Molecular Neurobiology

, Volume 55, Issue 4, pp 3196–3210 | Cite as

Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling

  • Palsamy Periyasamy
  • Ke Liao
  • Yeon Hee Kook
  • Fang Niu
  • Shannon E. Callen
  • Ming-Lei GuoEmail author
  • Shilpa BuchEmail author


Cocaine is known to activate microglia both in vitro and in vivo. High expression of microglial Toll-like receptors (TLRs) and their downstream signal transducers play critical roles in determining microglial activation status. Emerging reports have also demonstrated that cocaine can enhance the strength of TLR signaling. Detailed molecular mechanisms underlying this phenomenon, however, remain elusive. In this study, we investigated the role(s) of miR-124 in regulating microglial TLR4 signaling in the context of cocaine. Herein, we found a dose- and time-dependent upregulation of KLF4 in cocaine-exposed BV-2 cells and rat primary microglial cells (rPMs). KLF4 also identified as a novel 3′-UTR target directly regulated by miR-124. In parallel, miR-124 regulated multiple TLR4 signaling molecules including TLR4, MyD88, TRAF6, and IRAK1. Repeated doses of cocaine (20 mg/kg; i.p.) administration in mice for 7 days further validated the in vitro key findings. Also, miR-124 overexpression significantly blocked the cocaine-mediated upregulation of pro-inflammatory cytokines. In contrast, miR-124 overexpression notably increased the expression of anti-inflammatory mediators in cocaine-exposed microglial cells. Intriguingly, stereotactic administration of lentivirus-miR-124 in the striatum significantly inhibited cocaine-mediated microglial activation and locomotor hyperactivity in vivo. In summary, these findings implicate the role of miR-124 in regulating TLR4 signaling, thereby indicating a new pathway responsible for cocaine-mediated microglial activation.


Neuroinflammation Cocaine TLR4 Microglial cells MyD88 TRAF6 miR-124 



This work was supported by NIH grants: DA043138, DA033150, DA035203.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interests.

Supplementary material

12035_2017_584_MOESM1_ESM.docx (152 kb)
Supplementary Figure 1 (DOCX 151 kb)


  1. 1.
    Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24. doi: 10.1016/j.cell.2014.06.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi: 10.1038/nature09615 CrossRefPubMedGoogle Scholar
  3. 3.
    Heiman A, Pallottie A, Heary RF, Elkabes S (2014) Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun 42:232–245. doi: 10.1016/j.bbi.2014.06.203 CrossRefPubMedGoogle Scholar
  4. 4.
    Pedras-Vasconcelos J, Puig M, Verthelyi D (2009) TLRs as therapeutic targets in CNS inflammation and infection. Front Biosci (Elite Ed) 1:476–487Google Scholar
  5. 5.
    O'Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13(6):453–460. doi: 10.1038/nri3446 CrossRefPubMedGoogle Scholar
  6. 6.
    Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198(7):1043–1055. doi: 10.1084/jem.20031023 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O (2016) TLR4-activated microglia require IFN-gamma to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci U S A 113(1):212–217. doi: 10.1073/pnas.1513853113 CrossRefPubMedGoogle Scholar
  8. 8.
    Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17(1):13–19CrossRefPubMedGoogle Scholar
  9. 9.
    Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK (2005) Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280(46):38247–38258. doi: 10.1074/jbc.M509378200 CrossRefPubMedGoogle Scholar
  10. 10.
    Pena-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, Monti B (2016) Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 20(5):627–640. doi: 10.1517/14728222.2016.1121237 CrossRefPubMedGoogle Scholar
  11. 11.
    Walker DG, Lue LF (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther 7(1):56. doi: 10.1186/s13195-015-0139-9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Houdek HM, Larson J, Watt JA, Rosenberger TA (2014) Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal forebrain cholinergic cells in the rat brain. Inflamm Cell Signal 1(1). doi: 10.14800/ics.47
  13. 13.
    Moehle MS, West AB (2015) M1 and M2 immune activation in Parkinson's disease: foe and ally? Neuroscience 302:59–73. doi: 10.1016/j.neuroscience.2014.11.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimers Dement 12(6):719–732. doi: 10.1016/j.jalz.2016.02.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:117. doi: 10.3389/fncel.2014.00117 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lacagnina MJ, Rivera PD, Bilbo SD (2017) Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology 42(1):156–177. doi: 10.1038/npp.2016.121 CrossRefPubMedGoogle Scholar
  17. 17.
    Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11(7):995–1009. doi: 10.1080/15548627.2015.1052205 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cui C, Shurtleff D, Harris RA (2014) Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol 118:1–12. doi: 10.1016/B978-0-12-801284-0.00001-4 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liao K, Guo M, Niu F, Yang L, Callen SE, Buch S (2016) Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation 13(1):33. doi: 10.1186/s12974-016-0501-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ et al (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28(22):5756–5761. doi: 10.1523/JNEUROSCI.1179-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grace PM, Strand KA, Galer EL, Urban DJ, Wang X, Baratta MV, Fabisiak TJ, Anderson ND et al (2016) Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 113(24):E3441–E3450. doi: 10.1073/pnas.1602070113 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP (2015) Neuroimmune function and the consequences of alcohol exposure. Alcohol Res 37(2):331–341 344-351 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Snider SE, Hendrick ES, Beardsley PM (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol 701(1–3):124–130. doi: 10.1016/j.ejphar.2013.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen H, Uz T, Manev H (2009) Minocycline affects cocaine sensitization in mice. Neurosci Lett 452(3):258–261. doi: 10.1016/j.neulet.2009.01.078 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran TA, Pomrenze MB, Galer EL et al (2015) DAT isn't all that: cocaine reward and reinforcement require toll-like receptor 4 signaling. Mol Psychiatry 20(12):1525–1537. doi: 10.1038/mp.2014.177 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. doi: 10.1016/j.cell.2009.01.035 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785–1786. doi: 10.1126/science.1151651 CrossRefPubMedGoogle Scholar
  29. 29.
    Cardoso AL, Guedes JR, de Lima MC (2016) Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 26:1–9. doi: 10.1016/j.coph.2015.09.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Svahn AJ, Giacomotto J, Graeber MB, Rinkwitz S, Becker TS (2016) miR-124 contributes to the functional maturity of microglia. Dev Neurobiol 76(5):507–518. doi: 10.1002/dneu.22328 CrossRefPubMedGoogle Scholar
  31. 31.
    Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70. doi: 10.1038/nm.2266 CrossRefPubMedGoogle Scholar
  32. 32.
    Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW, Dickson DW, Petrucelli L et al (2014) Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20(12):1444–1451. doi: 10.1038/nm.3717 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kanagaraj N, Beiping H, Dheen ST, Tay SS (2014) Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience 272:167–179. doi: 10.1016/j.neuroscience.2014.04.039 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q, Wang H, Gong X et al (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson's disease by targeting to Bim. Brain Pathol 26(2):167–176. doi: 10.1111/bpa.12267 CrossRefPubMedGoogle Scholar
  35. 35.
    Veremeyko T, Siddiqui S, Sotnikov I, Yung A, Ponomarev ED (2013) IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS One 8(12):e81774. doi: 10.1371/journal.pone.0081774 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ni M, Aschner M (2010) Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr Protoc Toxicol Chapter 12:Unit 12 17. doi: 10.1002/0471140856.tx1217s43
  37. 37.
    Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188(2):143–160. doi: 10.1002/jcp.1111 CrossRefPubMedGoogle Scholar
  38. 38.
    Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A (2013) Interleukin-1beta orchestrates underlying inflammatory responses in microglia via Kruppel-like factor 4. J Neurochem 127(2):233–244. doi: 10.1111/jnc.12382 CrossRefPubMedGoogle Scholar
  39. 39.
    Kaushik DK, Gupta M, Das S, Basu A (2010) Kruppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation 7:68. doi: 10.1186/1742-2094-7-68 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A (2012) Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation. J Neuroinflammation 9:57. doi: 10.1186/1742-2094-9-57 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rosenzweig JM, Glenn JD, Calabresi PA, Whartenby KA (2013) KLF4 modulates expression of IL-6 in dendritic cells via both promoter activation and epigenetic modification. J Biol Chem 288(33):23868–23874. doi: 10.1074/jbc.M113.479576 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Van Dyke C, Barash PG, Jatlow P, Byck R (1976) Cocaine: plasma concentrations after intranasal application in man. Science 191(4229):859–861CrossRefPubMedGoogle Scholar
  43. 43.
    Stephens BG, Jentzen JM, Karch S, Mash DC, Wetli CV (2004) Criteria for the interpretation of cocaine levels in human biological samples and their relation to the cause of death. Am J Forensic Med Pathol 25(1):1–10CrossRefPubMedGoogle Scholar
  44. 44.
    Kalasinsky KS, Bosy TZ, Schmunk GA, Ang L, Adams V, Gore SB, Smialek J, Furukawa Y et al (2000) Regional distribution of cocaine in postmortem brain of chronic human cocaine users. J Forensic Sci 45(5):1041–1048CrossRefPubMedGoogle Scholar
  45. 45.
    Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST (2016) MicroRNAs: key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem 23(30):3528–3546CrossRefPubMedGoogle Scholar
  46. 46.
    Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36(8):2383–2390. doi: 10.1523/JNEUROSCI.3900-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:476. doi: 10.3389/fncel.2015.00476 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Guo ML, Periyasamy P, Liao K, Kook YH, Niu F, Callen SE, Buch S (2016) Cocaine-mediated downregulation of microglial miR-124 expression involves promoter DNA methylation. Epigenetics 11(11):819–830. doi: 10.1080/15592294.2016.1232233 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D (2016) Microglial TNF-alpha suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90(3):483–491. doi: 10.1016/j.neuron.2016.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ma C, Li Y, Li M, Deng G, Wu X, Zeng J, Hao X, Wang X et al (2014) microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol 62(1):150–158. doi: 10.1016/j.molimm.2014.06.014 CrossRefPubMedGoogle Scholar
  51. 51.
    Ma C, Li Y, Zeng J, Wu X, Liu X, Wang Y (2014) Mycobacterium bovis BCG triggered MyD88 induces miR-124 feedback negatively regulates immune response in alveolar epithelial cells. PLoS One 9(4):e92419. doi: 10.1371/journal.pone.0092419 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, Liu X (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23(11):1270–1283. doi: 10.1038/cr.2013.116 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP et al (2010) Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 115(23):4951–4962. doi: 10.1182/blood-2010-01-266221 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Asanuma M, Miyazaki I, Higashi Y, Tsuji T, Ogawa N (2004) Specific gene expression and possible involvement of inflammation in methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 1025:69–75. doi: 10.1196/annals.1316.009 CrossRefPubMedGoogle Scholar
  55. 55.
    Goncalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR et al (2008) Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci 1139:103–111. doi: 10.1196/annals.1432.043 CrossRefPubMedGoogle Scholar
  56. 56.
    Wisor JP, Schmidt MA, Clegern WC (2011) Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 25(4):767–776. doi: 10.1016/j.bbi.2011.02.002 CrossRefPubMedGoogle Scholar
  57. 57.
    Piechota M, Korostynski M, Solecki W, Gieryk A, Slezak M, Bilecki W, Ziolkowska B, Kostrzewa E et al (2010) The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum. Genome Biol 11(5):R48. doi: 10.1186/gb-2010-11-5-r48 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Renthal W, Maze I, Krishnan V, Covington HE 3rd, Xiao G, Kumar A, Russo SJ, Graham A et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529. doi: 10.1016/j.neuron.2007.09.032 CrossRefPubMedGoogle Scholar
  59. 59.
    Ahmed SH, Lutjens R, van der Stap LD, Lekic D, Romano-Spica V, Morales M, Koob GF, Repunte-Canonigo V et al (2005) Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc Natl Acad Sci U S A 102(32):11533–11538. doi: 10.1073/pnas.0504438102 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Little KY, Ramssen E, Welchko R, Volberg V, Roland CJ, Cassin B (2009) Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res 168(3):173–180. doi: 10.1016/j.psychres.2008.10.034 CrossRefPubMedGoogle Scholar
  61. 61.
    Loftis JM, Choi D, Hoffman W, Huckans MS (2011) Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res 20(1):59–68. doi: 10.1007/s12640-010-9223-x CrossRefPubMedGoogle Scholar
  62. 62.
    Beardsley PM, Hauser KF (2014) Glial modulators as potential treatments of psychostimulant abuse. Adv Pharmacol 69:1–69. doi: 10.1016/B978-0-12-420118-7.00001-9 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Deo M, Yu JY, Chung KH, Tippens M, Turner DL (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235(9):2538–2548. doi: 10.1002/dvdy.20847 CrossRefPubMedGoogle Scholar
  64. 64.
    Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864. doi: 10.1634/stemcells.2005-0441 CrossRefPubMedGoogle Scholar
  65. 65.
    Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362. doi: 10.1016/j.mcn.2009.08.009 CrossRefPubMedGoogle Scholar
  66. 66.
    Chandrasekar V, Dreyer JL (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36(6):1149–1164. doi: 10.1038/npp.2010.250 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM (2015) mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 16:43. doi: 10.1186/s12868-015-0186-y CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mizuo K, Katada R, Okazaki S, Tateda K, Watanabe S, Matsumoto H (2012) Epigenetic regulation of MIR-124 under ethanol dependence and withdrawal. Nihon Arukoru Yakubutsu Igakkai Zasshi 47(3):155–163PubMedGoogle Scholar
  69. 69.
    Bachtell R, Hutchinson MR, Wang X, Rice KC, Maier SF, Watkins LR (2015) Targeting the Toll of drug abuse: the translational potential of Toll-like receptor 4. CNS Neurol Disord Drug Targets 14(6):692–699CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Louw AM, Kolar MK, Novikova LN, Kingham PJ, Wiberg M, Kjems J, Novikov LN (2016) Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine 12(3):643–653. doi: 10.1016/j.nano.2015.10.011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations