Skip to main content

Advertisement

Log in

Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood–Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After spinal cord injury (SCI), tight junction (TJ) protein degradation increases permeability and disrupts the blood–spinal cord barrier (BSCB). The BSCB is primarily formed of endothelial cell, which forms a specialized tight seal due to the presence of TJs. BSCB disruption after SCI allows neutrophil infiltration. Matrix metalloproteinase (MMP)-8 is believed to be mainly expressed by neutrophils and is quickly released upon neutrophil activation. Here, we determined whether MMP-8 is involved in the TJ protein degradation in endothelial cells and also determined its role in the neuroinflammation after SCI. MMP-8 recombinant protein treatment increases the TNF-α expression and decreased the TJ (occludin and zonula occludens-1) protein expression in the endothelial cells. Likewise, specific MMP-8 inhibitor (MMP-8I) significantly prevented the TNF-α-induced decrease in the expression of TJ protein in endothelial cells. Furthermore, MMP-8 expression was significantly increased 1 and 3 days after moderate compression (35 g for 5 min at T10 level) SCI, whereas TJ protein levels decreased as determined qRT-PCR, western blotting, and immunohistochemistry. MMP-8 was inhibited directly using a MMP-8I (5 mg/kg) and indirectly by reducing neutrophil infiltration with sivelestat sodium (50 mg/kg) or using the antioxidant N-acetyl-l-cysteine (100 mg/kg). The MMP-8I significantly decreased TNF-α expression, IL-6, and iNOS expression and increased TJ protein expression after SCI. In addition, MMP-8I significantly lessens the amount of Evans blue dye extravasation observed after injury. Thus, our result suggests that MMP-8 plays an imperative role in inflammation and degradation of TJ proteins. Increased MMP-8 expression was associated with the early inflammatory phase of SCI. Inhibiting MMP-8 significantly attenuated SCI-induced inflammation, BSCB breakdown, and cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rossignol S, Schwab M, Schwartz M, Fehlings MG (2007) Spinal cord injury: time to move? The Journal of Neuroscience: the official journal of the Society for Neuroscience 27(44):11782–11792. doi:10.1523/JNEUROSCI.3444-07.2007

    Article  CAS  Google Scholar 

  2. Kumar H, Ropper AE, Lee SH, Han I (2016) Propitious therapeutic modulators to prevent blood-spinal cord barrier disruption in spinal cord injury. Mol Neurobiol. doi:10.1007/s12035-016-9910-6

    Google Scholar 

  3. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901. doi:10.1152/physrev.00035.2003

    Article  CAS  PubMed  Google Scholar 

  4. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. doi:10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  5. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  7. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80(7):673–687

    CAS  PubMed  Google Scholar 

  8. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151(1):77–88. doi:10.1006/exnr.1998.6785

    Article  CAS  PubMed  Google Scholar 

  9. Aube B, Levesque SA, Pare A, Chamma E, Kebir H, Gorina R, Lecuyer MA, Alvarez JI et al (2014) Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J Immunol 193(5):2438–2454. doi:10.4049/jimmunol.1400401

    Article  CAS  PubMed  Google Scholar 

  10. Aslam M, Ahmad N, Srivastava R, Hemmer B (2012) TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells. Cytokine 57(2):269–275. doi:10.1016/j.cyto.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  11. Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z et al (2014) Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A 111(11):E1035–E1042. doi:10.1073/pnas.1401595111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma HS (2011) Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm 118(1):155–176. doi:10.1007/s00702-010-0514-4

    Article  CAS  PubMed  Google Scholar 

  13. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516. doi:10.1146/annurev.cellbio.17.1.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2):137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91(4):439–442

    Article  CAS  PubMed  Google Scholar 

  16. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. The Journal of Neuroscience: the official journal of the Society for Neuroscience 22(17):7526–7535

    CAS  Google Scholar 

  17. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke; a journal of cerebral circulation 29(10):2189–2195

    Article  CAS  Google Scholar 

  18. Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108(3):811–820. doi:10.1111/j.1471-4159.2008.05821.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23(1):87–96. doi:10.1016/j.nbd.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  20. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. The Journal of Neuroscience: the official journal of the Society for Neuroscience 21(19):7724–7732

    CAS  Google Scholar 

  21. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. Journal of Cerebral Blood Flow and Metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 27(4):697–709. doi:10.1038/sj.jcbfm.9600375

    Article  CAS  Google Scholar 

  22. Buhler LA, Samara R, Guzman E, Wilson CL, Krizanac-Bengez L, Janigro D, Ethell DW (2009) Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis. BMC Neurosci 10:17. doi:10.1186/1471-2202-10-17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caron A, Desrosiers RR, Beliveau R (2005) Ischemia injury alters endothelial cell properties of kidney cortex: stimulation of MMP-9. Exp Cell Res 310(1):105–116. doi:10.1016/j.yexcr.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  24. Van Lint P, Libert C (2006) Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev 17(4):217–223. doi:10.1016/j.cytogfr.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  25. Lee EJ, Han JE, Woo MS, Shin JA, Park EM, Kang JL, Moon PG, Baek MC et al (2014) Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-alpha activation. J Immunol 193(5):2384–2393. doi:10.4049/jimmunol.1303240

    Article  CAS  PubMed  Google Scholar 

  26. Dejonckheere E, Vandenbroucke RE, Libert C (2011) Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev 22(2):73–81. doi:10.1016/j.cytogfr.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  27. Vandenbroucke RE, Dejonckheere E, Van Lint P, Demeestere D, Van Wonterghem E, Vanlaere I, Puimege L, Van Hauwermeiren F et al (2012) Matrix metalloprotease 8-dependent extracellular matrix cleavage at the blood-CSF barrier contributes to lethality during systemic inflammatory diseases. The Journal of Neuroscience: the official journal of the Society for Neuroscience 32(29):9805–9816. doi:10.1523/JNEUROSCI.0967-12.2012

    Article  CAS  Google Scholar 

  28. Ropper AE, Zeng X, Anderson JE, Yu D, Han I, Haragopal H, Teng YD (2015) An efficient device to experimentally model compression injury of mammalian spinal cord. Exp Neurol 271:515–523. doi:10.1016/j.expneurol.2015.07.012

    Article  PubMed  Google Scholar 

  29. Lee JY, Choi HY, Na WH, Ju BG, Yune TY (2014) Ghrelin inhibits BSCB disruption/hemorrhage by attenuating MMP-9 and SUR1/TrpM4 expression and activation after spinal cord injury. Biochim Biophys Acta 1842(12 Pt A):2403–2412. doi:10.1016/j.bbadis.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  30. Löffek S, Schilling O, Franzke C-W (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38(1):191–208

    Article  PubMed  Google Scholar 

  31. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ (2011) Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma 28(9):1893–1907. doi:10.1089/neu.2011.1860

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S (2014) Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 11(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  33. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection / Institut Pasteur 5(14):1317–1327

    Article  CAS  Google Scholar 

  34. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182. doi:10.1038/nri1785

    Article  CAS  PubMed  Google Scholar 

  35. Nygardas PT, Hinkkanen AE (2002) Up-regulation of MMP-8 and MMP-9 activity in the BALB/c mouse spinal cord correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol 128(2):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Light M, Minor KH, DeWitt P, Jasper KH, Davies SJ (2012) Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury. J Neuroinflammation 9:122. doi:10.1186/1742-2094-9-122

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moghaddam A, Heller R, Daniel V, Swing T, Akbar M, Gerner HJ, Biglari B (2016) Exploratory study to suggest the possibility of MMP-8 and MMP-9 serum levels as early markers for remission after traumatic spinal cord injury. Spinal Cord. doi:10.1038/sc.2016.104

    Google Scholar 

  38. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(12):3249–3269

    Article  PubMed  Google Scholar 

  39. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388

    Article  CAS  PubMed  Google Scholar 

  40. Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 12(10):3505–3520

    Article  CAS  PubMed  Google Scholar 

  41. Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9(7):1422–1438

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi M, Ueyama T, Nemoto K, Tamaki T, Senba E (2000) Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 17(3):203–218

    Article  CAS  PubMed  Google Scholar 

  43. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55(3):280–289

    Article  CAS  PubMed  Google Scholar 

  44. Probert L, Selmaj K (1997) TNF and related molecules: trends in neuroscience and clinical applications. J Neuroimmunol 72(2):113–117

    Article  CAS  PubMed  Google Scholar 

  45. Probert L, Akassoglou K, Kassiotis G, Pasparakis M, Alexopoulou L, Kollias G (1997) TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 72(2):137–141

    Article  CAS  PubMed  Google Scholar 

  46. Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393. doi:10.1016/j.apmr.2007.08.004

    Article  PubMed  Google Scholar 

  47. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J et al (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16(10):851–863. doi:10.1089/neu.1999.16.851

    Article  CAS  PubMed  Google Scholar 

  48. Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, Kiuchi K (2000) Nitric oxide via macrophage iNOS induces apoptosis following traumatic spinal cord injury. Brain Res Mol Brain Res 85(1–2):114–122

    Article  CAS  PubMed  Google Scholar 

  49. Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD (2003) Comparison of iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J Neuropathol Exp Neurol 62(11):1096–1107

    Article  CAS  PubMed  Google Scholar 

  50. Maggio DM, Chatzipanteli K, Masters N, Patel SP, Dietrich WD, Pearse DD (2012) Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury. J Neurotrauma 29(12):2244–2249. doi:10.1089/neu.2012.2371

    Article  PubMed  PubMed Central  Google Scholar 

  51. Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K et al (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76(2):265–276. doi:10.1002/jnr.20044

    Article  CAS  PubMed  Google Scholar 

  52. Thirkettle S, Decock J, Arnold H, Pennington CJ, Jaworski DM, Edwards DR (2013) Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem 288(23):16282–16294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mautes AE, Bergeron M, Sharp FR, Panter SS, Weinzierl M, Guenther K, Noble LJ (2000) Sustained induction of heme oxygenase-1 in the traumatized spinal cord. Exp Neurol 166(2):254–265. doi:10.1006/exnr.2000.7520

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Tachibana T, Dai Y, Kondo E, Fukuoka T, Yamanaka H, Noguchi K (2002) Heme oxygenase-1 expression after spinal cord injury: the induction in activated neutrophils. J Neurotrauma 19(4):479–490. doi:10.1089/08977150252932424

    Article  PubMed  Google Scholar 

  55. Mautes AE, Kim DH, Sharp FR, Panter S, Sato M, Maida N, Bergeron M, Guenther K et al (1998) Induction of heme oxygenase-1 (HO-1) in the contused spinal cord of the rat. Brain Res 795(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  56. Yamauchi T, Lin Y, Sharp FR, Noble-Haeusslein LJ (2004) Hemin induces heme oxygenase-1 in spinal cord vasculature and attenuates barrier disruption and neutrophil infiltration in the injured murine spinal cord. J Neurotrauma 21(8):1017–1030. doi:10.1089/0897715041651042

    Article  PubMed  Google Scholar 

  57. Lin W-P, Xiong G-P, Lin Q, Chen X-W, Zhang L-Q, Shi J-X, Ke Q-F, Lin J-H (2016) Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J Neuroinflammation 13(1):1

    Article  Google Scholar 

  58. Eissa N, Bhattacharya A (2014) Autophagy is required for neutrophil-mediated inflammation. In: D17. Stop, drop, and die: proteostasis and autophagy in the lung. Am Thoracic Soc, pp A5396-A5396

  59. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine 36(22):E1427–E1434. doi:10.1097/BRS.0b013e3182028c3a

    Article  PubMed  Google Scholar 

  60. Chen H-C, Fong T-H, Lee A-W, Chiu W-T (2012) Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine 37(6):470–475

    Article  CAS  PubMed  Google Scholar 

  61. Aikawa N, Kawasaki Y (2014) Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther Clin Risk Manag 10:621–629. doi:10.2147/TCRM.S65066

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E et al (2001) A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats. J Neurochem 78(5):1064–1072

    Article  CAS  PubMed  Google Scholar 

  63. Sadowska AM, Manuel-y-Keenoy B, Vertongen T, Schippers G, Radomska-Lesniewska D, Heytens E, De Backer WA (2006) Effect of N-acetylcysteine on neutrophil activation markers in healthy volunteers: In vivo and in vitro study. Pharmacol Res 53(3):216–225. doi:10.1016/j.phrs.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  64. Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M (2010) Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog 6(4):e1000874. doi:10.1371/journal.ppat.1000874

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollander GA (2000) Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood-brain barrier damage and neurological sequelae. Clin Infect Dis 31(1):80–84. doi:10.1086/313922

    Article  CAS  PubMed  Google Scholar 

  66. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270. doi:10.1038/nrm1357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the National Research Foundation of Korea (NRF) (NRF-2014R1A1A2059118, NRF-2015H1D3A1066543), the Ministry of Science, ICT & Future Planning (NRF-2016R1A2A1A05004987), and the Korea Healthcare Technology Research & Development Project, Ministry for Health & Welfare Affairs, Republic of Korea (HI14C3270, HR16C0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Hong Lee or In-Bo Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Fig. 1

Matrix metalloproteinase-8 (MMP-8) expression increases after spinal cord injury (SCI) at the epicenter of the damage. The spinal cord was collected 1, 3, 7, 14, 21 and 28 days (1D, 3D, 7D, 14D, 21D and 28D, respectively) after SCI to determine the expression of MMP-8 (A). Luxol fast blue (LFB) staining was performed at the epicenter of the SCI damage and in sham-injured rats 3H and 1D, 3D, 5D, and 7D, respectively after SCI in longitudinal section (B). (JPEG 86 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Jo, MJ., Choi, H. et al. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood–Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol 55, 2577–2590 (2018). https://doi.org/10.1007/s12035-017-0509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0509-3

Keywords

Navigation