Advertisement

Molecular Neurobiology

, Volume 54, Issue 5, pp 3506–3527 | Cite as

A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts

  • Chun Min Kho
  • Siti Kartini Enche Ab Rahim
  • Zainal Arifin Ahmad
  • Norazharuddin Shah AbdullahEmail author
Article

Abstract

Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.

Keywords

Microdialysis Calibration method Relative recovery Absolute recovery 

Notes

Acknowledgments

The authors gratefully acknowledge the endless and unreserved support provided by the School of Materials and Mineral Resources Engineering (SMMRE), Universiti Sains Malaysia (USM), especially in terms of funding, through USM’s RUI research grant (No. 1001/PBAHAN/814177). The authors also would like express their gratitude to the Ministry of Higher Education (MOHE) Malaysia, through the MyBrain15 Program (Ref: 890529115391/MyPhD) for financial support. The authors also thank BRAINetwork, USM, and Universiti Malaysia Perlis (UniMAP) through the School of Bioprocess Engineering and the Faculty of Engineering Technology for their excellent facilities and technical assistance.

References

  1. 1.
    Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230(4):365–373PubMedCrossRefGoogle Scholar
  2. 2.
    Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. In: Current protocols in neuroscience. John Wiley & Sons, Inc. doi: 10.1002/0471142301.ns0701s47
  3. 3.
    Plock N, Kloft C (2005) Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 25(1):1–24. doi: 10.1016/j.ejps.2005.01.017 PubMedCrossRefGoogle Scholar
  4. 4.
    Lee MKK, Di L (2014) Crosstalk the microdialysis in scientific research: from principle to its applications. Pharm Anal Acta 5(1):276. doi: 10.4172/2153-2435.1000276 Google Scholar
  5. 5.
    Kalant H (1958) A microdialysis procedure for extraction and isolation of corticosteroids from peripheral blood plasma. Biochem J 69(1):99–103PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13(11):1057–1067. doi: 10.1111/j.1471-4159.1966.tb04265.x PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X, Stenken JA (2006) Microdialysis sampling membrane performance during in vitro macromolecule collection. Anal Chem 78(17):6026–6034. doi: 10.1021/ac0602930 PubMedCrossRefGoogle Scholar
  8. 8.
    Cremers TI, de Vries MG, Huinink KD, van Loon JP, v d Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178(2):249–254. doi: 10.1016/j.jneumeth.2008.12.010 PubMedCrossRefGoogle Scholar
  9. 9.
    Robinson TE, Justice JB (1991) Microdialysis in the neurosciences: techniques in the behavioral and neural sciences. Elsevier ScienceGoogle Scholar
  10. 10.
    Benveniste H (1989) Brain microdialysis. J Neurochem 52(6):1667–1679. doi: 10.1111/j.1471-4159.1989.tb07243.x PubMedCrossRefGoogle Scholar
  11. 11.
    Reddi SA (2014) Body fluid compartments. In: Reddi SA (ed) Fluid, electrolyte and acid-base disorders: clinical evaluation and management. Springer, New York, pp 1–12. doi: 10.1007/978-1-4614-9083-8_1 CrossRefGoogle Scholar
  12. 12.
    Langer O, Karch R, Müller U, Dobrozemsky G, Abrahim A, Zeitlinger M, Lackner E, Joukhadar C, Dudczak R, Kletter K, Müller M, Brunner M (2005) Combined PET and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans. J Nucl Med 46(11):1835–1841PubMedGoogle Scholar
  13. 13.
    Hammarlund-Udenaes M (2013) Microdialysis in CNS PKPD research: unraveling unbound concentrations. In: Müller M (ed) Microdialysis in drug development. Springer, New York, pp 83–102. doi: 10.1007/978-1-4614-4815-0_5 CrossRefGoogle Scholar
  14. 14.
    Jansson PA, Fowelin J, Smith U, Lonnroth P (1988) Characterization by microdialysis of intracellular glucose level in subcutaneous tissue in humans. Am J Physiol Endocrinol Metab 255(2):E218–E220Google Scholar
  15. 15.
    Evrard PA, Ragusi C, Boschi G, Verbeeck RK, Scherrmann J-M (1998) Simultaneous microdialysis in brain and blood of the mouse: extracellular and intracellular brain colchicine disposition. Brain Res 786(1–2):122–127. doi: 10.1016/S0006-8993(97)01454-6 PubMedCrossRefGoogle Scholar
  16. 16.
    Moon BU, de Vries MG, Cordeiro CA, Westerink BH, Verpoorte E (2013) Microdialysis-coupled enzymatic microreactor for in vivo glucose monitoring in rats. Anal Chem 85(22):10949–10955. doi: 10.1021/ac402414m PubMedCrossRefGoogle Scholar
  17. 17.
    Diczfalusy E, Dizdar N, Zsigmond P, Kullman A, Loyd D, Wardell K (2012) Simulations and visualizations for interpretation of brain microdialysis data during deep brain stimulation. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, Aug. 28 2012-Sept. 1 2012. pp 6438–6441. doi: 10.1109/EMBC.2012.6347468
  18. 18.
    Stenken JA, Church MK, Gill CA, Clough GF (2010) How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies. AAPS J 12(1):73–78. doi: 10.1208/s12248-009-9163-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Torto N (2009) A review of microdialysis sampling systems. Chromatographia 70(9-10):1305–1309. doi: 10.1365/s10337-009-1335-1 CrossRefGoogle Scholar
  20. 20.
    Li Z, Cui Z (2008) Application of microdialysis in tissue engineering monitoring. Prog Nat Sci 18(5):503–511. doi: 10.1016/j.pnsc.2008.02.001 CrossRefGoogle Scholar
  21. 21.
    Rosenbloom AJ, Sipe DM, Weedn VW (2005) Microdialysis of proteins: performance of the CMA/20 probe. J Neurosci Methods 148(2):147–153. doi: 10.1016/j.jneumeth.2005.04.018 PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai T-H (2003) Assaying protein unbound drugs using microdialysis techniques. J Chromatogr B 797(1–2):161–173. doi: 10.1016/j.jchromb.2003.08.036 CrossRefGoogle Scholar
  23. 23.
    Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo J-M (2014) Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 50(2):626–646. doi: 10.1007/s12035-014-8669-x PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zhou Q, Gallo JM (2005) In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J 7(3):E659–E667. doi: 10.1208/aapsj070366 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Verbeeck RK (2000) Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv Drug Deliv Rev 45(2-3):217–228PubMedCrossRefGoogle Scholar
  26. 26.
    Davies MI (1999) A review of microdialysis sampling for pharmacokinetic applications. Anal Chim Acta 379(3):227–249. doi: 10.1016/S0003-2670(98)00633-3 CrossRefGoogle Scholar
  27. 27.
    Boubriak OA, Urban JPG, Cui ZF (2006) Monitoring of lactate and glucose levels in engineered cartilage construct by microdialysis. J Membr Sci 273(1–2):77–83. doi: 10.1016/j.memsci.2005.10.011 CrossRefGoogle Scholar
  28. 28.
    Enche Ab Rahim SK, Mohamed Dzahir MIH, Arbain D, Abdullah NS Microdialysis technique: overview and applications in biomedical research. In: Proc IMiEJS2012, 2012. Universiti Malaysia Perlis (UniMAP), pp 1083–1093Google Scholar
  29. 29.
    de Lange EC, de Boer AG, Breimer DD (2000) Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev 45(2-3):125–148PubMedCrossRefGoogle Scholar
  30. 30.
    Kho CM, Aziz A, Ahmad ZA, Enche Ab Rahim SK, Abdullah NS (2014) Initial efforts in modelling mass transport in microdialysis probes: physical characterization of the microdialysis probe membrane. Adv Mater Res 1087:365–369CrossRefGoogle Scholar
  31. 31.
    Mishra P, Lehmann J, Nair S (1995) Microdialysis probes and methods of use. Google PatentsGoogle Scholar
  32. 32.
    Hansen DK, Davies MI, Lunte SM, Lunte CE (1999) Pharmacokinetic and metabolism studies using microdialysis sampling. J Pharm Sci 88(1):14–27. doi: 10.1021/js9801485 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sani S (2013) Microdialysis technique overview—probe types. AAPS Microdialysis Focus Group Mag 2(1):3–4, Accessed July 2014Google Scholar
  34. 34.
    Heppert KE, Davies MI (1999) Using a microdialysis shunt probe to monitor phenolphthalein glucuronide in rats with intact and diverted bile flow. Anal Chim Acta 379(3):359–366. doi: 10.1016/S0003-2670(98)00597-2 CrossRefGoogle Scholar
  35. 35.
    Stenken JA, Topp EM, Southard MZ, Lunte CE (1993) Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal Chem 65(17):2324–2328. doi: 10.1021/ac00065a026 PubMedCrossRefGoogle Scholar
  36. 36.
    de Lange EM (2013) Recovery and calibration techniques: toward quantitative microdialysis. In: Müller M (ed) Microdialysis in Drug Development, vol 4. AAPS Advances in the Pharmaceutical Sciences Series. Springer New York, pp 13–33. doi: 10.1007/978-1-4614-4815-0_2
  37. 37.
    Garrison KE, Pasas SA, Cooper JD, Davies MI (2002) A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur J Pharm Sci 17(1–2):1–12. doi: 10.1016/S0928-0987(02)00149-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Clough GF (2005) Microdialysis of large molecules. AAPS J 7(3):E686–E692. doi: 10.1208/aapsj070369 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Angst MS, Clark JD, Carvalho B, Tingle M, Schmelz M, Yeomans DC (2008) Cytokine profile in human skin in response to experimental inflammation, noxious stimulation, and administration of a COX-inhibitor: a microdialysis study. Pain 139(1):15–27. doi: 10.1016/j.pain.2008.02.028 PubMedCrossRefGoogle Scholar
  40. 40.
    Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysis method for the recovery of IL-1β, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119(1):45–50. doi: 10.1016/S0165-0270(02)00153-X PubMedCrossRefGoogle Scholar
  41. 41.
    Shintani F, Nakaki T, Kanba S, Kato R, Asai M (1995) Role of interleukin-1 in stress responses. Mol Neurobiol 10(1):47–71. doi: 10.1007/BF02740837 PubMedCrossRefGoogle Scholar
  42. 42.
    Stenken JA (1999) Methods and issues in microdialysis calibration. Anal Chim Acta 379(3):337–358. doi: 10.1016/S0003-2670(98)00598-4 CrossRefGoogle Scholar
  43. 43.
    Bungay PM, Wang T, Yang H, Elmquist WF (2010) Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J Membr Sci 348(1–2):131–149. doi: 10.1016/j.memsci.2009.10.050 CrossRefGoogle Scholar
  44. 44.
    Kho CM, Ahmad ZA, Enche Ab Rahim SK, Abdullah NS (2016) Why a comprehensive physical characterization effort of microdialysis membranes is imperative for computational mass transfer studies? Mater Sci Forum 840:180–184. doi: 10.4028/www.scientific.net/MSF.840.180 CrossRefGoogle Scholar
  45. 45.
    Leegsma-Vogt G, Janle E, Ash SR, Venema K, Korf J (2003) Utilization of in vivo ultrafiltration in biomedical research and clinical applications. Life Sci 73(16):2005–2018. doi: 10.1016/S0024-3205(03)00569-1 PubMedCrossRefGoogle Scholar
  46. 46.
    Abdullah NSB, Cui Z (2009) Mathematical modelling of nutrient transport in bioreactors for bone tissue growth. Dissertation, Oxford UniversityGoogle Scholar
  47. 47.
    Melgaard L, Hersini KJ, Gazerani P, Petersen LJ (2013) Retrodialysis: a review of experimental and clinical applications of reverse microdialysis in the skin. Skin Pharmacol Physiol 26(3):160–174. doi: 10.1159/000351341 PubMedCrossRefGoogle Scholar
  48. 48.
    Höcht C, Opezzo JAW, Taira CA (2007) Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 55(1):3–15. doi: 10.1016/j.vascn.2006.02.007 PubMedCrossRefGoogle Scholar
  49. 49.
    Torto N, Bång J, Richardson S, Nilsson GS, Gorton L, Laurell T, Marko-Varga G (1998) Optimal membrane choice for microdialysis sampling of oligosaccharides. J Chromatogr A 806(2):265–278. doi: 10.1016/S0021-9673(98)00063-6 PubMedCrossRefGoogle Scholar
  50. 50.
    Ramakrishna S, Ma Z, Matsuura T (2011) Polymer membranes in biotechnology: preparation, functionalization and application. Imperial College PressGoogle Scholar
  51. 51.
    Hsiao JK, Ball BA, Morrison PF, Mefford IN, Bungay PM (1990) Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 54(4):1449–1452. doi: 10.1111/j.1471-4159.1990.tb01982.x PubMedCrossRefGoogle Scholar
  52. 52.
    Buttler T, Nilsson C, Gorton L, Marko-Varga G, Laurell T (1996) Membrane characterisation and performance of microdialysis probes intended for use as bioprocess sampling units. J Chromatogr A 725(1):41–56. doi: 10.1016/0021-9673(95)01120-X CrossRefGoogle Scholar
  53. 53.
    Brunner M, Joukhadar C, Schmid R, Erovic B, Eichler HG, Müller M (2000) Validation of urea as an endogenous reference compound for the in vivo calibration of microdialysis probes. Life Sci 67(8):977–984. doi: 10.1016/S0024-3205(00)00685-8 PubMedCrossRefGoogle Scholar
  54. 54.
    Sauernheimer C, Williams KM, Brune K, Geisslinger G (1994) Application of microdialysis to the pharmacokinetics of analgesics: problems with reduction of dialysis efficiency in vivo. J Pharmacol Toxicol Methods 32(3):149–154PubMedCrossRefGoogle Scholar
  55. 55.
    Stenken JA, Lunte CE, Southard MZ, Stahle L (1997) Factors that influence microdialysis recovery. Comparison of experimental and theoretical microdialysis recoveries in rat liver. J Pharm Sci 86(8):958–966. doi: 10.1021/js960269+ PubMedCrossRefGoogle Scholar
  56. 56.
    Lafontan M, Arner P (1996) Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 17(9):309–313PubMedCrossRefGoogle Scholar
  57. 57.
    Menacherry S, Hubert W, Justice JB (1992) In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem 64(6):577–583. doi: 10.1021/ac00030a003 PubMedCrossRefGoogle Scholar
  58. 58.
    Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices—a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods 15(3):263–268. doi: 10.1016/0165-0270(85)90107-4 PubMedCrossRefGoogle Scholar
  59. 59.
    Kaptein WA, Zwaagstra JJ, Venema K, Korf J (1998) Continuous ultraslow microdialysis and ultrafiltration for subcutaneous sampling as demonstrated by glucose and lactate measurements in rats. Anal Chem 70(22):4696–4700PubMedCrossRefGoogle Scholar
  60. 60.
    Lada MW, Kennedy RT (1995) Quantitative in vivo measurements using microdialysis on-line with capillary zone electrophoresis. J Neurosci Methods 63(1–2):147–152. doi: 10.1016/0165-0270(95)00104-2 PubMedCrossRefGoogle Scholar
  61. 61.
    Lada MW, Kennedy RT (1997) In vivo monitoring of glutathione and cysteine in rat caudate nucleus using microdialysis on-line with capillary zone electrophoresis-laser induced fluorescence detection. J Neurosci Methods 72(2):153–159. doi: 10.1016/S0165-0270(96)02174-7 PubMedCrossRefGoogle Scholar
  62. 62.
    Slaney TR (2013) Low-flow push-pull perfusion for measuring neurotransmitters with high spatial and temporal resolution within the living brain. Dissertation, University of MichiganGoogle Scholar
  63. 63.
    May M, Batkai S, Zoerner AA, Tsikas D, Jordan J, Engeli S (2013) Enhanced human tissue microdialysis using hydroxypropyl-ß-Cyclodextrin as molecular carrier. PLoS ONE 8(4):e60628. doi: 10.1371/journal.pone.0060628 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38(4):331–341. doi: 10.1016/j.ymeth.2005.11.012 PubMedCrossRefGoogle Scholar
  65. 65.
    Di Giovanni G, Di Matteo V (2013) Microdialysis techniques in neuroscience. Neuromethods; 75. Humana Press, Totowa, NJGoogle Scholar
  66. 66.
    Song Y, Lunte CE (1999) Comparison of calibration by delivery versus no net flux for quantitative in vivo microdialysis sampling. Anal Chim Acta 379(3):251–262. doi: 10.1016/S0003-2670(98)00363-8 CrossRefGoogle Scholar
  67. 67.
    Lönnroth P, Strindberg L (1995) Validation of the ‘internal reference technique’ for calibrating microdialysis catheters in situ. Acta Physiol Scand 153(4):375–380. doi: 10.1111/j.1748-1716.1995.tb09875.x PubMedCrossRefGoogle Scholar
  68. 68.
    Chefer VI, Zapata A, Shippenberg TS, Bungay PM (2006) Quantitative no-net-flux microdialysis permits detection of increases and decreases in dopamine uptake in mouse nucleus accumbens. J Neurosci Methods 155(2):187–193. doi: 10.1016/j.jneumeth.2005.12.018 PubMedCrossRefGoogle Scholar
  69. 69.
    Le Quellec A, Dupin S, Genissel P, Saivin S, Marchand B, Houin G (1995) Microdialysis probes calibration: gradient and tissue dependent changes in no net flux and reverse dialysis methods. J Pharmacol Toxicol Methods 33(1):11–16PubMedCrossRefGoogle Scholar
  70. 70.
    Rizell M, Naredi P, Lindnér P, Hellstrand K, Jansson P-A (1999) Validation of the internal reference technique for microdialysis measurements of interstitial histamine in the rat. Life Sci 65(17):1765–1771. doi: 10.1016/S0024-3205(99)00429-4 PubMedCrossRefGoogle Scholar
  71. 71.
    Hershey ND, Kennedy RT (2013) In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem Neurosci 4(5):729–736. doi: 10.1021/cn300199m PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B (2013) Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 65(6):843–849. doi: 10.1080/01635581.2013.804579 PubMedCrossRefGoogle Scholar
  73. 73.
    Unger EL, Bianco LE, Jones BC, Allen RP, Earley CJ (2014) Low brain iron effects and reversibility on striatal dopamine dynamics. Exp Neurol 261:462–468. doi: 10.1016/j.expneurol.2014.06.023 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ding Z-M, Engleman EA, Rodd ZA, McBride WJ (2012) Ethanol increases glutamate neurotransmission in the posterior ventral tegmental area of female Wistar rats. Alcohol Clin Exp Res 36(4):633–640. doi: 10.1111/j.1530-0277.2011.01665.x PubMedCrossRefGoogle Scholar
  75. 75.
    Hurtado FK, Weber B, Derendorf H, Hochhaus G, Dalla Costa T (2014) Population pharmacokinetic modeling of the unbound levofloxacin concentrations in rat plasma and prostate tissue measured by microdialysis. Antimicrob Agents Chemother 58(2):678–686. doi: 10.1128/aac.01884-13 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Olson RJ, Justice JB (1993) Quantitative microdialysis under transient conditions. Anal Chem 65(8):1017–1022. doi: 10.1021/ac00056a012 PubMedCrossRefGoogle Scholar
  77. 77.
    Xie R, Hammarlund-Udenaes M, De Boer AG, De Lange ECM (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol 128(3):563–568. doi: 10.1038/sj.bjp.0702804 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    de Lange ECM, Marchand S, van den Berg D-J, van der Sandt ICJ, de Boer AG, Delon A, Bouquet S, Couet W (2000) In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 12(2):85–93. doi: 10.1016/S0928-0987(00)00149-4 PubMedCrossRefGoogle Scholar
  79. 79.
    Cremers TIFH, Flik G, Hofland C, Stratford RE (2012) Microdialysis evaluation of clozapine and N-Desmethylclozapine pharmacokinetics in rat brain. Drug Metab Dispos 40(10):1909–1916. doi: 10.1124/dmd.112.045682 PubMedCrossRefGoogle Scholar
  80. 80.
    Krogstad AL, Jansson PA, GisslÉN P, LÖNnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012. doi: 10.1046/j.1365-2133.1996.d01-893.x PubMedCrossRefGoogle Scholar
  81. 81.
    Larsson CI (1991) The use of an “internal standard” for control of the recovery in microdialysis. Life Sci 49(13):Pl73–Pl78PubMedCrossRefGoogle Scholar
  82. 82.
    Stahle L (1991) Drug distribution studies with microdialysis: I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci 49(24):1835–1842PubMedCrossRefGoogle Scholar
  83. 83.
    Wei J-B, Lai Q, Shumyak SP, Xu L-F, Zhang C-X, Ling J-J, Yu Y (2015) An LC/MS quantitative and microdialysis method for cyclovirobuxine D pharmacokinetics in rat plasma and brain: the pharmacokinetic comparison of three different drug delivery routes. J Chromatogr B 1002:185–193. doi: 10.1016/j.jchromb.2015.08.022 CrossRefGoogle Scholar
  84. 84.
    Yokel RA, Allen DD, Burgio DE, McNamara PJ (1992) Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis. J Pharmacol Toxicol Methods 27(3):135–142. doi: 10.1016/1056-8719(92)90034-X PubMedCrossRefGoogle Scholar
  85. 85.
    Vestergaard ET, Møller N, Jørgensen JOL (2013) Acute peripheral tissue effects of ghrelin on interstitial levels of glucose, glycerol, and lactate: a microdialysis study in healthy human subjects. Am J Physiol Endocrinol Metab 304(12):E1273–E1280. doi: 10.1152/ajpendo.00662.2012 PubMedCrossRefGoogle Scholar
  86. 86.
    Langkilde A, Andersen O, Henriksen JH, Langberg H, Petersen J, Eugen-Olsen J (2015) Assessment of in situ adipose tissue inflammation by microdialysis. Clin Physiol Funct Imaging 35(2):110–119. doi: 10.1111/cpf.12134 PubMedCrossRefGoogle Scholar
  87. 87.
    Hashimoto Y, Murakami T, Kumasa C, Higashi Y, Yata N, Takano M (1998) In-vivo calibration of microdialysis probe by use of endogenous glucose as an internal recovery marker: measurement of skin distribution of tranilast in rats. J Pharm Pharmacol 50(6):621–626PubMedCrossRefGoogle Scholar
  88. 88.
    Schwalbe O, Buerger C, Plock N, Joukhadar C, Kloft C (2006) Urea as an endogenous surrogate in human microdialysis to determine relative recovery of drugs: analytics and applications. J Pharm Biomed Anal 41(1):233–239. doi: 10.1016/j.jpba.2005.11.017 PubMedCrossRefGoogle Scholar
  89. 89.
    Strindberg L, Lönnroth P (2000) Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand J Clin Lab Invest 60(3):205–212. doi: 10.1080/003655100750044857 PubMedCrossRefGoogle Scholar
  90. 90.
    Levick JR (1991) Chapter 8—solute transport between blood and tissue. In: Levick JR (ed) An introduction to cardiovascular physiology. Butterworth-Heinemann, pp 117–141. doi: 10.1016/B978-0-7506-1028-5.50011-1
  91. 91.
    Ronne-Engström E, Cesarini KG, Enblad P, Hesselager G, Marklund N, Nilsson P, Salci K, Persson L, Hillered L (2001) Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. J Neurosurg 94(3):397–402. doi: 10.3171/jns.2001.94.3.0397 PubMedCrossRefGoogle Scholar
  92. 92.
    Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL (2012) Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 29(10):1908–1921. doi: 10.1089/neu.2012.2404 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Quarder O, Ferrari S, Stephan P (2008) Method and device for determining the glucose concentration in tissue liquid. Google PatentsGoogle Scholar
  94. 94.
    Gottås A, Ripel Å, Boix F, Vindenes V, Mørland J, Øiestad EL (2015) Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry. J Pharmacol Toxicol Methods 74:75–79. doi: 10.1016/j.vascn.2015.06.002 PubMedCrossRefGoogle Scholar
  95. 95.
    Bouw MR, Hammarlund-Udenaes M (1998) Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm Res 15(11):1673–1679PubMedCrossRefGoogle Scholar
  96. 96.
    Sane R, Wu S-P, Zhang R, Gallo JM (2014) The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos 42(4):537–540. doi: 10.1124/dmd.113.055228 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Matzneller P, Brunner M (2011) Recent advances in clinical microdialysis. TrAC Trends Anal Chem 30(9):1497–1504. doi: 10.1016/j.trac.2011.06.008 CrossRefGoogle Scholar
  98. 98.
    Brunner M, Derendorf H (2006) Clinical microdialysis: current applications and potential use in drug development. TrAC Trends Anal Chem 25(7):674–680. doi: 10.1016/j.trac.2006.05.004 CrossRefGoogle Scholar
  99. 99.
    Shukla C, Bashaw ED, Stagni G, Benfeldt E (2014) Applications of dermal microdialysis: a review. J Drug Delivery Sci Technol 24(3):259–269. doi: 10.1016/S1773-2247(14)50044-5 CrossRefGoogle Scholar
  100. 100.
    Goodman JC (2011) Clinical microdialysis in neuro-oncology: principles and applications. Chin J Cancer 30(3):173–181. doi: 10.5732/cjc.010.10588 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Azeredo F, Dalla Costa T, Derendorf H (2014) Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet 53(3):205–212. doi: 10.1007/s40262-014-0131-8 PubMedCrossRefGoogle Scholar
  102. 102.
    Boutelle MG, Fillenz M (1996) Clinical microdialysis: the role of on-line measurement and quantitative microdialysis. In: Mendelowitsch A, Langemann H, Alessandri B, Landolt H, Gratzl O (eds) Clinical aspects of microdialysis. Springer, Vienna, pp 13–20. doi: 10.1007/978-3-7091-6894-3_3 CrossRefGoogle Scholar
  103. 103.
    Chen JW, Rogers SL, Gombart ZJ, Adler DE, Cecil S (2012) Implementation of cerebral microdialysis at a community-based hospital: a 5-year retrospective analysis. Surg Neurol Int 3:57. doi: 10.4103/2152-7806.96868 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kennedy RT (2013) Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol 17(5):860–867. doi: 10.1016/j.cbpa.2013.06.012 PubMedCrossRefGoogle Scholar
  105. 105.
    Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM, Jiang H, Cirrito JR, Holtzman DM (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8(1):1–7. doi: 10.1186/1750-1326-8-13 CrossRefGoogle Scholar
  106. 106.
    Mader JK, Feichtner F, Bock G, Köhler G, Schaller R, Plank J, Pieber TR, Ellmerer M (2012) Microdialysis—a versatile technology to perform metabolic monitoring in diabetes and critically ill patients. Diabetes Res Clin Pract 97(1):112–118. doi: 10.1016/j.diabres.2012.02.010 PubMedCrossRefGoogle Scholar
  107. 107.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12 (12):860–875. doi:http://www.nature.com/nrc/journal/v12/n12/suppinfo/nrc3380_S1.html
  108. 108.
    Nandi P, Lunte SM (2009) Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta 651(1):1–14. doi: 10.1016/j.aca.2009.07.064 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Matzneller P, Krasniqi S, Kinzig M, Sörgel F, Hüttner S, Lackner E, Müller M, Zeitlinger M (2013) Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemother 57(4):1736–1742. doi: 10.1128/aac.02011-12 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nikitas N, Kopterides P, Ilias I, Theodorakopoulou M, Vassiliadi DA, Armaganidis A, Dimopoulou I (2013) Elevated adipose tissue lactate to pyruvate (L/P) ratio predicts poor outcome in critically ill patients with septic shock: a microdialysis study. Minerva Anestesiol 79(11):1229–1237PubMedGoogle Scholar
  111. 111.
    Konings IRHM, Engels FK, Sleijfer S, Verweij J, Wiemer EAC, Loos WJ (2008) Application of prolonged microdialysis sampling in carboplatin-treated cancer patients. Cancer Chemother Pharmacol 64(3):509–516. doi: 10.1007/s00280-008-0898-0 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Burša F, Pleva L (2014) Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med 22:11–11. doi: 10.1186/1757-7241-22-11 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zsigmond P, Dernroth N, Kullman A, Augustinsson L-E, Dizdar N (2012) Stereotactic microdialysis of the basal ganglia in Parkinson’s disease. J Neurosci Methods 207(1):17–22. doi: 10.1016/j.jneumeth.2012.02.021 PubMedCrossRefGoogle Scholar
  114. 114.
    Poeppl W, Zeitlinger M, Donath O, Wurm G, Müller M, Botha F, Illievich UM, Burgmann H (2012) Penetration of doripenem in human brain: an observational microdialysis study in patients with acute brain injury. Int J Antimicrob Agents 39(4):343–345. doi: 10.1016/j.ijantimicag.2011.11.019 PubMedCrossRefGoogle Scholar
  115. 115.
    Helmark IC, Mikkelsen UR, Børglum J, Rothe A, Petersen MCH, Andersen O, Langberg H, Kjaer M (2010) Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res Ther 12(4):R126–R126. doi: 10.1186/ar3064 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rostami E, Bellander B-M (2011) Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol 5(3):596–604PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ståhle L (2000) On mathematical models of microdialysis: geometry, steady-state models, recovery and probe radius. Adv Drug Deliv Rev 45(2–3):149–167. doi: 10.1016/S0169-409X(00)00108-3 PubMedCrossRefGoogle Scholar
  118. 118.
    Wang P, Chung T-S (2015) Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci 474:39–56. doi: 10.1016/j.memsci.2014.09.016 CrossRefGoogle Scholar
  119. 119.
    Song Y, Lunte CE (1999) Calibration methods for microdialysis sampling in vivo: muscle and adipose tissue. Anal Chim Acta 400(1–3):143–152. doi: 10.1016/S0003-2670(99)00613-3 CrossRefGoogle Scholar
  120. 120.
    Janle EM, Kissinger PT (1996) Chapter 11 microdialysis and ultrafiltration. In: Stephen PC, Douglas WT (eds) Advances in food and nutrition research, vol Volume 40. Academic Press, pp 183–196. doi: 10.1016/S1043-4526(08)60028-5
  121. 121.
    Hsu K-C, Hung C-C, Lee C-F, Hsu P-F, Huang Y-L (2014) Combining microdialysis sampling and inductively coupled plasma mass spectrometry for dynamic monitoring of trace metal ions during bacterial growth periods. RSC Adv 4(93):51716–51721. doi: 10.1039/C4RA07941H CrossRefGoogle Scholar
  122. 122.
    Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45(2–3):169–188. doi: 10.1016/S0169-409X(00)00114-9 PubMedCrossRefGoogle Scholar
  123. 123.
    Saylor RA, Lunte SM (2015) A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A 1382:48–64. doi: 10.1016/j.chroma.2014.12.086 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal Bioanal Chem 403(6):1523–1548. doi: 10.1007/s00216-012-6039-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chun Min Kho
    • 1
  • Siti Kartini Enche Ab Rahim
    • 2
  • Zainal Arifin Ahmad
    • 1
  • Norazharuddin Shah Abdullah
    • 1
    Email author
  1. 1.Structural Materials Niche Area, School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Department of Chemical Engineering Technology, Faculty of Engineering TechnologyUniversiti Malaysia PerlisPadang BesarMalaysia

Personalised recommendations