Skip to main content

Advertisement

Log in

bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 20 July 2022

This article has been updated

Abstract

Blood-brain barrier (BBB) disruption is a common pathological feature of many neurological disorders including stroke and brain trauma, therefore is an important therapeutic target for treatment of these diseases. Basic fibroblast growth factor (bFGF) as a member of FGF superfamily plays critical roles in angiogenesis, neurogenesis, and neuron survival. We recently showed that recombinant bFGF protects against BBB disruption in traumatic brain injury in mice. In this study, we further investigated the mechanisms of recombinant bFGF in BBB protection by measuring the permeability of cultured endothelial cell monolayer induced by oxygen-glucose deprivation and reoxygenation (OGD/R). We found that recombinant bFGF significantly decreased OGD/R-induced permeability of primary human brain microvascular endothelial cell (HBMEC) monolayer and preserved OGD/R-induced decreases of trans-endothelial electrical resistance (TEER). Western blot and immunocytochemistry showed that bFGF significantly rescued OGD/R-induced downregulation of junction proteins ZO-1, occludin, and VE-cadherin. We further show that the BBB protective effect of bFGF is via FGF receptor 1 (FGFR1) activation as FGFR1 inhibitor can block this protection effect. Moreover, we revealed that the BBB protection effect of bFGF is at least partially through rescuing the OGD/R-induced downregulation of sphingosine-1-phosphate receptor 1 (S1PR1) protein, as S1PR1 inhibitor or SIPR1 small interfering RNA blocked the BBB protective effect of bFGF, whereas S1PR1 agonist alone has comparable BBB protection effect of bFGF. These findings will improve our understanding of the protective effect and mechanisms of bFGF on BBB and propose bFGF as a potential therapeutic agent against BBB damage in neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641. doi:10.1080/21688370.2016.1154641

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857. doi:10.1016/j.bbamem.2008.10.022

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood-brain barrier. Cell 163:1064–1078. doi:10.1016/j.cell.2015.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kassner A, Merali Z (2015) Assessment of blood-brain barrier disruption in stroke. Stroke 46:3310–3315. doi:10.1161/STROKEAHA.115.008861

    Article  PubMed  Google Scholar 

  5. Prakash R, Carmichael ST (2015) Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 28:556–564. doi:10.1097/WCO.0000000000000248

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B (2015) Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis 30:1093–1104. doi:10.1007/s11011-015-9651-7

    Article  PubMed  Google Scholar 

  7. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, Wendland MF, Vexler ZS (2012) Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci 32:9588–9600. doi:10.1523/JNEUROSCI.5977-11.2012

    Article  CAS  PubMed  Google Scholar 

  8. Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79:S52–S57. doi:10.1212/WNL.0b013e3182697e70

    Article  PubMed  Google Scholar 

  9. Jin R, Yang G, Li G (2010) Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 38:376–385. doi:10.1016/j.nbd.2010.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abe K, Saito H (2001) Effects of basic fibroblast growth factor on central nervous system functions. Pharmacol Res 43:307–312. doi:10.1006/phrs.2000.0794

    Article  CAS  PubMed  Google Scholar 

  11. Rosen L (2000) Antiangiogenic strategies and agents in clinical trials. Oncologist 5(Suppl 1):20–27

    Article  CAS  PubMed  Google Scholar 

  12. Nugent MA, Iozzo RV (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32:115–120

    Article  CAS  PubMed  Google Scholar 

  13. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120

    Article  CAS  PubMed  Google Scholar 

  14. Kawamata T, Alexis NE, Dietrich WD, Finklestein SP (1996) Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 16:542–547. doi:10.1097/00004647-199607000-00003

    Article  CAS  PubMed  Google Scholar 

  15. Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A 94:8179–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang ZG, Cheng Y, Yu XC, Ye LB, Xia QH, Johnson NR, Wei X, Chen DQ et al (2015) bFGF protects against blood-brain barrier damage through junction protein regulation via PI3K-Akt-Rac1 pathway following traumatic brain injury. Mol Neurobiol. doi:10.1007/s12035-015-9583-6

    Google Scholar 

  17. Ephstein Y, Singleton PA, Chen W, Wang L, Salgia R, Kanteti P, Dudek SM, Garcia JG et al (2013) Critical role of S1PR1 and integrin beta4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem 288:2191–2200. doi:10.1074/jbc.M112.404780

    Article  CAS  PubMed  Google Scholar 

  18. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S et al (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599. doi:10.1016/j.devcel.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  19. Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, Hao J, Liu Q et al (2016) Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke. doi:10.1161/STROKEAHA.115.012236

    Google Scholar 

  20. Zuo S, Ge H, Li Q, Zhang X, Hu R, Hu S, Liu X, Zhang JH et al (2016) Artesunate protected blood-brain barrier via sphingosine 1 phosphate receptor 1/phosphatidylinositol 3 kinase pathway after subarachnoid hemorrhage in rats. Mol Neurobiol. doi:10.1007/s12035-016-9732-6

    PubMed Central  Google Scholar 

  21. Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, Frevert U (2012) Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 8:e1002982. doi:10.1371/journal.ppat.1002982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ford-Perriss M, Abud H, Murphy M (2001) Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol 28:493–503

    Article  CAS  PubMed  Google Scholar 

  23. Matakidou A, El Galta R, Rudd MF, Webb EL, Bridle H, Eisen T, Houlston RS (2007) Further observations on the relationship between the FGFR4 Gly388Arg polymorphism and lung cancer prognosis. Br J Cancer 96:1904–1907. doi:10.1038/sj.bjc.6603816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R et al (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. doi:10.1016/j.kint.2016.05.019

    Google Scholar 

  25. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750

    Article  CAS  PubMed  Google Scholar 

  26. Xuan YH, Huang BB, Tian HS, Chi LS, Duan YM, Wang X, Zhu ZX, Cai WH et al (2014) High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One 9:e108182. doi:10.1371/journal.pone.0108182

    Article  PubMed  PubMed Central  Google Scholar 

  27. Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20:5012–5023

    CAS  PubMed  Google Scholar 

  28. Ye LB, Yu XC, Xia QH, Yang Y, Chen DQ, Wu F, Wei XJ, Zhang X et al (2016) Regulation of caveolin-1 and junction proteins by bFGF contributes to the integrity of blood-spinal cord barrier and functional recovery. Neurotherapeutics. doi:10.1007/s13311-016-0437-3

    PubMed  Google Scholar 

  29. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184. doi:10.1182/blood-2004-10-3985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was in part supported by the National Natural Science Foundation of China 81470999 (X.L.) and AHA Scientist Development Grant (SDG) 15SDG25550035 (Z.Y.).

Author information

Authors and Affiliations

Authors

Contributions

LL, ZY, QW, KQ, and ZC performed the study and analyzed the data. XL and ZY designed the experiment, analyzed the data, and wrote the paper. JX and XW helped in data analysis and paper writing. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Xiaokun Li or Zhanyang Yu.

Ethics declarations

Ethics Approval

All animal experiments were performed following the protocols approved by the Massachusetts General Hospital Animal Care and Use Committee in compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Availability of Data and Materials

The dataset supporting the conclusions of this article is included within the article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Wang, Q., Qian, K. et al. bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Mol Neurobiol 55, 3131–3142 (2018). https://doi.org/10.1007/s12035-017-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0544-0

Keywords

Navigation