Molecular Neurobiology

, Volume 54, Issue 3, pp 1978–1991 | Cite as

Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression

  • Shahram Darabi
  • Taki TiraihiEmail author
  • AliReza Delshad
  • Majid Sadeghizadeh
  • Taher Taheri
  • Hayder K. Hassoun


Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.


GABAergic neuron Neurospheres BMSC Induction Pluripotency gene 



The project was funded by Shefa Neurosciences Research Center at Khatam Al-Anbia Hospital, Tehran, Iran (Grant # 86-N-105). We are also grateful for the support of the Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. We express deep gratitude to Mrs. H. AliAkbar for editing the manuscript.


  1. 1.
    Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12(2):79–89. doi: 10.1038/nrm3043 CrossRefPubMedGoogle Scholar
  2. 2.
    Mirakhori F, Zeynali B, Salekdeh GH, Baharvand H (2014) Induced neural lineage cells as repair kits: so close, yet so far away. J Cell Physiol 229(6):728–742. doi: 10.1002/jcp.24509 CrossRefPubMedGoogle Scholar
  3. 3.
    Tsonis PA (2007) Regeneration via transdifferentiation: the lens and hair cells. Hear Res 227(1-2):28–31. doi: 10.1016/j.heares.2006.06.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS 113(11-12):831–844. doi: 10.1111/j.1600-0463.2005.apm_3061.x CrossRefPubMedGoogle Scholar
  5. 5.
    Yaghoobi MM, Mowla SJ (2006) Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 397(1-2):149–154. doi: 10.1016/j.neulet.2005.12.009 CrossRefPubMedGoogle Scholar
  6. 6.
    Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M (2013) A new multistep induction protocol for the transdifferentiation of bone marrow stromal stem cells into GABAergic neuron-like cells. Iran Biomed J 17(1):8–14PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gharibani PM, Tiraihi T, Arabkheradmand J (2010) In vitro differentiation of GABAergic cells from bone marrow stromal cells using potassium chloride as inducer. Restor Neurol Neurosci 28(3):367–377. doi: 10.3233/rnn-2010-0539 PubMedGoogle Scholar
  8. 8.
    Mohammad-Gharibani P, Tiraihi T, Arabkheradmand J (2009) In vitro transdifferentiation of bone marrow stromal cells into GABAergic-like neurons. Iran Biomed J 13(3):137–143PubMedGoogle Scholar
  9. 9.
    Mouhieddine TH, Kobeissy FH, Itani M, Nokkari A, Wang KK (2014) Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects. Neural Regen Res 9(9):901–906. doi: 10.4103/1673-5374.133129 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bosch M, Pineda JR, Sunol C, Petriz J, Cattaneo E, Alberch J, Canals JM (2004) Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington’s disease. Exp Neurol 190(1):42–58. doi: 10.1016/j.expneurol.2004.06.027 CrossRefPubMedGoogle Scholar
  11. 11.
    Jelitai M, Madarasz E (2005) The role of GABA in the early neuronal development. Int Rev Neurobiol 71:27–62CrossRefPubMedGoogle Scholar
  12. 12.
    Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A 104(24):10164–10169. doi: 10.1073/pnas.0703806104 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2(5):255–267CrossRefPubMedGoogle Scholar
  14. 14.
    Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003) GABAergic dysfunction in mood disorders. Mol Psychiatry 8(8):721–737. doi: 10.1038/, 715CrossRefPubMedGoogle Scholar
  15. 15.
    Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J et al (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31(1):47–58CrossRefPubMedGoogle Scholar
  16. 16.
    Lanctot KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry 49(7):439–453PubMedGoogle Scholar
  17. 17.
    Frahm C, Haupt C, Witte OW (2004) GABA neurons survive focal ischemic injury. Neuroscience 127(2):341–346. doi: 10.1016/j.neuroscience.2004.05.027 CrossRefPubMedGoogle Scholar
  18. 18.
    Chatzi C, Scott RH, Pu J, Lang B, Nakamoto C, McCaig CD, Shen S (2009) Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells. Exp Neurol 217(2):407–416. doi: 10.1016/j.expneurol.2009.03.032 CrossRefPubMedGoogle Scholar
  19. 19.
    Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108(Pt 10):3181–3188PubMedGoogle Scholar
  20. 20.
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. doi: 10.1038/nbt1201-1129 CrossRefPubMedGoogle Scholar
  21. 21.
    Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J et al (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207. doi: 10.1038/nbt870 CrossRefPubMedGoogle Scholar
  22. 22.
    Paek HJ, Kim C, Williams SK (2014) Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World J Diabetes 5(3):235–243. doi: 10.4239/wjd.v5.i3.235 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Alonso-Alonso ML, Srivastava GK (2015) Current focus of stem cell application in retinal repair. World J Stem Cells 7(3):641–648. doi: 10.4252/wjsc.v7.i3.641 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gonzales C, Pedrazzini T (2009) Progenitor cell therapy for heart disease. Exp Cell Res 315(18):3077–3085. doi: 10.1016/j.yexcr.2009.09.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Baetge EE (1993) Neural stem cells for CNS transplantation. Ann N Y Acad Sci 695:285–291CrossRefPubMedGoogle Scholar
  26. 26.
    Arlotta P, Magavi SS, Macklis JD (2003) Induction of adult neurogenesis: molecular manipulation of neural precursors in situ. Ann N Y Acad Sci 991:229–236CrossRefPubMedGoogle Scholar
  27. 27.
    Arenas E (2002) Stem cells in the treatment of Parkinson’s disease. Brain Res Bull 57(6):795–808CrossRefPubMedGoogle Scholar
  28. 28.
    Rossi F, Cattaneo E (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 3(5):401–409. doi: 10.1038/nrn809 CrossRefPubMedGoogle Scholar
  29. 29.
    Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi: 10.1242/jcs.01307 CrossRefPubMedGoogle Scholar
  30. 30.
    Mohammad-Gharibani P, Tiraihi T, Mesbah-Namin SA, Arabkheradmand J, Kazemi H (2012) Induction of bone marrow stromal cells into GABAergic neuronal phenotype using creatine as inducer. Restor Neurol Neurosci 30(6):511–525. doi: 10.3233/rnn-2012-100155 PubMedGoogle Scholar
  31. 31.
    Andres RH, Ducray AD, Huber AW, Perez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T et al (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95(1):33–45. doi: 10.1111/j.1471-4159.2005.03337.x CrossRefPubMedGoogle Scholar
  32. 32.
    Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27CrossRefPubMedGoogle Scholar
  33. 33.
    Darabi S, Tiraihi T, Ruintan A, Abbaszadeh HA, Delshad A, Taheri T (2013) Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. Vitro Cell Dev Biol Anim 49(8):638–652. doi: 10.1007/s11626-013-9628-y CrossRefGoogle Scholar
  34. 34.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710CrossRefPubMedGoogle Scholar
  35. 35.
    Abdanipour A, Tiraihi T (2012) Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer. Brain Res 1440:23–33. doi: 10.1016/j.brainres.2011.12.051 CrossRefPubMedGoogle Scholar
  36. 36.
    Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29(8):1409–1420. doi: 10.1038/jcbfm.2009.62 CrossRefPubMedGoogle Scholar
  37. 37.
    Mokry J, Karbanova J, Filip S, Cizkova D, Pazour J, English D (2008) Phenotypic and morphological characterization of in vitro oligodendrogliogenesis. Stem Cells Dev 17(2):333–341. doi: 10.1089/scd.2007.0091 CrossRefPubMedGoogle Scholar
  38. 38.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  39. 39.
    Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25(12):3143–3154. doi: 10.1634/stemcells.2007-0351 CrossRefPubMedGoogle Scholar
  40. 40.
    Wei Y, Gong K, Zheng Z, Liu L, Wang A, Zhang L, Ao Q, Gong Y et al (2010) Schwann-like cell differentiation of rat adipose-derived stem cells by indirect co-culture with Schwann cells in vitro. Cell Prolif 43(6):606–616. doi: 10.1111/j.1365-2184.2010.00710.x CrossRefPubMedGoogle Scholar
  41. 41.
    Noisa P, Ramasamy TS, Lamont FR, Yu JS, Sheldon MJ, Russell A, Jin X, Cui W (2012) Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS ONE 7(5):e37129. doi: 10.1371/journal.pone.0037129 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thiel G (2013) How Sox2 maintains neural stem cell identity. Biochem J 450(3):e1–2. doi: 10.1042/bj20130176 CrossRefPubMedGoogle Scholar
  43. 43.
    Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ (2012) PPARgamma agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS ONE 7(11):e50500. doi: 10.1371/journal.pone.0050500 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Krtolica A, Larocque N, Genbacev O, Ilic D, Coppe JP, Patil CK, Zdravkovic T, McMaster M et al (2011) GROalpha regulates human embryonic stem cell self-renewal or adoption of a neuronal fate. Differentiation 81(4):222–232. doi: 10.1016/j.diff.2011.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218. doi: 10.1016/j.stem.2011.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3(4):382–388. doi: 10.1016/j.stem.2008.09.015 CrossRefPubMedGoogle Scholar
  47. 47.
    de Peppo GM, Marolt D (2012) State of the art in stem cell research: human embryonic stem cells, induced pluripotent stem cells, and transdifferentiation. J Blood Transfus 2012:317632. doi: 10.1155/2012/317632 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Casanova EA, Okoniewski MJ, Cinelli P (2012) Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos. PLoS ONE 7(10):e47107. doi: 10.1371/journal.pone.0047107 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Foygel K, Choi B, Jun S, Leong DE, Lee A, Wong CC, Zuo E, Eckart M et al (2008) A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS ONE 3(12):e4109. doi: 10.1371/journal.pone.0004109 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sauerzweig S, Munsch T, Lessmann V, Reymann KG, Braun H (2009) A population of serum deprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells. Exp Cell Res 315(1):50–66. doi: 10.1016/j.yexcr.2008.10.007 CrossRefPubMedGoogle Scholar
  51. 51.
    Chen S, Choo AB, Nai-Dy W, Heng-Phon T, Oh SK (2007) Knockdown of Oct-4 or Sox-2 attenuates neurogenesis of mouse embryonic stem cells. Stem Cells Dev 16(3):413–420. doi: 10.1089/scd.2006.0099 CrossRefPubMedGoogle Scholar
  52. 52.
    Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25(6):2475–2485. doi: 10.1128/mcb.25.6.2475-2485.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Duinsbergen D, Eriksson M, t Hoen PA, Frisen J, Mikkers H (2008) Induced pluripotency with endogenous and inducible genes. Exp Cell Res 314(17):3255–3263. doi: 10.1016/j.yexcr.2008.06.024 CrossRefPubMedGoogle Scholar
  54. 54.
    Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS (1998) Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 152(1):251–259PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee J, Kim HK, Rho JY, Han YM, Kim J (2006) The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 281(44):33554–33565. doi: 10.1074/jbc.M603937200 CrossRefPubMedGoogle Scholar
  56. 56.
    Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389(7):845–850. doi: 10.1515/bc.2008.098 CrossRefPubMedGoogle Scholar
  57. 57.
    Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2):174–191. doi: 10.1002/jnr.20148 CrossRefPubMedGoogle Scholar
  58. 58.
    Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204. doi: 10.1002/jnr.20147 CrossRefPubMedGoogle Scholar
  59. 59.
    Suon S, Jin H, Donaldson AE, Caterson EJ, Tuan RS, Deschennes G, Marshall C, Iacovitti L (2004) Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms. Stem Cells Dev 13(6):625–635. doi: 10.1089/scd.2004.13.625 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H et al (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68(4-5):235–244CrossRefPubMedGoogle Scholar
  61. 61.
    Kaighn ME, Reddel RR, Lechner JF, Peehl DM, Camalier RF, Brash DE, Saffiotti U, Harris CC (1989) Transformation of human neonatal prostate epithelial cells by strontium phosphate transfection with a plasmid containing SV40 early region genes. Cancer Res 49(11):3050–3056PubMedGoogle Scholar
  62. 62.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576. doi: 10.1002/jnr.490350513 CrossRefPubMedGoogle Scholar
  63. 63.
    Lou S, Gu P, Chen F, He C, Wang M, Lu C (2003) The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats. Brain Res 968(1):114–121CrossRefPubMedGoogle Scholar
  64. 64.
    Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J et al (2008) A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 372(4):520–524. doi: 10.1016/j.bbrc.2008.05.039 CrossRefPubMedGoogle Scholar
  65. 65.
    Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30(1):65–78CrossRefPubMedGoogle Scholar
  66. 66.
    Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160. doi: 10.1111/j.1460-9568.2004.03478.x CrossRefPubMedGoogle Scholar
  67. 67.
    Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30(10):1067–1077CrossRefPubMedGoogle Scholar
  68. 68.
    Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18(1):156–163PubMedGoogle Scholar
  69. 69.
    Juravleva E, Barbakadze T, Mikeladze D, Kekelidze T (2005) Creatine enhances survival of glutamate-treated neuronal/glial cells, modulates Ras/NF-kappaB signaling, and increases the generation of reactive oxygen species. J Neurosci Res 79(1-2):224–230. doi: 10.1002/jnr.20291 CrossRefPubMedGoogle Scholar
  70. 70.
    Chatzi C, Brade T, Duester G (2011) Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 9(4):e1000609. doi: 10.1371/journal.pbio.1000609 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Naumann T, Schnell O, Zhi Q, Kirsch M, Schubert KO, Sendtner M, Hofmann HD (2003) Endogenous ciliary neurotrophic factor protects GABAergic, but not cholinergic, septohippocampal neurons following fimbria-fornix transection. Brain Pathol 13(3):309–321CrossRefPubMedGoogle Scholar
  72. 72.
    Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278(5337):477–483CrossRefPubMedGoogle Scholar
  73. 73.
    Peterson WM, Wang Q, Tzekova R, Wiegand SJ (2000) Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 20(11):4081–4090PubMedGoogle Scholar
  74. 74.
    Wang J, Yen A (2008) A MAPK-positive feedback mechanism for BLR1 signaling propels retinoic acid-triggered differentiation and cell cycle arrest. J Biol Chem 283(7):4375–4386. doi: 10.1074/jbc.M708471200 CrossRefPubMedGoogle Scholar
  75. 75.
    Lee AW (1999) Synergistic activation of mitogen-activated protein kinase by cyclic AMP and myeloid growth factors opposes cyclic AMP’s growth-inhibitory effects. Blood 93(2):537–553PubMedGoogle Scholar
  76. 76.
    Bethea CL, Sprangers SA, West NB, Brenner RM (1988) The effect of simultaneous versus sequential estradiol and progesterone treatments on prolactin production in monkey pituitary cell cultures. Endocrinology 122(5):1786–1800. doi: 10.1210/endo-122-5-1786 CrossRefPubMedGoogle Scholar
  77. 77.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97(21):11307–11312. doi: 10.1073/pnas.97.21.11307 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Humes HD, Cieslinski DA (1992) Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res 201(1):8–15CrossRefPubMedGoogle Scholar
  79. 79.
    Golan DE, Tashjian AH, Armstrong EJ (2011) Principles of pharmacology: the pathophysiologic basis of drug therapy. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  80. 80.
    Breitinger H-G (2012) Drug synergy-mechanisms and methods of analysis. INTECH Open Access Publisher, BaltimoreGoogle Scholar
  81. 81.
    Mey J, McCaffery P (2004) Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 10(5):409–421. doi: 10.1177/1073858404263520 CrossRefPubMedGoogle Scholar
  82. 82.
    Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K (2009) Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 27(11):2744–2752. doi: 10.1002/stem.176 CrossRefPubMedGoogle Scholar
  83. 83.
    Chen Y, Teng FY, Tang BL (2006) Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci 63(14):1649–1657. doi: 10.1007/s00018-006-6019-5 CrossRefPubMedGoogle Scholar
  84. 84.
    Ip NY (1998) The neurotrophins and neuropoietic cytokines: two families of growth factors acting on neural and hematopoietic cells. Ann N Y Acad Sci 840:97–106CrossRefPubMedGoogle Scholar
  85. 85.
    Kawanami T, Kato T, Llena JF, Hirano A, Sasaki H (1994) Altered synaptophysin-immunoreactive pattern in human olivary hypertrophy. Neurosci Lett 176(2):178–180CrossRefPubMedGoogle Scholar
  86. 86.
    Mokin M, Keifer J (2006) Quantitative analysis of immunofluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157(2):218–224. doi: 10.1016/j.jneumeth.2006.04.016 CrossRefPubMedGoogle Scholar
  87. 87.
    Hammond RR, Iskander S, Achim CL, Hearn S, Nassif J, Wiley CA (2002) A reliable primary human CNS culture protocol for morphological studies of dendritic and synaptic elements. J Neurosci Methods 118(2):189–198CrossRefPubMedGoogle Scholar
  88. 88.
    Takazaki R, Nishimura I, Yoshikawa K (2002) Necdin is required for terminal differentiation and survival of primary dorsal root ganglion neurons. Exp Cell Res 277(2):220–232CrossRefPubMedGoogle Scholar
  89. 89.
    Gingras M, Champigny MF, Berthod F (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210(2):498–506. doi: 10.1002/jcp.20889 CrossRefPubMedGoogle Scholar
  90. 90.
    Mangan PS, Kapur J (2004) Factors underlying bursting behavior in a network of cultured hippocampal neurons exposed to zero magnesium. J Neurophysiol 91(2):946–957. doi: 10.1152/jn.00547.2003 CrossRefPubMedGoogle Scholar
  91. 91.
    Bate C, Williams A (2010) Amyloid-beta(1-40) inhibits amyloid-beta(1-42) induced activation of cytoplasmic phospholipase A2 and synapse degeneration. J Alzheimers Dis 21(3):985–993. doi: 10.3233/jad-2010-100528 CrossRefPubMedGoogle Scholar
  92. 92.
    Verstreken P, Ohyama T, Bellen HJ (2008) FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol 440:349–369. doi: 10.1007/978-1-59745-178-9_26 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Prange O, Murphy TH (1999) Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci 19(15):6427–6438PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shahram Darabi
    • 1
  • Taki Tiraihi
    • 1
    • 2
    Email author
  • AliReza Delshad
    • 3
  • Majid Sadeghizadeh
    • 4
  • Taher Taheri
    • 2
  • Hayder K. Hassoun
    • 5
  1. 1.Department of Anatomical Sciences, School of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Shefa Neurosciences Research CenterKhatam Al-Anbia HospitalTehranIran
  3. 3.Department of AnatomyShahed UniversityTehranIran
  4. 4.Department of Genetics, Faculty of Basic SciencesTarbiat Modares UniversityTehranIran
  5. 5.Middle Euphrates Neuroscience Center-Kufa College of MedicineAnnajafIraq

Personalised recommendations