Advertisement

Molecular Neurobiology

, Volume 54, Issue 5, pp 3342–3349 | Cite as

Sensitization of Ion Channels Contributes to Central and Peripheral Dysfunction in Neurofibromatosis Type 1

  • Aubin Moutal
  • Erik T. Dustrude
  • Rajesh KhannaEmail author
Article

Abstract

Neurofibromatosis type 1 (Nf1) is a progressive, autosomal disorder with a large degree of variability and severity of manifestations including neurological, cutaneous, ocular/orbital, orthopedic, and vascular abnormalities. Nearly half of Nf1 patients presents with cognitive impairment, specifically spatial learning deficits. These clinical manifestations suggest a global impairment of both central and peripheral nervous system functions in neurofibromatosis. Nf1 encodes for neurofibromin, a Ras GTPase-activating protein (Ras GAP) that has been implicated in the regulation of long-term potentiation (LTP), Ras/ERK (extracellular signal-regulated kinase) signaling, and learning in mice. Over the last decades, mice with a targeted mutation in the Nf1 gene, Nf1 −/− chimeric mice, Nf1 exon-specific knockout mice, and mice with tissue-specific inactivation of Nf1 have been generated to model the human Nf1 disease. These studies have implicated neurofibromin in regulation of the release of the inhibitory neurotransmitter γ-amino butyric acid (GABA) in the hippocampus and frontal lobe, which can regulate memory. Mutations in neurofibromin thus lead to perturbed ERK signaling, which alters GABA release, LTP, and subsequently leads to learning deficits. In addition to these cognitive deficits, Nf1 patients also have defects in fine and gross motor coordination as well as decreased muscle strength. Although the mechanisms underlying these motor deficits are unknown, deficits in GABAergic neurotransmission in both the motor cortex and cerebellum have been suggested. In this review, we present evidence to support the hypothesis that alterations of ion channel activity in Nf1 underscore the dysregulated neuronal communication in non-neuronal and neuronal cells that likely contributes to the clinical cornucopia of Nf1.

Keywords

Neurofibromin Voltage-gated calcium channels Voltage-gated sodium channels Small conductance calcium-activated potassium channels Hyperpolarization-activated cyclic nucleotide-gated channel GABA receptors 

Notes

Acknowledgments

This work was supported by a Neurofibromatosis New Investigator Award Nf1000099 from the Department of Defense Congressionally Directed Military Medical Research and Development Program and a Children's Tumor Foundation, Synodos for NF1 grant to R.K. A.M. was partially supported by a Young Investigator Award from the Children’s Tumor Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D et al (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62(1):193–201CrossRefPubMedGoogle Scholar
  2. 2.
    Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC et al (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62(1):187–192CrossRefPubMedGoogle Scholar
  3. 3.
    Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three Nf1 patients. Science 249(4965):181–186CrossRefPubMedGoogle Scholar
  4. 4.
    Buchberg AM, Cleveland LS, Jenkins NA, Copeland NG (1990) Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature 347(6290):291–294. doi: 10.1038/347291a0 CrossRefPubMedGoogle Scholar
  5. 5.
    Xu GF, O’Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62(3):599–608CrossRefPubMedGoogle Scholar
  6. 6.
    Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849CrossRefPubMedGoogle Scholar
  7. 7.
    Ferner RE (2007) Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6(4):340–351. doi: 10.1016/S1474-4422(07)70075-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Creange A, Zeller J, Rostaing-Rigattieri S, Brugieres P, Degos JD, Revuz J, Wolkenstein P (1999) Neurological complications of neurofibromatosis type 1 in adulthood. Brain 122(Pt 3):473–481CrossRefPubMedGoogle Scholar
  9. 9.
    Wolkenstein P, Zeller J, Revuz J, Ecosse E, Leplege A (2001) Quality-of-life impairment in neurofibromatosis type 1: a cross-sectional study of 128 cases. Arch Dermatol 137(11):1421–1425CrossRefPubMedGoogle Scholar
  10. 10.
    Korkiamaki T, Yla-Outinen H, Koivunen J, Karvonen SL, Peltonen J (2002) Altered calcium-mediated cell signaling in keratinocytes cultured from patients with neurofibromatosis type 1. Am J Pathol 160(6):1981–1990. doi: 10.1016/S0002-9440(10)61148-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Koivunen J, Yla-Outinen H, Korkiamaki T, Karvonen SL, Poyhonen M, Laato M, Karvonen J, Peltonen S et al (2000) New function for Nf1 tumor suppressor. J Invest Dermatol 114(3):473–479. doi: 10.1046/j.1523-1747.2000.00882.x CrossRefPubMedGoogle Scholar
  12. 12.
    King TJ, Lampe PD (2004) The gap junction protein connexin32 is a mouse lung tumor suppressor. Cancer Res 64(20):7191–7196. doi: 10.1158/0008-5472.CAN-04-0624 CrossRefPubMedGoogle Scholar
  13. 13.
    Kato H, Naiki-Ito A, Naiki T, Suzuki S, Yamashita Y, Sato S, Sagawa H, Kato A et al (2016) Connexin 32 dysfunction promotes ethanol-related hepatocarcinogenesis via activation of Dusp1-Erk axis. Oncotarget 7(2):2009–2021. doi: 10.18632/oncotarget.6511 PubMedGoogle Scholar
  14. 14.
    Fujimoto E, Sato H, Shirai S, Nagashima Y, Fukumoto K, Hagiwara H, Negishi E, Ueno K et al (2005) Connexin32 as a tumor suppressor gene in a metastatic renal cell carcinoma cell line. Oncogene 24(22):3684–3690. doi: 10.1038/sj.onc.1208430 CrossRefPubMedGoogle Scholar
  15. 15.
    Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci : Off J Soc Neurosci 29(15):4736–4749. doi: 10.1523/JNEUROSCI.0325-09.2009 CrossRefGoogle Scholar
  16. 16.
    Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW et al (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262(5142):2039–2042CrossRefPubMedGoogle Scholar
  17. 17.
    Bosch EP, Murphy MJ, Cancilla PA (1981) Peripheral neurofibromatosis and peroneal muscular atrophy. Neurology 31(11):1408–1414CrossRefPubMedGoogle Scholar
  18. 18.
    Fieber LA (1998) Ionic currents in normal and neurofibromatosis type 1-affected human Schwann cells: induction of tumor cell K current in normal Schwann cells by cyclic AMP. J Neurosci Res 54(4):495–506. doi: 10.1002/(SICI)1097-4547(19981115)54:4<495 CrossRefPubMedGoogle Scholar
  19. 19.
    Dang I, De Vries GH (2011) Aberrant cAMP metabolism in Nf1 malignant peripheral nerve sheath tumor cells. Neurochem Res 36(9):1697–1705. doi: 10.1007/s11064-011-0433-2 CrossRefPubMedGoogle Scholar
  20. 20.
    Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y (2002) Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 5(2):95–96. doi: 10.1038/nn792 CrossRefPubMedGoogle Scholar
  21. 21.
    Guo HF, The I, Hannan F, Bernards A, Zhong Y (1997) Requirement of drosophila Nf1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276(5313):795–798CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Y, Chiamvimonvat N, Vazquez AE, Akunuru S, Ratner N, Yamoah EN (2002) Gene-targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells: a protein kinase A-mediated mechanism. J Neurosci : Off J Soc Neurosci 22(21):9194–9202Google Scholar
  23. 23.
    Ozonoff S (1999) Cognitive impairment in neurofibromatosis type 1. Am J Med Genet 89(1):45–52. doi: 10.1002/(SICI)1096-8628(19990326)89:1<45 CrossRefPubMedGoogle Scholar
  24. 24.
    Costa RM, Yang T, Huynh DP, Pulst SM, Viskochil DH, Silva AJ, Brannan CI (2001) Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet 27(4):399–405. doi: 10.1038/86898 CrossRefPubMedGoogle Scholar
  25. 25.
    Klose A, Ahmadian MR, Schuelke M, Scheffzek K, Hoffmeyer S, Gewies A, Schmitz F, Kaufmann D et al (1998) Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum Mol Genet 7(8):1261–1268CrossRefPubMedGoogle Scholar
  26. 26.
    Costa RM, Silva AJ (2002) Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17(8):622–626, discussion 627–629, 646–651 CrossRefPubMedGoogle Scholar
  27. 27.
    Kallarackal AJ, Simard JM, Bailey AM (2013) The effect of apamin, a small conductance calcium activated potassium (SK) channel blocker, on a mouse model of neurofibromatosis 1. Behav Brain Res 237:71–75. doi: 10.1016/j.bbr.2012.09.009 CrossRefPubMedGoogle Scholar
  28. 28.
    Faber ES, Delaney AJ, Sah P (2005) SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat Neurosci 8(5):635–641. doi: 10.1038/nn1450 CrossRefPubMedGoogle Scholar
  29. 29.
    Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I et al (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135(3):549–560. doi: 10.1016/j.cell.2008.09.060 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7):602–609. doi: 10.1038/2836 CrossRefPubMedGoogle Scholar
  31. 31.
    English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106CrossRefPubMedGoogle Scholar
  32. 32.
    Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD (1999) A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 6(5):478–490CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Noll RB, Reiter-Purtill J, Moore BD, Schorry EK, Lovell AM, Vannatta K, Gerhardt CA (2007) Social, emotional, and behavioral functioning of children with Nf1. Am J Med Genet A 143A(19):2261–2273. doi: 10.1002/ajmg.a.31923 CrossRefPubMedGoogle Scholar
  34. 34.
    Garg S, Lehtonen A, Huson SM, Emsley R, Trump D, Evans DG, Green J (2013) Autism and other psychiatric comorbidity in neurofibromatosis type 1: evidence from a population-based study. Dev Med Child Neurol 55(2):139–145. doi: 10.1111/dmcn.12043 CrossRefPubMedGoogle Scholar
  35. 35.
    Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T et al (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871):526–530. doi: 10.1038/nature711 CrossRefPubMedGoogle Scholar
  36. 36.
    Todd RM, Anderson AK (2009) Six degrees of separation: the amygdala regulates social behavior and perception. Nat Neurosci 12(10):1217–1218. doi: 10.1038/nn1009-1217 CrossRefPubMedGoogle Scholar
  37. 37.
    Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, Janasik SP, Segu ZM et al (2014) Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci 17(11):1583–1590. doi: 10.1038/nn.3822 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ribeiro MJ, Violante IR, Bernardino I, Edden RA, Castelo-Branco M (2015) Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex 64:194–208. doi: 10.1016/j.cortex.2014.10.019 CrossRefPubMedGoogle Scholar
  39. 39.
    Huster RJ, Westerhausen R, Pantev C, Konrad C (2010) The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task. Hum Brain Mapp 31(8):1260–1271. doi: 10.1002/hbm.20933 PubMedGoogle Scholar
  40. 40.
    Silveri MM, Sneider JT, Crowley DJ, Covell MJ, Acharya D, Rosso IM, Jensen JE (2013) Frontal lobe gamma-aminobutyric acid levels during adolescence: associations with impulsivity and response inhibition. Biol Psychiatry 74(4):296–304. doi: 10.1016/j.biopsych.2013.01.033 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang Y, Brittain JM, Wilson SM, Hingtgen CM, Khanna R (2010) Altered calcium currents and axonal growth in Nf1 haploinsufficient mice. Transl Neurosci 1(2):106–114PubMedPubMedCentralGoogle Scholar
  42. 42.
    Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, Kikuchi A, Hattori S et al (2003) Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem 278(29):26958–26969. doi: 10.1074/jbc.M209413200 CrossRefPubMedGoogle Scholar
  43. 43.
    Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M et al (2008) Neurofibromatosis type 1 (Nf1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283(14):9399–9413. doi: 10.1074/jbc.M708206200 CrossRefPubMedGoogle Scholar
  44. 44.
    Ozawa T, Araki N, Yunoue S, Tokuo H, Feng L, Patrakitkomjorn S, Hara T, Ichikawa Y et al (2005) The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J Biol Chem 280(47):39524–39533. doi: 10.1074/jbc.M503707200 CrossRefPubMedGoogle Scholar
  45. 45.
    Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Muller J, Stiess M, Marais E et al (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci : Off J Soc Neurosci 25(43):9883–9892. doi: 10.1523/JNEUROSCI.1531-05.2005 CrossRefGoogle Scholar
  46. 46.
    Seoane A, Massey PV, Keen H, Bashir ZI, Brown MW (2009) L-type voltage-dependent calcium channel antagonists impair perirhinal long-term recognition memory and plasticity processes. J Neurosci : Off J Soc Neurosci 29(30):9534–9544. doi: 10.1523/JNEUROSCI.5199-08.2009 CrossRefGoogle Scholar
  47. 47.
    Jeon D, Kim C, Yang YM, Rhim H, Yim E, Oh U, Shin HS (2007) Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice. Genes Brain Behav 6(4):375–388. doi: 10.1111/j.1601-183X.2006.00267.x CrossRefPubMedGoogle Scholar
  48. 48.
    Nakagawasai O, Onogi H, Mitazaki S, Sato A, Watanabe K, Saito H, Murai S, Nakaya K et al (2010) Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res 208(1):224–230. doi: 10.1016/j.bbr.2009.11.042 CrossRefPubMedGoogle Scholar
  49. 49.
    Omrani A, van Woerden GM, Elgersma Y (2015) Neurofibromin regulates HCN activity in parvalbumin-positive interneurons. Mol Psychiatry 20(11):1263. doi: 10.1038/mp.2015.154 CrossRefPubMedGoogle Scholar
  50. 50.
    Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN et al (2015) HCN channels are a novel therapeutic target for cognitive dysfunction in neurofibromatosis type 1. Mol Psychiatry 20(11):1311–1321. doi: 10.1038/mp.2015.48 CrossRefPubMedGoogle Scholar
  51. 51.
    Martin S, Gillespie A, Wolters PL, Widemann BC (2011) Experiences of families with a child, adolescent, or young adult with neurofibromatosis type 1 and plexiform neurofibroma evaluated for clinical trials participation at the National Cancer Institute. Contemp Clin Trials 32(1):10–15. doi: 10.1016/j.cct.2010.10.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Nicol GD, Clapp DW, Hingtgen CM (2005) Sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability. J Neurophysiol 94(6):3670–3676. doi: 10.1152/jn.00489.2005 CrossRefPubMedGoogle Scholar
  53. 53.
    Duan JH, Wang Y, Duarte D, Vasko MR, Nicol GD, Hingtgen CM (2011) Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/− mice. Neurosci Lett 496(2):70–74. doi: 10.1016/j.neulet.2011.03.083 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang Y, Duan JH, Hingtgen CM, Nicol GD (2010) Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/(−) mice. J Neurophysiol 103(4):2085–2094. doi: 10.1152/jn.01010.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hodgdon KE, Hingtgen CM, Nicol GD (2012) Dorsal root ganglia isolated from Nf1+/− mice exhibit increased levels of mRNA expression of voltage-dependent sodium channels. Neuroscience 206:237–244. doi: 10.1016/j.neuroscience.2011.12.045 CrossRefPubMedGoogle Scholar
  56. 56.
    Hingtgen CM, Roy SL, Clapp DW (2006) Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene. Neuroscience 137(2):637–645. doi: 10.1016/j.neuroscience.2005.09.030 CrossRefPubMedGoogle Scholar
  57. 57.
    Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901. doi: 10.1016/j.neuron.2008.09.005 CrossRefPubMedGoogle Scholar
  58. 58.
    Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872. doi: 10.1016/j.neuron.2008.08.019 CrossRefPubMedGoogle Scholar
  59. 59.
    Duan JH, Hodgdon KE, Hingtgen CM, Nicol GD (2014) N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/− mice. Neuroscience 270:192–202. doi: 10.1016/j.neuroscience.2014.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wilson SM, Schmutzler BS, Brittain JM, Dustrude ET, Ripsch MS, Pellman JJ, Yeum TS, Hurley JH et al (2012) Inhibition of transmitter release and attenuation of anti-retroviral-associated and tibial nerve injury-related painful peripheral neuropathy by novel synthetic Ca2+ channel peptides. J Biol Chem 287(42):35065–35077. doi: 10.1074/jbc.M112.378695 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aubin Moutal
    • 1
  • Erik T. Dustrude
    • 1
  • Rajesh Khanna
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonUSA
  2. 2.Neuroscience Graduate Interdisciplinary Program, College of MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations