Molecular Neurobiology

, Volume 54, Issue 4, pp 2781–2789 | Cite as

Inter-hemispheric Intrinsic Connectivity as a Neuromarker for the Diagnosis of Boys with Tourette Syndrome

  • Wei Liao
  • Yang Yu
  • Huan-Huan Miao
  • Yi-Xuan Feng
  • Gong-Jun JiEmail author
  • Jian-Hua FengEmail author


Tourette syndrome (TS) is associated with gross morphological changes in the corpus callosum, suggesting deficits in inter-hemispheric coordination. The present study sought to identify changes in inter-hemispheric functional and anatomical connectivity in boys with “pure” TS as well as their potential value for clinical diagnosis. TS boys without comorbidity (pure TS, n = 24) were selected from a large dataset and compared to age- and education-matched controls (n = 32). Intrinsic functional connectivity (iFC) between bilateral homotopic voxels was computed and compared between groups. Abnormal iFC was found in the bilateral prefronto-striatum-midbrain networks as well as bilateral sensorimotor and temporal cortices. The iFC between the bilateral anterior cingulate cortex (ACC) was negatively correlated with symptom severity. Anatomical connectivity strengths between functionally abnormal regions were estimated by diffusion probabilistic tractography, but no significant between-group difference was found. To test the clinical applicability of these neuroimaging findings, multivariate pattern analysis was used to develop a classification model in half of the total sample. The classification model exhibited excellent classification power for discriminating TS patients from controls in the other half samples. In summary, our findings emphasize the role of inter-hemispheric communication deficits in the pathophysiology of TS and suggest that iFC is a potential quantitative neuromarker for clinical diagnosis.


Resting state Functional MRI Tourette syndrome Tractography Classification 



This work was financially supported by the Natural Science Foundation of China (Grant no. 81471653 for W. L., Grant no. 81401400 to G. J. J.), the Doctoral Foundation of Anhui Medical University (XJ201532 to G. J. J.), the Youth Top-notch Talent Support Program of Anhui Medical University (to G. J. J.), the China Postdoctoral Science Foundation (grant no. 2013M532229 to W. L.), and the Public Welfare Technology Project of Science Technology Department of Zhejiang Province (Grant no. 2014C33271 to J. H. F.).

Compliance with Ethical Standards

After a complete description of the study, informed consent was obtained from all parents according to the Declaration of Helsinki. The study protocol was reviewed and approved by the Local Medical Ethics Committee of the Center for Cognition and Brain Disorders, Hangzhou Normal University, China.


  1. 1.
    Leckman JF (2002) Tourette’s syndrome. Lancet 360(9345):1577–1586. doi: 10.1016/S0140-6736(02)11526-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Peterson BS, Pine DS, Cohen P, Brook JS (2001) Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. J Am Acad Child Adolesc Psychiatry 40(6):685–695. doi: 10.1097/00004583-200106000-00014 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang Z, Maia TV, Marsh R, Colibazzi T, Gerber A, Peterson BS (2011) The neural circuits that generate tics in Tourette’s syndrome. Am J Psychiatry 168(12):1326–1337. doi: 10.1176/appi.ajp.2011.09111692 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Felling RJ, Singer HS (2011) Neurobiology of Tourette syndrome: current status and need for further investigation. J Neurosci 31(35):12387–12395. doi: 10.1523/JNEUROSCI.0150-11.2011 CrossRefPubMedGoogle Scholar
  5. 5.
    Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC et al (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30(45):15034–15043. doi: 10.1523/JNEUROSCI.2612-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van der Knaap LJ, van der Ham IJ (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223(1):211–221. doi: 10.1016/j.bbr.2011.04.018 CrossRefPubMedGoogle Scholar
  7. 7.
    Plessen KJ, Wentzel-Larsen T, Hugdahl K, Feineigle P, Klein J, Staib LH, Leckman JF, Bansal R et al (2004) Altered interhemispheric connectivity in individuals with Tourette’s disorder. Am J Psychiatry 161(11):2028–2037. doi: 10.1176/appi.ajp.161.11.2028 CrossRefPubMedGoogle Scholar
  8. 8.
    Roessner V, Overlack S, Schmidt-Samoa C, Baudewig J, Dechent P, Rothenberger A, Helms G (2011) Increased putamen and callosal motor subregion in treatment-naive boys with Tourette syndrome indicates changes in the bihemispheric motor network. J Child Psychol Psychiatry 52(3):306–314. doi: 10.1111/j.1469-7610.2010.02324.x CrossRefPubMedGoogle Scholar
  9. 9.
    Mostofsky SH, Wendlandt J, Cutting L, Denckla MB, Singer HS (1999) Corpus callosum measurements in girls with Tourette syndrome. Neurology 53(6):1345–1347CrossRefPubMedGoogle Scholar
  10. 10.
    Plessen KJ, Gruner R, Lundervold A, Hirsch JG, Xu D, Bansal R, Hammar A, Lundervold AJ et al (2006) Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psychiatry 47(10):1013–1022. doi: 10.1111/j.1469-7610.2006.01639.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baumer T, Thomalla G, Kroeger J, Jonas M, Gerloff C, Hummel FC, Muller-Vahl K, Schnitzler A et al (2010) Interhemispheric motor networks are abnormal in patients with Gilles de la Tourette syndrome. Mov Disord 25(16):2828–2837. doi: 10.1002/mds.23418 CrossRefPubMedGoogle Scholar
  12. 12.
    Cavanna AE, Seri S (2013) Tourette’s syndrome. BMJ 347:f4964. doi: 10.1136/bmj.f4964 CrossRefPubMedGoogle Scholar
  13. 13.
    Jankovic J (2001) Tourette’s syndrome. N Engl J Med 345(16):1184–1192. doi: 10.1056/NEJMra010032 CrossRefPubMedGoogle Scholar
  14. 14.
    Ji GJ, Zhang Z, Xu Q, Zang YF, Liao W, Lu G (2014) Generalized tonic-clonic seizures: aberrant interhemispheric functional and anatomical connectivity. Radiology 271(3):839–847. doi: 10.1148/radiol.13131638 CrossRefPubMedGoogle Scholar
  15. 15.
    Xu Q, Zhang Z, Liao W, Xiang L, Yang F, Wang Z, Chen G, Tan Q et al (2014) Time-shift homotopic connectivity in mesial temporal lobe epilepsy. Am J Neuroradiol 35(9):1746–1752. doi: 10.3174/ajnr.A3934 CrossRefPubMedGoogle Scholar
  16. 16.
    Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, Abildskov T, Nielsen JA et al (2011) Decreased interhemispheric functional connectivity in autism. Cereb Cortex 21(5):1134–1146. doi: 10.1093/cercor/bhq190 CrossRefPubMedGoogle Scholar
  17. 17.
    Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, Cohen DJ (1989) The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28(4):566–573. doi: 10.1097/00004583-198907000-00015 CrossRefPubMedGoogle Scholar
  18. 18.
    Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13. doi: 10.3389/fnsys.2010.00013 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS one 6(9):e25031. doi: 10.1371/journal.pone.0025031 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327. doi: 10.1016/j.neuroimage.2010.07.033 CrossRefPubMedGoogle Scholar
  21. 21.
    Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154. doi: 10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  22. 22.
    Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage 76:183–201. doi: 10.1016/j.neuroimage.2013.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Morris DM, Embleton KV, Parker GJ (2008) Probabilistic fibre tracking: differentiation of connections from chance events. NeuroImage 42(4):1329–1339. doi: 10.1016/j.neuroimage.2008.06.012 CrossRefPubMedGoogle Scholar
  24. 24.
    Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobeha Rev 36(4):1140–1152. doi: 10.1016/j.neubiorev.2012.01.004 CrossRefGoogle Scholar
  25. 25.
    Zhu Y, Yu Y, Shinkareva SV, Ji GJ, Wang J, Wang ZJ, Zang YF, Liao W et al (2015) Intrinsic brain activity as a diagnostic biomarker in children with benign epilepsy with centrotemporal spikes. Hum Brain Mapp 36(10):3878–3889. doi: 10.1002/hbm.22884 CrossRefPubMedGoogle Scholar
  26. 26.
    Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, Kansaku K, Wurzman R, Hallett M (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129(Pt 8):2029–2037. doi: 10.1093/brain/awl050 CrossRefPubMedGoogle Scholar
  27. 27.
    Buse J, August J, Bock N, Dorfel D, Rothenberger A, Roessner V (2012) Fine motor skills and interhemispheric transfer in treatment-naive male children with Tourette syndrome. Dev Med Child Neurol 54(7):629–635. doi: 10.1111/j.1469-8749.2012.04273.x CrossRefPubMedGoogle Scholar
  28. 28.
    Margolis A, Donkervoort M, Kinsbourne M, Peterson BS (2006) Interhemispheric connectivity and executive functioning in adults with Tourette syndrome. Neuropsychology 20(1):66–76. doi: 10.1037/0894-4105.20.1.66 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roessner V, Wittfoth M, Schmidt-Samoa C, Rothenberger A, Dechent P, Baudewig J (2012) Altered motor network recruitment during finger tapping in boys with Tourette syndrome. Hum Brain Mapp 33(3):666–675. doi: 10.1002/hbm.21240 CrossRefPubMedGoogle Scholar
  30. 30.
    Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM, Leckman JF, Gore JC (1998) A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch Gen Psychiatry 55(4):326–333CrossRefPubMedGoogle Scholar
  31. 31.
    Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A (2001) Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol Psychiatry 50(8):578–585CrossRefPubMedGoogle Scholar
  32. 32.
    Zebardast N, Crowley MJ, Bloch MH, Mayes LC, Wyk BV, Leckman JF, Pelphrey KA, Swain JE (2013) Brain mechanisms for prepulse inhibition in adults with Tourette syndrome: initial findings. Psychiatry Res 214(1):33–41. doi: 10.1016/j.pscychresns.2013.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mazzone L, Yu S, Blair C, Gunter BC, Wang Z, Marsh R, Peterson BS (2010) An FMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette syndrome. Am J Psychiatry 167(3):341–349. doi: 10.1176/appi.ajp.2009.08121831 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hershey T, Black KJ, Hartlein J, Braver TS, Barch DM, Carl JL, Perlmutter JS (2004) Dopaminergic modulation of response inhibition: an fMRI study. Brain Res Cogn Brain Res 20(3):438–448. doi: 10.1016/j.cogbrainres.2004.03.018 CrossRefPubMedGoogle Scholar
  35. 35.
    Thomalla G, Jonas M, Baumer T, Siebner HR, Biermann-Ruben K, Ganos C, Orth M, Hummel FC et al (2014) Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette’s syndrome. Brain 137(Pt 1):122–136. doi: 10.1093/brain/awt288 CrossRefPubMedGoogle Scholar
  36. 36.
    Marsh R, Zhu H, Wang Z, Skudlarski P, Peterson BS (2007) A developmental fMRI study of self-regulatory control in Tourette’s syndrome. Am J Psychiatry 164(6):955–966. doi: 10.1176/ajp.2007.164.6.955 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Baym CL, Corbett BA, Wright SB, Bunge SA (2008) Neural correlates of tic severity and cognitive control in children with Tourette syndrome. Brain 131(Pt 1):165–179. doi: 10.1093/brain/awm278 CrossRefPubMedGoogle Scholar
  38. 38.
    Ganos C, Kahl U, Brandt V, Schunke O, Baumer T, Thomalla G, Roessner V, Haggard P et al (2014) The neural correlates of tic inhibition in Gilles de la Tourette syndrome. Neuropsychologia 65:297–301. doi: 10.1016/j.neuropsychologia.2014.08.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Worbe Y, Malherbe C, Hartmann A, Pelegrini-Issac M, Messe A, Vidailhet M, Lehericy S, Benali H (2012) Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain 135(Pt 6):1937–1946. doi: 10.1093/brain/aws056 CrossRefPubMedGoogle Scholar
  40. 40.
    Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV Topography of the dopamine projection to the basal forebrain and neostriatum J Comp Neurol 180(3):545–580. doi: 10.1002/cne.901800310 PubMedGoogle Scholar
  41. 41.
    Albin RL, Koeppe RA, Bohnen NI, Nichols TE, Meyer P, Wernette K, Minoshima S, Kilbourn MR et al (2003) Increased ventral striatal monoaminergic innervation in Tourette syndrome. Neurology 61(3):310–315CrossRefPubMedGoogle Scholar
  42. 42.
    Como PG (2001) Neuropsychological function in Tourette syndrome. Advances in neurology 85:103–111PubMedGoogle Scholar
  43. 43.
    Herve PY, Zago L, Petit L, Mazoyer B, Tzourio-Mazoyer N (2013) Revisiting human hemispheric specialization with neuroimaging. Trends Cogn Sci 17(2):69–80. doi: 10.1016/j.tics.2012.12.004 CrossRefPubMedGoogle Scholar
  44. 44.
    Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123(Pt 7):1293–1326CrossRefPubMedGoogle Scholar
  45. 45.
    Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America 106(6):2035–2040. doi: 10.1073/pnas.0811168106 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Govindan RM, Makki MI, Wilson BJ, Behen ME, Chugani HT (2010) Abnormal water diffusivity in corticostriatal projections in children with Tourette syndrome. Hum Brain Mapp 31(11):1665–1674. doi: 10.1002/hbm.20970 PubMedGoogle Scholar
  47. 47.
    Robertson MM (2000) Tourette syndrome, associated conditions and the complexities of treatment. Brain 123(Pt 3):425–462CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Information in BioMedicine, Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Center for Cognition and Brain Disorders and the Affiliated HospitalHangzhou Normal UniversityHangzhouChina
  3. 3.Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
  4. 4.Department of Psychiatry, the Second Affiliated Hospital of Medical CollegeZhejiang UniversityHangzhouChina
  5. 5.Department of Pediatrics, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  6. 6.Laboratory of Cognitive Neuropsychology, Department of Medical PsychologyAnhui Medical UniversityHefeiChina

Personalised recommendations