Skip to main content

Advertisement

Log in

Rapamycin Augments Immunomodulatory Properties of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The immunomodulatory and anti-inflammatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as an appropriate candidate for treatment of autoimmune diseases. Previous studies have revealed that treatment with BM-MSCs may modulate immune responses and alleviate the symptoms in experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Therefore, the present study was designed to examine immunomodulatory effects of BM-MSCs in the treatment of myelin oligodendrocyte glycoprotein (MOG) 35-55-induced EAE in C57BL/6 mice. MSCs were obtained from the bone marrow of C57BL mice, cultured with DMEM/F12, and characterized with flow cytometry for the presence of cell surface markers for BM-MSCs. Following three passages, BM-MSCs were injected intraperitoneally into EAE mice alone or in combination with rapamycin. Immunological and histopathological effects of BM-MSCs and addition of rapamycin to BM-MSCs were evaluated. The results demonstrated that adding rapamycin to BM-MSCs transplantation in EAE mice significantly reduced inflammation infiltration and demyelination, enhanced the immunomodulatory functions, and inhibited progress of neurological impairments compared to BM-MSC transplantation and control groups. The immunological effects of rapamycin and BM-MSC treatments were associated with the inhibition of the Ag-specific lymphocyte proliferation, CD8+ cytolytic activity, and the Th1-type cytokine (gamma-interferon (IFN-γ)) and the increase of Th-2 cytokine (interleukin-4 (IL-4) and IL-10) production. Addition of rapamycin to BM-MSCs was able to ameliorate neurological deficits and provide neuroprotective effects in EAE. This suggests the potential of rapamycin and BM-MSC combined therapy to play neuroprotective roles in the treatment of neuroinflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graber JJ, McGraw CA, Kimbrough D, Dhib-Jalbut S (2010) Overlapping and distinct mechanisms of action of multiple sclerosis therapies. Clin Neurol Neurosurg 112(7):583–591. doi:10.1016/j.clineuro.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  2. Murray TJ (2009) The history of multiple sclerosis: the changing frame of the disease over the centuries. J Neurol Sci 277(Suppl 1):S3–8. doi:10.1016/s0022-510x(09)70003-6

    Article  PubMed  Google Scholar 

  3. Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63(1):16–25. doi:10.1002/ana.21311

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15(8):1074–1077. doi:10.1038/nn.3168

    Article  CAS  PubMed  Google Scholar 

  5. Conway D, Cohen JA (2010) Combination therapy in multiple sclerosis. Lancet Neurol 9(3):299–308. doi:10.1016/s1474-4422(10)70007-7

    Article  PubMed  Google Scholar 

  6. Stuart WH (2007) Combination therapy for the treatment of multiple sclerosis: challenges and opportunities. Curr Med Res Opin 23(6):1199–1208. doi:10.1185/030079907x187838

    Article  CAS  PubMed  Google Scholar 

  7. Fransson M, Piras E, Wang H, Burman J, Duprez I, Harris RA, LeBlanc K, Magnusson PU, Brittebo E, Loskog AS (2014) Intranasal delivery of central nervous system-retargeted human mesenchymal stromal cells prolongs treatment efficacy of experimental autoimmune encephalomyelitis. Immunology 142(3):431–441. doi:10.1111/imm.12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo Y, Chan KH, Lai WH, Siu CW, Kwan SC, Tse HF, Wing-Lok Ho P, Wing-Man Ho J (2013) Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis. Neuroimmunomodulation 20(5):294–303. doi:10.1159/000351450

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH (2014) Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Rep 3(1):115–130. doi:10.1016/j.stemcr.2014.04.020

    Article  CAS  Google Scholar 

  10. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7(6):407–414

    Article  CAS  PubMed  Google Scholar 

  11. Mirmosayyeb O, Meamar R, Tanhaie AP, Eskandari N, Shaygannejad V (2014) Mesenchymal stem cell therapy in multiple sclerosis: an updated review of the current clinical trials. Multiple Scler Relat Disord 3(6):750. doi:10.1016/j.msard.2014.09.180

    Article  Google Scholar 

  12. Rivera FJ, Aigner L (2012) Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biol Res 45(3):257–268. doi:10.4067/s0716-97602012000300007

    Article  CAS  PubMed  Google Scholar 

  13. Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, Arjmand B, Ai J (2015) Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(epsilon-caprolactone) scaffold. Molecular neurobiology. doi:10.1007/s12035-015-9442-5

  14. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203. doi:10.1002/glia.20841

    Article  PubMed  PubMed Central  Google Scholar 

  15. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells (Dayton, Ohio) 24(2):386–398. doi:10.1634/stemcells.2005-0008

    Article  CAS  Google Scholar 

  16. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, Tolosa E, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells (Dayton, Ohio) 27(4):909–919. doi:10.1002/stem.7

    Article  CAS  Google Scholar 

  17. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363. doi:10.1111/j.1365-2249.2007.03422.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daoud D, Scheld HH, Speckmann EJ, Gorji A (2007) Rapamycin: brain excitability studied in vitro. Epilepsia 48(4):834–836. doi:10.1111/j.1528-1167.2006.00976.x

    Article  CAS  PubMed  Google Scholar 

  19. Saunders RN, Metcalfe MS, Nicholson ML (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59(1):3–16. doi:10.1046/j.1523-1755.2001.00460.x

    Article  CAS  PubMed  Google Scholar 

  20. Donia M, Mangano K, Amoroso A, Mazzarino MC, Imbesi R, Castrogiovanni P, Coco M, Meroni P, Nicoletti F (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4 + CD25 + Foxp3+ regulatory T cells. J Autoimmun 33(2):135–140. doi:10.1016/j.jaut.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  21. Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, Furlan R (2010) Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol 220(1-2):52–63. doi:10.1016/j.jneuroim.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Lisi L, Navarra P, Cirocchi R, Sharp A, Stigliano E, Feinstein DL, Dello Russo C (2012) Rapamycin reduces clinical signs and neuropathic pain in a chronic model of experimental autoimmune encephalomyelitis. J Neuroimmunol 243(1-2):43–51. doi:10.1016/j.jneuroim.2011.12.018

    Article  CAS  PubMed  Google Scholar 

  23. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A (2007) Selective survival of naturally occurring human CD4 + CD25 + Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178(1):320–329

    Article  CAS  PubMed  Google Scholar 

  24. Girdlestone J, Pido-Lopez J, Srivastava S, Chai J, Leaver N, Galleu A, Lombardi G, Navarrete CV (2015) Enhancement of the immunoregulatory potency of mesenchymal stromal cells by treatment with immunosuppressive drugs. Cytotherapy 17(9):1188–1199. doi:10.1016/j.jcyt.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  25. Gharibi B, Farzadi S, Ghuman M, Hughes FJ (2014) Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells (Dayton, Ohio) 32(8):2256–2266. doi:10.1002/stem.1709

    Article  CAS  Google Scholar 

  26. Kim KW, Moon SJ, Park MJ, Kim BM, Kim EK, Lee SH, Lee EJ, Chung BH, Yang CW, Cho ML (2015) Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Res Ther 6:202. doi:10.1186/s13287-015-0197-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148. doi:10.1016/s0076-6879(06)19006-0

    Article  CAS  PubMed  Google Scholar 

  28. Jahromi SR, Arrefhosseini SR, Ghaemi A, Alizadeh A, Sabetghadam F, Togha M (2014) Effect of oral genistein administration in early and late phases of allergic encephalomyelitis. Iran J Basic Med Sci 17(7):509–515

    PubMed  PubMed Central  Google Scholar 

  29. Vakilzadeh G, Khodagholi F, Ghadiri T, Darvishi M, Ghaemi A, Noorbakhsh F, Gorji A, Sharifzadeh M (2014) Protective effect of a cAMP analogue on behavioral deficits and neuropathological changes in cuprizone model of demyelination. Molecular neurobiology. doi:10.1007/s12035-014-8857-8

  30. Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, Moradi A, Atyabi F, Kelishadi M (2014) Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 21:69. doi:10.1186/s12929-014-0069-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A (2014) Comparing the effect of toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol 159(8):1951–1960. doi:10.1007/s00705-014-2024-4

    Article  CAS  PubMed  Google Scholar 

  32. Khoury S (2014) Immunology of MS. Multiple Scler Relat Disord 3(6):766. doi:10.1016/j.msard.2014.09.011

    Article  Google Scholar 

  33. Paintlia AS, Paintlia MK, Singh I, Skoff RB, Singh AK (2009) Combination therapy of lovastatin and rolipram provides neuroprotection and promotes neurorepair in inflammatory demyelination model of multiple sclerosis. Glia 57(2):182–193. doi:10.1002/glia.20745

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cruz-Guilloty F, Saeed AM, Duffort S, Cano M, Ebrahimi KB, Ballmick A, Tan Y, Wang H, Laird JM, Salomon RG, Handa JT, Perez VL (2014) T cells and macrophages responding to oxidative damage cooperate in pathogenesis of a mouse model of age-related macular degeneration. PLoS One 9(2):e88201. doi:10.1371/journal.pone.0088201

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G (2010) Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 62(8):2294–2302. doi:10.1002/art.27504

    Article  CAS  PubMed  Google Scholar 

  36. Battaglia M, Stabilini A, Draghici E, Migliavacca B, Gregori S, Bonifacio E, Roncarolo MG (2006) Induction of tolerance in type 1 diabetes via both CD4 + CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55(6):1571–1580. doi:10.2337/db05-1576

    Article  CAS  PubMed  Google Scholar 

  37. Iwata H, Nagano T, Toyo-oka K, Hirose H, Hamaoka T, Fujiwara H (1994) Suppression of allograft responses by combining alloantigen-specific i.v. pre-sensitization with suboptimal doses of rapamycin. Int Immunol 6(1):93–99

    Article  CAS  PubMed  Google Scholar 

  38. Sonobe Y, Jin S, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2007) Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Tohoku J Exp Med 213(4):329–339

    Article  CAS  PubMed  Google Scholar 

  39. Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR (2004) Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun 23(1):1–7. doi:10.1016/j.jaut.2004.05.001

    Article  PubMed  Google Scholar 

  40. Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169. doi:10.1111/j.1365-2567.2008.02837.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194(5):669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11. doi:10.1111/j.1365-2249.2010.04143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leuenberger T, Paterka M, Reuter E, Herz J, Niesner RA, Radbruch H, Bopp T, Zipp F, Siffrin V (2013) The role of CD8+ T cells and their local interaction with CD4+ T cells in myelin oligodendrocyte glycoprotein35-55-induced experimental autoimmune encephalomyelitis. J Immunol 191(10):4960–4968. doi:10.4049/jimmunol.1300822

    Article  CAS  PubMed  Google Scholar 

  44. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227. doi:10.1002/ana.21076

    Article  CAS  PubMed  Google Scholar 

  45. Al Jumah MA, Abumaree MH (2012) The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). Int J Mol Sci 13(7):9298–9331. doi:10.3390/ijms13079298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555. doi:10.1016/j.stem.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng PP, Liu XC, Ma PF, Gao C, Li JL, Lin YY, Shao W, Han S, Zhao B, Wang LM, Fu JZ, Meng LX, Li Q, Lian QZ, Xia JJ, Qi ZQ (2015) iPSC-MSCs combined with low-dose rapamycin induced islet allograft tolerance through suppressing Th1 and enhancing regulatory T-cell differentiation. Stem Cells Dev 24(15):1793–1804. doi:10.1089/scd.2014.0488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ge W, Jiang J, Baroja ML, Arp J, Zassoko R, Liu W, Bartholomew A, Garcia B, Wang H (2009) Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant 9(8):1760–1772. doi:10.1111/j.1600-6143.2009.02721.x

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Qi F, Dai X, Tian W, Liu T, Han H, Zhang B, Li H, Zhang Z, Du C (2014) Requirement of B7-H1 in mesenchymal stem cells for immune tolerance to cardiac allografts in combination therapy with rapamycin. Transpl Immunol 31(2):65–74. doi:10.1016/j.trim.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  50. Hou Y, Ryu CH, Park KY, Kim SM, Jeong CH, Jeun SS (2013) Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice. Stem Cell Res Ther 4(4):77. doi:10.1186/scrt228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Deputy at Golestan University of Medical Sciences, Gorgan, Iran and Tehran University of Medical Sciences, Tehran, Iran.

Compliance with Ethical Standards

All the experiments were approved by the Ethical Committee of Golestan University of Medical Sciences, Gorgan, Iran.

Disclosure

All the authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ghaemi.

Additional information

Mansoureh Togha and Mehrdad Jahanshahi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Togha, M., Jahanshahi, M., Alizadeh, L. et al. Rapamycin Augments Immunomodulatory Properties of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 54, 2445–2457 (2017). https://doi.org/10.1007/s12035-016-9840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9840-3

Keywords

Navigation