Molecular Neurobiology

, Volume 54, Issue 6, pp 4343–4352 | Cite as

mtDNA Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia

Article

Abstract

Although monozygotic (MZ) twins have theoretically identical nuclear DNA sequences, there may be phenotypic differences between them caused by somatic mutations and epigenetic changes affecting each genome. In this study, we collected eight families of MZ twins discordant for schizophrenia with the aim of investigating the potential role of mitochondrial DNA (mtDNA) heteroplasmy in causing the phenotypic differences between the twin pairs. Next-generation sequencing (NGS) technology was used to screen the whole mitochondrial genome of the twin pairs and their parents. The mtDNA heteroplasmy level was found to be nearly identical between the twin pairs but was distinctly different between each mother and their offspring. These results suggest that the discordance of schizophrenia between MZ twins may not be attributable to the difference in mtDNA heteroplasmy, and the high concordance of mtDNA heteroplasmy between MZ twins may indicate the relatively equal distribution of mtDNA during embryo separation of MZ twins and/or the modulation effect from the same nuclear genetic background. Furthermore, we observed an overrepresentation of heteroplasmy in noncoding regions and an elevated ratio of nonsynonymous heteroplasmy, suggesting the possible effects of a purifying selection in shaping the pattern of mtDNA heteroplasmy.

Keywords

Monozygotic twins mtDNA Heteroplasmy Schizophrenia 

Supplementary material

12035_2016_9996_MOESM1_ESM.doc (158 kb)
ESM 1(DOC 157 kb)

References

  1. 1.
    Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93(1):23–58CrossRefPubMedGoogle Scholar
  2. 2.
    Cannon TD, Kaprio J, Lönnqvist J, Huttunen M, Koskenvuo M (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 55(1):67–74CrossRefPubMedGoogle Scholar
  3. 3.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bamne MN, Talkowski ME, Moraes CT, Manuck SB, Ferrell RE, Chowdari KV, Nimgaonkar VL (2008) Systematic association studies of mitochondrial DNA variations in schizophrenia: focus on the ND5 gene. Schizophr Bull 34(3):458–465CrossRefPubMedGoogle Scholar
  5. 5.
    Bandelt H-J, Yao YG, Kivisild T (2005) Mitochondrial genes and schizophrenia. Schizophr Res 72(2–3):267–269CrossRefPubMedGoogle Scholar
  6. 6.
    Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H et al (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 4(3):e4913CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Washizuka S, Kametani M, Sasaki T, Tochigi M, Umekage T, Kohda K, Kato T (2006) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 141B(3):301–304CrossRefPubMedGoogle Scholar
  8. 8.
    Bi R, Tang J, Zhang W, Li X, Chen SY, Yu D, Chen X, Yao YG (2016) Mitochondrial genome variations and functional characterization in Han Chinese families with schizophrenia. Schizophr Res 171(1–3):200–206CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang W, Tang J, Zhang AM, Peng MS, Xie HB, Tan L, Xu L, Zhang YP et al (2014) A matrilineal genetic legacy from the last glacial maximum confers susceptibility to schizophrenia in Han Chinese. J Genet Genomics 41(7):397–407CrossRefPubMedGoogle Scholar
  10. 10.
    Li X, Zhang W, Tang J, Tan L, Luo XJ, Chen X, Yao YG (2015) Do nuclear-encoded core subunits of mitochondrial complex I confer genetic susceptibility to schizophrenia in Han Chinese populations? Sci Rep 5:11076CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yao YG, Kajigaya S, Young NS (2015) Mitochondrial DNA mutations in single human blood cells. Mutat Res 779:68–77CrossRefPubMedGoogle Scholar
  12. 12.
    Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16(9):530–542CrossRefPubMedGoogle Scholar
  13. 13.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348(26):2656–2668CrossRefPubMedGoogle Scholar
  15. 15.
    Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li M, Stoneking M (2012) A new approach for detecting low-level mutations in next-generation sequence data. Genome Biol 13(5):R34CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sosa MX, Sivakumar IK, Maragh S, Veeramachaneni V, Hariharan R, Parulekar M, Fredrikson KM, Harkins TT et al (2012) Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency. PLoS Comput Biol 8(10):e1002737CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Greaves LC, Nooteboom M, Elson JL, Tuppen HA, Taylor GA, Commane DM, Arasaradnam RP, Khrapko K et al (2014) Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet 10(9):e1004620CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Williams SL, Mash DC, Zuchner S, Moraes CT (2013) Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet 9(12):e1003990CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9(9):e1003794CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kloss-Brandstatter A, Weissensteiner H, Erhart G, Schafer G, Forer L, Schonherr S, Pacher D, Seifarth C et al (2015) Validation of next-generation sequencing of entire mitochondrial genomes and the diversity of mitochondrial DNA mutations in oral squamous cell carcinoma. PLoS One 10(8):e0135643CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147CrossRefPubMedGoogle Scholar
  25. 25.
    Yao YG, Kong QP, Salas A, Bandelt HJ (2008) Pseudomitochondrial genome haunts disease studies. J Med Genet 45(12):769–772CrossRefPubMedGoogle Scholar
  26. 26.
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bi R, Li W-L, Chen M-Q, Zhu Z, Yao Y-G (2011) Rapid identification of mtDNA somatic mutations in gastric cancer tissues based on the mtDNA phylogeny. Mutat Res 709–710:15–20CrossRefPubMedGoogle Scholar
  28. 28.
    Bi R, Zhang AM, Jia X, Zhang Q, Yao YG (2012) Complete mitochondrial DNA genome sequence variation of Chinese families with mutation m.3635G>A and Leber hereditary optic neuropathy. Mol Vis 18:3087–3094PubMedPubMedCentralGoogle Scholar
  29. 29.
    van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394CrossRefPubMedGoogle Scholar
  30. 30.
    Fan L, Yao YG (2013) An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 13(4):360–363CrossRefPubMedGoogle Scholar
  31. 31.
    Kong Q-P, Yao Y-G, Sun C, Bandelt H-J, Zhu C-L, Zhang Y-P (2003) Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet 73(3):671–676CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kong QP, Sun C, Wang HW, Zhao M, Wang WZ, Zhong L, Hao XD, Pan H et al (2011) Large-scale mtDNA screening reveals a surprising matrilineal complexity in east Asia and its implications to the peopling of the region. Mol Biol Evol 28(1):513–522CrossRefPubMedGoogle Scholar
  33. 33.
    Kong QP, Bandelt HJ, Sun C, Yao YG, Salas A, Achilli A, Wang CY, Zhong L et al (2006) Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 15(13):2076–2086CrossRefPubMedGoogle Scholar
  34. 34.
    Bi R, Zhang W, Yu D, Li X, Wang HZ, Hu QX, Zhang C, Lu W et al (2015) Mitochondrial DNA haplogroup B5 confers genetic susceptibility to Alzheimer’s disease in Han Chinese. Neurobiol Aging 36(3):1604.e7–16Google Scholar
  35. 35.
    Bandelt H-J, Salas A, Taylor RW, Yao Y-G (2009) Exaggerated status of “novel” and “pathogenic” mtDNA sequence variants due to inadequate database searches. Hum Mutat 30(2):191–196CrossRefPubMedGoogle Scholar
  36. 36.
    Avital G, Buchshtav M, Zhidkov I, Tuval Feder J, Dadon S, Rubin E, Glass D, Spector TD et al (2012) Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins. Hum Mol Genet 21(19):4214–4224CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ye K, Lu J, Ma F, Keinan A, Gu Z (2014) Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci U S A 111(29):10654–10659CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Guo Y, Li CI, Sheng Q, Winther JF, Cai Q, Boice JD, Shyr Y (2013) Very low-level heteroplasmy mtDNA variations are inherited in humans. J Genet Genomics 40(12):607–615CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yao YG, Kajigaya S, Feng X, Samsel L, McCoy JP Jr, Torelli G, Young NS (2013) Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: effects of aging and family genetic background. Stem Cell Res 10(3):361–370CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192CrossRefPubMedGoogle Scholar
  41. 41.
    Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidindi S, Picchioni M et al (2011) Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 20(24):4786–4796CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mosquera-Miguel A, Torrell H, Abasolo N, Arrojo M, Paz E, Ramos-Rios R, Agra S, Paramo M et al (2012) No evidence that major mtDNA European haplogroups confer risk to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 159B(4):414–421CrossRefPubMedGoogle Scholar
  43. 43.
    Detjen AK, Tinschert S, Kaufmann D, Algermissen B, Nurnberg P, Schuelke M (2007) Analysis of mitochondrial DNA in discordant monozygotic twins with neurofibromatosis type 1. Twin Res Hum Genet 10(3):486–495CrossRefPubMedGoogle Scholar
  44. 44.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Grunewald A, Rygiel KA, Hepplewhite PD, Morris CM, Picard M, Turnbull DM (2016) Mitochondrial DNA depletion in respiratory chain-deficient parkinson disease neurons. Ann Neurol 79(3):366–378CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li M, Schroder R, Ni S, Madea B, Stoneking M (2015) Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc Natl Acad Sci U S A 112(8):2491–2496CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A, Coppotelli G, Freyer C, Lagouge M et al (2013) Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501(7467):412–415CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sondheimer N, Glatz CE, Tirone JE, Deardorff MA, Krieger AM, Hakonarson H (2011) Neutral mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet 20(8):1653–1659CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699CrossRefPubMedGoogle Scholar
  50. 50.
    Van Blerkom J, Davis P, Alexander S (2000) Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod 15(12):2621–2633CrossRefPubMedGoogle Scholar
  51. 51.
    Kustova ME, Sokolova VA, Bass MG, Zakharova FM, Sorokin AV, Vasil’ev VB (2008) Distribution of foreign mitochondrial DNA during the first splittings of the transmitochondrial mouse embryos. Tsitologiia 50(11):983–987PubMedGoogle Scholar
  52. 52.
    Lee HS, Ma H, Juanes RC, Tachibana M, Sparman M, Woodward J, Ramsey C, Xu J et al (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1(5):506–515CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang Z, Zhu R, Zhang S, Bian Y, Lu D, Li C (2015) Differentiating between monozygotic twins through next generation mtGenome sequencing. Anal Biochem 490:1–6CrossRefPubMedGoogle Scholar
  54. 54.
    Yao YG, Macauley V, Kivisild T, Zhang YP, Bandelt HJ (2003) To trust or not to trust an idiosyncratic mitochondrial data set. Am J Hum Genet 72(5):1341–1346CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yao YG, Salas A, Logan I, Bandelt HJ (2009) mtDNA data mining in GenBank needs surveying. Am J Hum Genet 85(6):929–933CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yao YG, Bandelt HJ, Young NS (2007) External contamination in single cell mtDNA analysis. PLoS One 2(8):e681CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303(5655):223–226CrossRefPubMedGoogle Scholar
  58. 58.
    Pereira L, Soares P, Radivojac P, Li B, Samuels DC (2011) Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 88(4):433–439CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan ProvinceChangshaChina
  2. 2.Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyKunmingChina
  3. 3.Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
  4. 4.Department of Psychiatrythe First Affiliated Hospital of China Medical UniversityShenyangChina
  5. 5.CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
  6. 6.Department of Psychiatrythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations