Skip to main content

Advertisement

Log in

PKA-GSK3β and β-Catenin Signaling Play a Critical Role in Trans-Resveratrol Mediated Neuronal Differentiation in Human Cord Blood Stem Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of resveratrol (RV), a natural polyphenol, is well documented, although its role on neurogenesis is still controversial and poorly understood. Therefore, to decipher the cellular insights of RV on neurogenesis, we investigated the potential effects of the compound on the survival, proliferation, and neuronal differentiation of human cord blood-derived mesenchymal stem cells (hCBMSCs). For neuronal differentiation, purified and characterized hCBMSCs were exposed to biological safe doses of RV (10 μM) alone and in combination with nerve growth factor (NGF-50 ng). The cells exposed only to NGF (50 ng/mL) served as positive control for neuronal differentiation. The genes showing significant involvement in the process of neuronal differentiation were further funneled down at transcriptional and translational level. It was observed that RV promotes PKA-mediated neuronal differentiation in hCBMSCs by inducing canonical pathway. The studies with pharmacological inhibitors also confirmed that PKA significantly induces β-catenin expression via GSK3β induction and stimulates CREB phosphorylation and pERK1/2 induction. Besides that, the studies also revealed that RV additionally possesses the binding sites for molecules other than PKA and GSK3β, with which it interacts. The present study therefore highlights the positive impact of RV over the survival, proliferation, and neuronal differentiation in hCBMSCs via PKA-mediated induction of GSK3β, β catenin, CREB, and ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun AY et al (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2–3):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging 4(3):146–158

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quincozes-Santos A, Gottfried C (2011) Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci 1215(1):72–78

    Article  CAS  PubMed  Google Scholar 

  5. Singh N, Agrawal M, Doré S (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4(8):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26(3):397–406

    Article  CAS  PubMed  Google Scholar 

  7. Perry T et al (2002) A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 300(3):958–966

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez S et al (2004) A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem Int 44(4):231–242

    Article  CAS  PubMed  Google Scholar 

  9. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24(1):1217–1281

    Article  CAS  PubMed  Google Scholar 

  10. York RD et al (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392(6676):622–626

    Article  CAS  PubMed  Google Scholar 

  11. Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12(6):258–266

    Article  CAS  PubMed  Google Scholar 

  12. Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neuropathic factors. Annu Rev Neurosci 19(1):463–489

    Article  CAS  PubMed  Google Scholar 

  13. Chang F et al (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17(7):1263–1293

    Article  CAS  PubMed  Google Scholar 

  14. Jahan S et al (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem Biophys Res Commun 482(4):961–967

    Article  CAS  PubMed  Google Scholar 

  15. Tang N et al (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling. J Cell Mol Med 13(8b):2448–2464

    Article  PubMed  Google Scholar 

  16. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  17. Baksh D, Song L, Tuan R (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316

    Article  CAS  PubMed  Google Scholar 

  18. Forde JA, Dale TC (2007) Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64(15):1930–1944

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda S et al (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 17(5):1371–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ginty DD et al (1991) Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J Biol Chem 266(23):15325–15333

    CAS  PubMed  Google Scholar 

  21. Frödin M, Peraldi P, Van Obberghen E (1994) Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 269(8):6207–6214

    PubMed  Google Scholar 

  22. Kao HT et al (2002) A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5(5):431–437

    Article  CAS  PubMed  Google Scholar 

  23. Impey S et al (1998) Cross talk between ERK and PKA is required for Ca 2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21(4):869–883

    Article  CAS  PubMed  Google Scholar 

  24. Delghandi MP, Johannessen M, Moens U (2005) The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17(11):1343–1351

    Article  CAS  PubMed  Google Scholar 

  25. Lee OK et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  CAS  PubMed  Google Scholar 

  26. Tojima T, Kobayashi S, Ito E (2003) Dual role of cyclic AMP-dependent protein kinase in neuritogenesis and synaptogenesis during neuronal differentiation. J Neurosci Res 74(6):829–837

    Article  CAS  PubMed  Google Scholar 

  27. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66(1):807–822

    Article  CAS  PubMed  Google Scholar 

  28. Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4(20):6–5

    Google Scholar 

  29. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59(6):846–860

    Article  CAS  PubMed  Google Scholar 

  30. Kutcher III, LW (2003) The Importance Of Subcellular Localization Of Ca2+/Calmodulin Dependent Protein Kinase Ii In Neuronal Differentiation. University of Cincinnati

  31. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79(12):1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci 34(6):316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72(1):1–25

    Article  CAS  PubMed  Google Scholar 

  34. West AE et al (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci 98(20):11024–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imitola J (2007) Prospects for neural stem cell-based therapies for neurological diseases. Neurotherapeutics 4(4):701–714

    Article  CAS  PubMed  Google Scholar 

  36. Barzilay R et al (2008) Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev 17(3):547–554

    Article  CAS  PubMed  Google Scholar 

  37. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40(7):609–619

    Article  CAS  PubMed  Google Scholar 

  38. Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433(1):1–7

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz-Gonzalez XR et al (2004) Neural induction of adult bone marrow and umbilical cord stem cells. Curr Neurovasc Res 1(3):207–213

    Article  PubMed  Google Scholar 

  40. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B: Biol Sci 361(1473):1545–1564

    Article  CAS  Google Scholar 

  41. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  42. Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24(3):344–350

    Article  CAS  PubMed  Google Scholar 

  43. Sariola H (2001) The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci CMLS 58(8):1061–1066

    Article  CAS  PubMed  Google Scholar 

  44. Reznichenko L et al (2005) Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93(5):1157–1167

    Article  CAS  PubMed  Google Scholar 

  45. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116(7):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmidt-Ott KM, Barasch J (2008) WNT/β-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int 74(8):1004–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779

    Article  CAS  PubMed  Google Scholar 

  48. Maurer MH et al (2007) Glycogen synthase kinase 3β (GSK3β) regulates differentiation and proliferation in neural stem cells from the rat subventricular zone. J Proteome Res 6(3):1198–1208

    Article  CAS  PubMed  Google Scholar 

  49. Gribkoff VK et al (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7(4):471–477

    Article  CAS  PubMed  Google Scholar 

  50. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4):325–337

    Article  CAS  PubMed  Google Scholar 

  51. Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca 2+ channel activity and nuclear signaling. Neuron 55(2):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagase H et al (2005) Mechanism of neurotrophic action of nobiletin in PC12D cells. Biochemistry 44(42):13683–13691

    Article  CAS  PubMed  Google Scholar 

  53. Kamenetsky M et al (2006) Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 362(4):623–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stessin AM et al (2006) Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J Biol Chem 281(25):17253–17258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Young JJ et al (2008) “Soluble” adenylyl cyclase-generated cyclic adenosine monophosphate promotes fast migration in PC12 cells. J Neurosci Res 86(1):118–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jicha GA et al (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19(17):7486–7494

    CAS  PubMed  Google Scholar 

  57. Skalhegg B, Tasken K (2000) Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 5(5):D678–D693

    CAS  PubMed  Google Scholar 

  58. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623

    Article  CAS  PubMed  Google Scholar 

  59. Wu G-Y, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci 98(5):2808–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18(1):353–383

    Article  CAS  PubMed  Google Scholar 

  61. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riccio A et al (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21(2):283–294

    Article  CAS  PubMed  Google Scholar 

  63. Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67(10):1348–1361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, India [Grant No. SR/SO/Z 36/2007/91/10]; Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India [Grant No. 102/IFD/SAN/3533/2014-15] and Council of Scientific and Industrial Research, Government of India, New Delhi, India [Grant No. BSC0111/INDEPTH/CSIR Network Project] is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AB Pant.

Ethics declarations

Conflict of Interest

Authors of this manuscript have no conflict of interest among them or anybody else regarding the scientific contents, financial matters, and otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, S., Singh, S., Srivastava, A. et al. PKA-GSK3β and β-Catenin Signaling Play a Critical Role in Trans-Resveratrol Mediated Neuronal Differentiation in Human Cord Blood Stem Cells. Mol Neurobiol 55, 2828–2839 (2018). https://doi.org/10.1007/s12035-017-0539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0539-x

Keywords

Navigation