Portugal.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

Sprague-Dawley rats were acquired from Charles River (France). All experimental procedures were in accordance with current Portuguese laws on Animal Care and with the European Union Directive (86/609/EEC; 2010/63/EU; 2012/707/EU), on the protection of animals used for experimental and other scientific purposes. All efforts were made to minimize animal suffering and reduce numbers.


  1. 1.
    Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193. doi: 10.1038/nrn1867 PubMedCrossRefGoogle Scholar
  2. 2.
    Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438PubMedCrossRefGoogle Scholar
  3. 3.
    Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40. doi: 10.1172/JCI40543 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345PubMedCrossRefGoogle Scholar
  5. 5.
    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi: 10.1038/nrm1739 PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi: 10.1016/j.cell.2008.01.033 PubMedCrossRefGoogle Scholar
  7. 7.
    Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981PubMedCrossRefGoogle Scholar
  8. 8.
    Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi: 10.1016/j.neuron.2011.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 26(1):3–11. doi: 10.1523/JNEUROSCI.3648-05.2006 CrossRefGoogle Scholar
  10. 10.
    Xavier JM, Rodrigues CM, Sola S (2015) Mitochondria: Major regulators of neural development. Neuroscientist. doi: 10.1177/1073858415585472 PubMedGoogle Scholar
  11. 11.
    Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5(6):1564–1575. doi: 10.1016/j.celrep.2013.11.022 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24(12):761–770. doi: 10.1016/j.tcb.2014.08.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15(4):243–256. doi: 10.1038/nrm3772 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS. Mitochondrion 10(6):649–661. doi: 10.1016/j.mito.2010.06.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang W, Esbensen Y, Kunke D, Suganthan R, Rachek L, Bjoras M, Eide L (2011) Mitochondrial DNA damage level determines neural stem cell differentiation fate. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(26):9746–9751. doi: 10.1523/JNEUROSCI.0852-11.2011 CrossRefGoogle Scholar
  16. 16.
    Cassano S, Agnese S, D'Amato V, Papale M, Garbi C, Castagnola P, Ruocco MR, Castellano I et al (2010) Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem 285(31):24141–24153. doi: 10.1074/jbc.M109.098525 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Austin S, St-Pierre J (2012) PGC1alpha and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125(Pt 21):4963–4971. doi: 10.1242/jcs.113662 PubMedCrossRefGoogle Scholar
  18. 18.
    Rangwala SM, Li X, Lindsley L, Wang X, Shaughnessy S, Daniels TG, Szustakowski J, Nirmala NR et al (2007) Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun 357(1):231–236. doi: 10.1016/j.bbrc.2007.03.126 PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101(12):2790–2799. doi: 10.1172/JCI1325 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4(3):165–178PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sola S, Brito MA, Brites D, Moura JJ, Rodrigues CM (2002) Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes. Clin Sci (Lond) 103(5):475–485. doi: 10.1042/cs1030475
  22. 22.
    Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092. doi: 10.1073/pnas.1031632100 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease. Proc Natl Acad Sci U S A 99(16):10671–10676. doi: 10.1073/pnas.162362299 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ramalho RM, Viana RJ, Castro RE, Steer CJ, Low WC, Rodrigues CM (2008) Apoptosis in transgenic mice expressing the P301L mutated form of human tau. Mol Med 14(5–6):309–317PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D’Hooge R, Rodrigues CM (2012) TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta deposition in APP/PS1 mice. Mol Neurobiol 45(3):440–454. doi: 10.1007/s12035-012-8256-y PubMedCrossRefGoogle Scholar
  26. 26.
    Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson's disease. Cell Transplant 11(3):195–205Google Scholar
  27. 27.
    Xavier JM, Morgado AL, Rodrigues CM, Sola S (2014) Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling. Cell Cycle 13(22):3576–3589. doi: 10.4161/15384101.2014.962951 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Agasse F, Bernardino L, Kristiansen H, Christiansen SH, Ferreira R, Silva B, Grade S, Woldbye DP et al (2008) Neuropeptide Y promotes neurogenesis in murine subventricular zone. Stem Cells 26(6):1636–1645. doi: 10.1634/stemcells.2008-0056 PubMedCrossRefGoogle Scholar
  29. 29.
    Wojtowicz JM, Kee N (2006) BrdU assay for neurogenesis in rodents. Nat Protoc 1(3):1399–1405. doi: 10.1038/nprot.2006.224 PubMedCrossRefGoogle Scholar
  30. 30.
    Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765PubMedCrossRefGoogle Scholar
  31. 31.
    Thiel G (2013) How Sox2 maintains neural stem cell identity. The Biochemical journal 450(3):e1–e2. doi: 10.1042/BJ20130176 PubMedCrossRefGoogle Scholar
  32. 32.
    Xapelli S, Agasse F, Sarda-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Braganca J et al (2013) Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures. PLoS One 8(5):e63529. doi: 10.1371/journal.pone.0063529 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129(20):4843–4853PubMedGoogle Scholar
  34. 34.
    Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211PubMedGoogle Scholar
  35. 35.
    Xavier JM, Morgado AL, Sola S, Rodrigues CM (2014) Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 21(7):1009–1024. doi: 10.1089/ars.2013.5417 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Caceres A, Banker GA, Binder L (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. The Journal of neuroscience : the official journal of the Society for Neuroscience 6(3):714–722CrossRefGoogle Scholar
  37. 37.
    Vukovic J, Borlikova GG, Ruitenberg MJ, Robinson GJ, Sullivan RK, Walker TL, Bartlett PF (2013) Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(15):6603–6613. doi: 10.1523/JNEUROSCI.3064-12.2013 CrossRefGoogle Scholar
  38. 38.
    Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322. doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 PubMedCrossRefGoogle Scholar
  39. 39.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedCrossRefGoogle Scholar
  40. 40.
    Gil-Perotin S, Duran-Moreno M, Cebrian-Silla A, Ramirez M, Garcia-Belda P, Garcia-Verdugo JM (2013) Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 296(9):1435–1452. doi: 10.1002/ar.22746 CrossRefGoogle Scholar
  41. 41.
    Weinberg D, Adams C, Chari D (2015) Deploying clinical grade magnetic nanoparticles with magnetic fields to magnetolabel neural stem cells in adherent versus suspension cultures. RSC Adv 5(54):43353–43360CrossRefGoogle Scholar
  42. 42.
    Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34(3):153–161. doi: 10.1385/MN:34:3:153 PubMedCrossRefGoogle Scholar
  43. 43.
    Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM (2009) Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50(9):1721–1734. doi: 10.1194/jlr.R900011-JLR200 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–735. doi: 10.1210/er.2006-0037 PubMedCrossRefGoogle Scholar
  45. 45.
    Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101(17):6472–6477. doi: 10.1073/pnas.0308686101 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4(6):468–478. doi: 10.1038/nrm1125 PubMedCrossRefGoogle Scholar
  47. 47.
    Scott SV, Cassidy-Stone A, Meeusen SL, Nunnari J (2003) Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr Opin Cell Biol 15(4):482–488PubMedCrossRefGoogle Scholar
  48. 48.
    Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72(1):101–163PubMedCrossRefGoogle Scholar
  49. 49.
    Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88(8):1673–1681. doi: 10.1002/jnr.22328 PubMedGoogle Scholar
  50. 50.
    Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 7(8):e42935. doi: 10.1371/journal.pone.0042935 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W (2011) Concise review: quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 29(6):907–912. doi: 10.1002/stem.644 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Piccin D, Morshead CM (2010) Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3(7–8):421–425. doi: 10.1242/dmm.003137 PubMedCrossRefGoogle Scholar
  53. 53.
    Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond Ser B Biol Sci 363(1489):139–152. doi: 10.1098/rstb.2006.2017 CrossRefGoogle Scholar
  54. 54.
    Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70(4):674–686. doi: 10.1016/j.neuron.2011.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Riddle DR, Lichtenwalner RJ (2007) Neurogenesis in the Adult and Aging Brain. In: Riddle DR (ed) Brain Aging: Models, Methods, and Mechanisms. Frontiers in Neuroscience. Boca Raton (FL) Chapter 6 I B.2,Google Scholar
  56. 56.
    Silver I, Erecinska M (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol 454:7–16PubMedCrossRefGoogle Scholar
  57. 57.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi: 10.1016/j.neuron.2008.10.010 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162(3):540–551. doi: 10.1016/j.cell.2015.07.016 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119(Pt 14):2855–2862. doi: 10.1242/jcs.03062 PubMedCrossRefGoogle Scholar
  60. 60.
    Fischer F, Hamann A, Osiewacz HD (2012) Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37(7):284–292. doi: 10.1016/j.tibs.2012.02.004 PubMedCrossRefGoogle Scholar
  61. 61.
    Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278(6):941–954. doi: 10.1111/j.1742-4658.2011.08010.x PubMedCrossRefGoogle Scholar
  62. 62.
    Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838. doi: 10.1016/j.bbabio.2012.02.033 PubMedCrossRefGoogle Scholar
  63. 63.
    Winslow T (2006) Repairing the nervous system with stem cells. In: Prometheus (ed) Regenerative Medicine. pp 35–43Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal
  2. 2.Instituto de Farmacologia e Neurociências, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
  3. 3.Instituto de Medicina Molecular (iMM), Faculdade de MedicinaUniversidade de LisboaLisbonPortugal

Personalised recommendations