Advertisement

Molecular Neurobiology

, Volume 54, Issue 6, pp 4172–4188 | Cite as

Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex

  • Anatoly UzdenskyEmail author
  • Svetlana Demyanenko
  • Grigory Fedorenko
  • Tayana Lapteva
  • Alexej Fedorenko
Article

Abstract

After ischemic stroke, cell damage propagates from infarct core to surrounding tissues (penumbra). To reveal proteins involved in neurodegeneration and neuroprotection in penumbra, we studied protein expression changes in 2-mm ring around the core of photothrombotic infarct induced in the rat brain cortex by local laser irradiation after administration of Bengal Rose. The ultrastructural study showed edema and degeneration of neurons, glia, and capillaries. Morphological changes gradually decreased across the penumbra. Using the antibody microarrays, we studied changes in expression of >200 neuronal proteins in penumbra 4 or 24 h after focal photothrombotic infarct. Diverse cellular subsystems were involved in the penumbra tissue response: signal transduction pathways such as protein kinase Bα/GSK-3, protein kinase C and its β1 and β2 isoforms, Wnt/β-catenin (axin1, GSK-3, FRAT1), Notch/NUMB, DYRK1A, TDP43; mitochondria quality control (Pink1, parkin, HtrA2); ubiquitin-mediated proteolysis (ubiquilin-1, UCHL1); axon outgrowth and guidance (NAV-3, CRMP2, PKCβ2); vesicular trafficking (syntaxin-8, TMP21, Munc-18-3, synip, ALS2, VILIP1, syntaxin, synaptophysin, synaptotagmin); biosynthesis of neuromediators (tryptophan hydroxylase, monoamine oxidase B, glutamate decarboxylase, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter); intercellular interactions (N-cadherin, PMP22); cytoskeleton (neurofilament 68, neurofilament-M, doublecortin); and other proteins (LRP1, prion protein, β-amyloid). These proteins are involved in neurodegeneration or neuroprotection. Such changes were most expressed 4 h after photothrombotic impact. Immunohistochemical and Western blot studies of expression of monoamine oxidase B, UCHL1, DYRK1A, and Munc-18-3 confirmed the proteomic data. These data provide the integral view on the penumbra response to photothrombotic infarct. Some of these proteins can be potential targets for ischemic stroke therapy.

Keywords

Stroke Penumbra Photothrombotic infarct Proteomics Ultrastructure Neurodegeneration Neuroprotection 

Notes

Acknowledgments

The work was supported by the Russian Science Foundation (grant 14-15-00068). A.B. Uzdensky work was also supported by the Ministry of Education and Science of Russian Federation (grant “Science organization” #790). The authors used the equipment of the Center for Collective Use of Southern Federal University “High technology” supported by the Ministry of Education and Science of Russian Federation (project RFMEFI59414X0002).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Chavez JC, Hurko O, Barone FC, Feuerstein GZ (2009) Pharmacologic interventions for stroke looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke 40:e558–e563CrossRefPubMedGoogle Scholar
  2. 2.
    Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meisel A, Prass K, Wolf T, Dirnagl U (2004) Stroke. In: Bähr M (ed) Neuroprotection: models, mechanisms and therapies. Wiley-Blackwell, New York, pp 9–43Google Scholar
  4. 4.
    Moskowitz MA (2010) Brain protection: maybe yes, maybe no. Stroke 41:S85–S86CrossRefPubMedGoogle Scholar
  5. 5.
    Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389. doi: 10.1016/j.neuropharm.2007.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66CrossRefPubMedGoogle Scholar
  7. 7.
    Puyal J, Ginet V, Clarke PG (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 105:24–48CrossRefPubMedGoogle Scholar
  8. 8.
    Spisak S, Tulassay Z, Molnar B, Guttman A (2007) Protein microchips in biomedicine and biomarker discovery. Electrophoresis 28:4261–4273CrossRefPubMedGoogle Scholar
  9. 9.
    Wingren C, Borrebaeck CA (2009) Antibody-based microarrays. Methods Mol Biol 509:57–84CrossRefPubMedGoogle Scholar
  10. 10.
    Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of PKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356CrossRefPubMedGoogle Scholar
  11. 11.
    Datta A, Park JE, Li X, Zhang H, Ho ZS, Heese K, Lim SK, Tam JP et al (2010) Phenotyping of an in vitro model of ischemic penumbra by iTRAQ-based shotgun quantitative proteomics. J Proteome Res 9:472–484CrossRefPubMedGoogle Scholar
  12. 12.
    Dayon L, Turck N, Garcí-Berrocoso T, Walter N, Burkhard PR, Vilalta A, Sahuquillo J, Montaner J et al (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10:1043–1051CrossRefPubMedGoogle Scholar
  13. 13.
    Villa RF, Gorini A, Ferrari F, Hoyer S (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 63:765–781CrossRefPubMedGoogle Scholar
  14. 14.
    Uzdensky AB (2010) Cellular and molecular mechanisms of photodynamic therapy. Nauka, Saint Petersburg (in Russian)Google Scholar
  15. 15.
    Dietrich WD, Watson BD, Busto R, Ginsberg MD, Bethea JR (1987) Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol 72:315–325CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidt A, Hoppen M, Strecker JK, Diederich K, Schäbitz WR, Schilling M, Minnerup J (2012) Photochemically induced ischemic stroke in rats. Exp Transl Stroke Med 4:13CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shanina EV, Redecker C, Reinecke S, Schallert T, Witte OW (2005) Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function. Behav Brain Res 158:69–77CrossRefPubMedGoogle Scholar
  18. 18.
    Pevsner PH, Eichenbaum JW, Miller DC, Pivawer G, Eichenbaum KD, Stern A, Zakian KL, Koutcher JA (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J Pharmacol Toxicol Methods 45:227–233CrossRefPubMedGoogle Scholar
  19. 19.
    Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochemistry (Mosc) 80:790–799. doi: 10.1134/S0006297915060152 CrossRefGoogle Scholar
  20. 20.
    Brown AW, Brieley JB (1973) The earliest alterations in rat neurones and astrocytes after anoxia-ischemia. Acta Neuropathol 23:9–22CrossRefPubMedGoogle Scholar
  21. 21.
    Demyanenko SV, Uzdensky AB, Sharifulina SA, Lapteva TO, Polyakova LP (2014) PDT-induced epigenetic changes in the mouse cerebral cortex: a protein microarray study. Biochim Biophys Acta 1840:262–270CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang W, Gu W, Hossmann KA, Mies G, Wester P (2006) Establishing a photothrombotic ‘ring’ stroke model in adult mice with late spontaneous reperfusion: quantitative measurements of cerebral blood flow and cerebral protein synthesis. J Cereb Blood Flow Metab 26:927–936CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–270CrossRefPubMedGoogle Scholar
  24. 24.
    Liu BN, Han BX, Liu F (2014) Neuroprotective effect of pAkt and HIF-1α on ischemia rats. Asian Pac J Trop Med 7:221–225. doi: 10.1016/S1995-7645(14)60025-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB (2014) Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol 112:50–69CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Y, Lü L, Hettinger CL, Dong G, Zhang D, Rezvani K, Wang X, Wang H (2014) Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci 34:2813–282. doi: 10.1523/JNEUROSCI.3541-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y (2008) Ubiquitin-mediated stress response in the spinal cord after transient ischemia. Stroke 39:1883–1889CrossRefPubMedGoogle Scholar
  28. 28.
    Gong B, Leznik E (2007) The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect 20:365–370CrossRefPubMedGoogle Scholar
  29. 29.
    Siman R, Roberts VL, McNeil E, Dang A, Bavaria JE, Ramchandren S, McGarvey M (2008) Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest. Brain Res 1213:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    de Castro IP, Martins LM, Loh SH (2011) Mitochondrial quality control and Parkinson’s disease: a pathway unfolds. Mol Neurobiol 43:80–86. doi: 10.1007/s12035-010-8150-4 CrossRefPubMedGoogle Scholar
  31. 31.
    McKeon JE, Sha D, Li L, Chin LS (2015) Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell Mol Life Sci 72:1811–1824. doi: 10.1007/s00018-014-1781-2 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao Y, Chen F, Chen S, Liu X, Cui M, Dong Q (2013) The Parkinson’s disease-associated gene PINK1 protects neurons from ischemic damage by decreasing mitochondrial translocation of the fission promoter Drp1. J Neurochem 127:711–722. doi: 10.1111/jnc.12340 CrossRefPubMedGoogle Scholar
  33. 33.
    Hou ST, Jiang SX, Aylsworth A, Ferguson G, Slinn J, Hu H, Leung T, Kappler J et al (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J Neurochem 111:870–881CrossRefPubMedGoogle Scholar
  34. 34.
    Maes T, Barceló A, Buesa C (2002) Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 80:21–30CrossRefPubMedGoogle Scholar
  35. 35.
    Chen A, Liao WP, Lu Q, Wong WS, Wong PT (2007) Upregulation of dihydropyrimidinase-related protein 2, spectrin alpha II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats—a proteomics approach. Neurochem Int 50:1078–1086CrossRefPubMedGoogle Scholar
  36. 36.
    Zechariah A, El Ali A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM (2013) Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 44:1690–1697. doi: 10.1161/STROKEAHA.111.000240 CrossRefPubMedGoogle Scholar
  37. 37.
    Quarles RH (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 59:1851–1871CrossRefPubMedGoogle Scholar
  38. 38.
    Doeppner TR, Kaltwasser B, Schlechter J, Jaschke J, Kilic E, Bähr M, Hermann DM, Weise J (2015) Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis 6:e2024. doi: 10.1038/cddis.2015.365 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F et al (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 165:227–235CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Weise J, Crome O, Sandau R, Schulz-Schaeffer W, Bähr M, Zerr I (2004) Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity. Neurosci Lett 372:146–150CrossRefPubMedGoogle Scholar
  41. 41.
    Chen B, Zhao L, Li X, Ji YS, Li N, Xu XF, Chen ZY (2014) Syntaxin 8 modulates the post-synthetic trafficking of the TrkA receptor and inflammatory pain transmission. J Biol Chem 289:19556–19569. doi: 10.1074/jbc.M114.567925 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bromley-Brits K, Song W (2012) The role of TMP21 in trafficking and amyloid-β precursor protein (APP) processing in Alzheimer’s disease. Curr Alzheimer Res 9:411–424CrossRefPubMedGoogle Scholar
  43. 43.
    Jahn R (2000) Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage. Neuron 27:201–204CrossRefPubMedGoogle Scholar
  44. 44.
    Yu H, Rathore SS, Shen J (2013) Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. J Biol Chem 288:18885–18893. doi: 10.1074/jbc.M113.465450 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hadano S, Otomo A, Kunita R, Suzuki-Utsunomiya K, Akatsuka A, Koike M, Aoki M, Uchiyama Y et al (2010) Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PLoS One 5:e9805. doi: 10.1371/journal.pone.0009805 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Braunewell KH, Klein-Szanto AJ (2009) Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins. Cell Tissue Res 335:301–316. doi: 10.1007/s00441-008-0716-3 CrossRefPubMedGoogle Scholar
  47. 47.
    Stejskal D, Sporova L, Svestak M, Karpisek M (2011) Determination of serum visinin like protein-1 and its potential for the diagnosis of brain injury due to the stroke: a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:263–268. doi: 10.5507/bp.2011.049 CrossRefPubMedGoogle Scholar
  48. 48.
    Ishimaru H, Casamenti F, Uéda K, Maruyama Y, Pepeu G (2001) Changes in presynaptic proteins, SNAP-25 and synaptophysin, in the hippocampal CA1 area in ischemic gerbils. Brain Res 903:94–101CrossRefPubMedGoogle Scholar
  49. 49.
    Mitsios N, Saka M, Krupinski J, Pennucci R, Sanfeliu C, Wang Q, Rubio F, Gaffney J et al (2007) A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion. BMC Neurosci 12(8):93CrossRefGoogle Scholar
  50. 50.
    Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, Ginsberg MD (2002) DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res 108:81–93CrossRefPubMedGoogle Scholar
  51. 51.
    Abbassi R, Johns TG, Kassiou M, Munoz L (2015) DYRK1A in neurodegeneration and cancer: molecular basis and clinical implications. Pharmacol Ther 151:87–98. doi: 10.1016/j.pharmthera.2015.03.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278:236–245. doi: 10.1111/j.1742-4658.2010.07955.x CrossRefPubMedGoogle Scholar
  53. 53.
    Choi HK, Chung KC (2011) DYRK1A positively stimulates ASK1-JNK signaling pathway during apoptotic cell death. Exp Neurobiol 20:35–44CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bright R, Mochly-Rosen D (2005) The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 36:2781–2790CrossRefPubMedGoogle Scholar
  55. 55.
    Hara H, Onodera H, Yoshidomi M, Matsuda Y, Kogure K (1990) Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat. J Cereb Blood Flow Metab 10:646–653CrossRefPubMedGoogle Scholar
  56. 56.
    Felipo V, Miñana MD, Grisolía S (1993) Inhibitors of protein kinase C prevent the toxicity of glutamate in primary neuronal cultures. Brain Res 604:192–196CrossRefPubMedGoogle Scholar
  57. 57.
    Kanazawa M, Kakita A, Igarashi H, Takahashi T, Kawamura K, Takahashi H, Nakada T, Nishizawa M et al (2011) Biochemical and histopathological alterations in TAR DNA-binding protein-43 after acute ischemic stroke in rats. J Neurochem 116:957–965CrossRefPubMedGoogle Scholar
  58. 58.
    Friocourt G, Koulakoff A, Chafey P, Boucher D, Fauchereau F, Chelly J, Francis F (2003) Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex 13:620–626CrossRefPubMedGoogle Scholar
  59. 59.
    Wang X, Mao X, Xie L, Sun F, Greenberg DA, Jin K (2012) Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS One 7:e38932. doi: 10.1371/journal.pone.0038932 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Osman AM, Porritt MJ, Nilsson M, Kuhn HG (2011) Long-term stimulation of neural progenitor cell migration after cortical ischemia in mice. Stroke 42:3559–3565. doi: 10.1161/STROKEAHA.111.627802 CrossRefPubMedGoogle Scholar
  61. 61.
    Li F, Chong ZZ, Maiese K (2005) Vital elements of the Wnt-Frizzled signaling pathway in the nervous system. Curr Neurovasc Res 2:331–340CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mathieu P, Adami PV, Morelli L (2013) Notch signaling in the pathologic adult brain. Biomol Concepta 4:465–476. doi: 10.1515/bmc-2013-0006 Google Scholar
  63. 63.
    Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH, Battaglia G, Caricasole A, Bruno V et al (2009) Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J Cereb Blood Flow Metab 29:264–276. doi: 10.1038/jcbfm.2008.111 CrossRefPubMedGoogle Scholar
  64. 64.
    Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, Reith AD (2001) GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and beta-catenin stabilisation without elevation of glycogen synthase activity. FEBS Lett 507:288–294CrossRefPubMedGoogle Scholar
  65. 65.
    Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J (2013) Numb/Notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res 38:254–261. doi: 10.1007/s11064-012-0914-y CrossRefPubMedGoogle Scholar
  66. 66.
    Al Haj Zen A, Madeddu P (2009) Notch signalling in ischaemia-induced angiogenesis. Biochem Soc Trans 37:1221–1227. doi: 10.1042/BST0371221 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533–1540CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Herz J (2001) The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron 29:571–581CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang C, An J, Strickland DK, Yepes M (2009) The low-density lipoprotein receptor-related protein 1 mediates tissue-type plasminogen activator-induced microglial activation in the ischemic brain. Am J Pathol 174:586–594. doi: 10.2353/ajpath.2009.080661 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anatoly Uzdensky
    • 1
    Email author
  • Svetlana Demyanenko
    • 1
  • Grigory Fedorenko
    • 1
    • 2
  • Tayana Lapteva
    • 3
  • Alexej Fedorenko
    • 1
  1. 1.Laboratory of Molecular Neurobiology, Academy of Biology and BiotechnologySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Arid ZonesSouthern Scientific Center of Russian Academy of SciencesRostov-on-DonRussia
  3. 3.Regional Consulting and Diagnostic CenterRostov-on-DonRussia

Personalised recommendations