Advertisement

Molecular Neurobiology

, Volume 55, Issue 3, pp 2174–2184 | Cite as

Temporal Profile and Severity Correlation of a Panel of Rat Spinal Cord Injury Protein Biomarkers

  • Zhihui YangEmail author
  • Helen M. Bramlett
  • Ahmed Moghieb
  • Dongnan Yu
  • Ping Wang
  • Fan Lin
  • Carl Bauer
  • Tyler M. Selig
  • Emily Jaalouk
  • Amanda S. Weissman
  • Disa S. Rathore
  • Pammela Romo
  • Zhiqun Zhang
  • Ronald L. Hayes
  • Michael Y. Wang
  • W. Dalton Dietrich
  • Kevin K. W. WangEmail author
Article

Abstract

In the USA, there are approximately 12,000 new cases of spinal cord injury (SCI) each year and some 1.2 million people living with paralysis due to SCI. Seven percent of them are paralyzed due to an accident or injury occurring while serving in the military. Here, we report a systematic study on protein biomarker candidates in a rat SCI model with either moderate or severe injury. Tissue, cerebrospinal fluid (CSF), and serum samples were obtained at 4 h, 24 h, and 7 days post-injury. The candidate biomarkers included axonal injury markers αII-spectrin breakdown products (SBDP150/145/120), neuronal cell body injury marker ubiquitin C-terminal hydrolase-L1 (UCH-L1), astrogliosis/astroglial injury markers S100 calcium-binding protein-β (S100β), glial fibrillary acidic protein (GFAP) and GFAP breakdown products (GBDPs), demyelination marker myelin basic protein (MBP), axonal injury marker phosphorylated neurofilament-H (pNF-H), and neuroinflammation marker interleukin-6 (IL-6). SBDP150/145, UCH-L1, GFAP, and S100β were found as acute biomarkers with significantly elevated levels within 24 h. GBDP44, GBDP38, and pNF-H are acute and subacute biomarkers that were found to have increased at 4 h, 24 h, and 7 days. MBP and SBDP120 were considered subacute biomarkers which were only detectable at 7 days post-injury. These results not only allow us to gain important insight into the patho-mechanisms of SCI but also showcase the possibility of using some of the protein biomarkers to track injury severity and disease progression and resolution. These biomarkers can potentially serve as tools that assist therapy development and clinical trials.

Keywords

Spinal cord injury Biomarkers Neuronal injury Glial injury Systems biology 

Abbreviations

SCI

Spinal cord injury

TBI

Traumatic brain injury

CSF

Cerebrospinal fluid

GFAP

Glial fibrillary acidic protein

SBDP

αII-Spectrin breakdown product

GBDP

GFAP breakdown product

MBP

Myelin basic protein

IL-6

Interleukin-6

pNF-H

Phosphorylated neurofilament-H

S100β

S100 calcium-binding protein-β

UCH-L1

Ubiquitin C-terminal hydrolase-L1

Notes

Acknowledgements

This study is supported in part by the DOD grants W81XWH-12-1-0276 (WDD, MSW) and W81XWH-12-1-0277 (KKW) from the US Army.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wolf H, Krall C, Pajenda G, Leitgeb J, Bukaty AJ, Hajdu S, Sarahrudi K (2014) Alterations of the biomarker S-100B and NSE in patients with acute vertebral spine fractures. Spine J 14:2918–2922. doi: 10.1016/j.spinee.2014.04.027 CrossRefPubMedGoogle Scholar
  2. 2.
    Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J (2015) Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid—a normative study. Biomed Res Int 2015:1–2017. doi: 10.1155/2015/379071 CrossRefGoogle Scholar
  3. 3.
    Kwon BK, Stammers AMT, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27:669–682. doi: 10.1089/neu.2009.1080 CrossRefPubMedGoogle Scholar
  4. 4.
    Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, Bramlett H, Hayes RL et al (2015) Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg 83:867–878. doi: 10.1016/j.wneu.2013.03.012 CrossRefPubMedGoogle Scholar
  5. 5.
    Merisson E, Mattsson N, Zetterberg H, Blennow K, Pikwer A, Mehmedagic I, Acosta S, Åkeson J (2016) Total-tau and neurofilament light in CSF reflect spinal cord ischaemia after endovascular aortic repair. Neurochem Int 93:1–5. doi: 10.1016/j.neuint.2015.12.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, Lu CH, Dobson R et al (2014) Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatr 86:273–279. doi: 10.1136/jnnp–2013–307454 CrossRefGoogle Scholar
  7. 7.
    Kinoshita T, Nakamura T, Umemoto Y, Kojima D, Moriki T, Mitsui T, Goto M, Ishida Y et al (2013) Increase in interleukin-6 immediately after wheelchair basketball games in persons with spinal cord injury: preliminary report. Spinal Cord 51:508–510. doi: 10.1038/sc.2013.4 CrossRefPubMedGoogle Scholar
  8. 8.
    Basu S, Aballa TC, Ferrell SM, Lynne CM, Brackett NL (2013) Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J Androlo 25:250–254. doi: 10.1002/j.1939-4640.2004.tb02785.x CrossRefGoogle Scholar
  9. 9.
    Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD (2012) Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2:167–175. doi: 10.1089/ther.2012.0016 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, Robertson C, Buki A et al (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27:1203–1213. doi: 10.1089/neu.2010.1278 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mondello S, Shear DA, Bramlett HM, Dixon CE, Schmid KE, Dietrich WD, Wang KK, Hayes RL et al (2016) Insight into pre-clinical models of traumatic brain injury using circulating brain damage biomarkers: operation brain trauma therapy. J Neurotrauma 33:595–605. doi: 10.1089/neu.2015.4132 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KKW (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14:1289–1298. doi: 10.1007/s10495-009-0405-z CrossRefPubMedGoogle Scholar
  13. 13.
    Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26CrossRefPubMedGoogle Scholar
  14. 14.
    Yang Z, Wang KKW (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38:364–374. doi: 10.1016/j.tins.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huh JW, Franklin MA, Widing AG, Raghupathi R (2006) Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci 28:466–476. doi: 10.1159/000094172 CrossRefPubMedGoogle Scholar
  16. 16.
    Serbest G, Burkhardt MF, Siman R, Raghupathi R, Saatman KE (2007) Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochem Res 32:2006–2014. doi: 10.1007/s11064-007-9318-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Kwon BK, Casha S, Hurlbert RJ, Yong VW (2011) Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med 49:425–433. doi: 10.1515/CCLM.2011.068 CrossRefPubMedGoogle Scholar
  18. 18.
    Kato S, Chikuda H, Ohya J, Hayakawa K, Takeshita K, Tanaka S (2015) Phosphorylated neurofilament subunit levels in the serum of cervical compressive myelopathy patients. J Clin Neurosci 22:1638–1642CrossRefPubMedGoogle Scholar
  19. 19.
    Johnsson P, Blomquist S, Lührs C, Malmkvist G, Alling C, Solem JO, Ståhl E (2000) Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg 69:750–754CrossRefPubMedGoogle Scholar
  20. 20.
    Biglari B, Swing T, Child C, Büchler A, Westhauser F, Bruckner T, Ferbert T, Jürgen Gerner H et al (2015) A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: the serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord 53:510–514CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhihui Yang
    • 1
    Email author
  • Helen M. Bramlett
    • 2
    • 3
  • Ahmed Moghieb
    • 4
  • Dongnan Yu
    • 1
    • 5
  • Ping Wang
    • 1
    • 6
  • Fan Lin
    • 1
  • Carl Bauer
    • 1
  • Tyler M. Selig
    • 1
  • Emily Jaalouk
    • 1
  • Amanda S. Weissman
    • 1
  • Disa S. Rathore
    • 1
  • Pammela Romo
    • 1
  • Zhiqun Zhang
    • 1
  • Ronald L. Hayes
    • 7
  • Michael Y. Wang
    • 2
  • W. Dalton Dietrich
    • 2
  • Kevin K. W. Wang
    • 1
    • 4
    Email author
  1. 1.Departments of Psychiatry & NeuroscienceProgram for Neurotrauma, Neuroproteomics & Biomarkers ResearchGainesvilleUSA
  2. 2.University of Miami Leonard M. Miller School of MedicineMiamiUSA
  3. 3.Bruce W. Carter Department of Veterans Affairs Medical CenterMiamiUSA
  4. 4.Physiological Sciences and ChemistryUniversity of FloridaGainesvilleUSA
  5. 5.Guangdong General HospitalGuangzhouChina
  6. 6.School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
  7. 7.Banyan Biomarkers, IncAlachuaUSA

Personalised recommendations