Molecular Neurobiology

, Volume 54, Issue 3, pp 1699–1709 | Cite as

Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice—Potential Link to Cognitive Impairment in Schizophrenia

  • Yong Chen
  • Sookhee Bang
  • Mary F. McMullen
  • Hala Kazi
  • Konrad Talbot
  • Mei-Xuan Ho
  • Greg Carlson
  • Steven E. Arnold
  • Wei-Yi OngEmail author
  • Sangwon F. KimEmail author


Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.


Lipid synthesis SREBP Dysbindin Cognition Antipsychotics NMDA PUFA DHA ATP Synaptic Plasticity Cerebral Cortex Neurons 



We thank Ms. Hui-Jen Lye and Ms. Sau-Yeen Loke for help with microarray analyses. This work was supported by the National Research Foundation, National Medical Research Council and National University Health System, Singapore (WYO) and by HD026979, MH079614, and DK084336 (SFK).

Supplementary material

12035_2016_9773_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)
12035_2016_9773_MOESM2_ESM.docx (28 kb)
ESM 2 (DOCX 27 kb)


  1. 1.
    Carlson GC, Talbot K, Halene TB, Gandal MJ, Kazi HA, Schlosser L, Phung QH, Gur RE et al (2011) Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc Natl Acad Sci U S A 108(43):E962–E970PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4-6):365–384. doi: 10.1007/s10571-006-9062-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg SC (1985) Negative and deficit symptoms in schizophrenia do respond to neuroleptics. Schizophr Bull 11(3):453–456PubMedCrossRefGoogle Scholar
  4. 4.
    Hattori S, Murotani T, Matsuzaki S, Ishizuka T, Kumamoto N, Takeda M, Tohyama M, Yamatodani A et al (2008) Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 373(2):298–302. doi: 10.1016/j.bbrc.2008.06.016 PubMedCrossRefGoogle Scholar
  5. 5.
    Kantrowitz JT, Javitt DC (2010) N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 83(3-4):108–121. doi: 10.1016/j.brainresbull.2010.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ et al (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113(9):1353–1363. doi: 10.1172/JCI20425 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn CG, Blake DJ, Arnold SE et al (2009) Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet 18(20):3851–3863. doi: 10.1093/hmg/ddp329 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Talbot K, Louneva N, Cohen JW, Kazi H, Blake DJ, Arnold SE (2011) Synaptic dysbindin-1 reductions in schizophrenia occur in an isoform-specific manner indicating their subsynaptic location. PLoS One 6(3):e16886. doi: 10.1371/journal.pone.0016886 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN, Malvar JS, de Vellis J et al (2010) The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 15(2):204–215. doi: 10.1038/mp.2009.58 CrossRefGoogle Scholar
  10. 10.
    Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127–1130. doi: 10.1126/science.1179685 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Murotani T, Ishizuka T, Hattori S, Hashimoto R, Matsuzaki S, Yamatodani A (2007) High dopamine turnover in the brains of Sandy mice. Neurosci Lett 421(1):47–51. doi: 10.1016/j.neulet.2007.05.019 PubMedCrossRefGoogle Scholar
  12. 12.
    Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, Guo N, Huang HP et al (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181(5):791–801. doi: 10.1083/jcb.200711021 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR, Lu B (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci U S A 106(46):19593–19598. doi: 10.1073/pnas.0904289106 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tang TT, Yang F, Chen BS, Lu Y, Ji Y, Roche KW, Lu B (2009) Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression. Proc Natl Acad Sci U S A 106(50):21395–21400. doi: 10.1073/pnas.0910499106 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11:126. doi: 10.1186/1741-7015-11-126 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167(7):748–751. doi: 10.1176/appi.ajp.2010.09091379 PubMedCrossRefGoogle Scholar
  17. 17.
    Bazan NG (2005) Synaptic signaling by lipids in the life and death of neurons. Mol Neurobiol 31(1-3):219–230PubMedCrossRefGoogle Scholar
  18. 18.
    Davletov B, Montecucco C (2010) Lipid function at synapses. Curr Opin Neurobiol 20(5):543–549PubMedCrossRefGoogle Scholar
  19. 19.
    Rohrbough J, Broadie K (2005) Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6(2):139–150PubMedCrossRefGoogle Scholar
  20. 20.
    Soldan MM, Pirko I (2012) Biogenesis and significance of central nervous system myelin. Semin Neurol 32(1):9–14CrossRefGoogle Scholar
  21. 21.
    Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16(4):414–419. doi: 10.1016/j.cmet.2012.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wang X, Sato R, Brown MS, Hua X, Goldstein JL (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77(1):53–62PubMedCrossRefGoogle Scholar
  23. 23.
    Espenshade PJ (2006) SREBPs: sterol-regulated transcription factors. J Cell Sci 119(Pt 6):973–976. doi: 10.1242/jcs02866 PubMedCrossRefGoogle Scholar
  24. 24.
    Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40(6):439–452PubMedCrossRefGoogle Scholar
  25. 25.
    Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131. doi: 10.1172/JCI15593 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767. doi: 10.1523/JNEUROSCI.3864-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52(3):403–407. doi: 10.1016/j.neuron.2006.10.016 PubMedCrossRefGoogle Scholar
  28. 28.
    Bang S, Steenstra C, Kim SF (2012) Striatum specific protein, Rhes regulates AKT pathway. Neurosci Lett 521(2):142–147. doi: 10.1016/j.neulet.2012.05.073 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Arnold SE, Lucki I, Brookshire BR, Carlson GC, Browne CA, Kazi H, Bang S, Choi BR et al (2014) High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis 67:79–87. doi: 10.1016/j.nbd.2014.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH (2007) From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A 104(9):3456–3459PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Arnold SE, Gur RE, Shapiro RM, Fisher KR, Moberg PJ, Gibney MR, Gur RC, Blackwell P et al (1995) Prospective clinicopathologic studies of schizophrenia: accrual and assessment of patients. Am J Psychiatry 152(5):731–737PubMedCrossRefGoogle Scholar
  32. 32.
    Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J et al (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12(7):824–828. doi: 10.1038/nm1418 PubMedCrossRefGoogle Scholar
  33. 33.
    Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. doi: 10.1172/JCI59903 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Benson MA, Sillitoe RV, Blake DJ (2004) Schizophrenia genetics: dysbindin under the microscope. Trends Neurosci 27(9):516–519. doi: 10.1016/j.tins.2004.06.004 PubMedCrossRefGoogle Scholar
  35. 35.
    Talbot K (2009) The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. Prog Brain Res 179:87–94. doi: 10.1016/s0079-6123(09)17910-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Jeans A, Malins R, Padamsey Z, Reinhart M, Emptage N (2011) Increased expression of dysbindin-1A leads to a selective deficit in NMDA receptor signaling in the hippocampus. Neuropharmacology 61(8):1345–1353. doi: 10.1016/j.neuropharm.2011.08.007 PubMedCrossRefGoogle Scholar
  37. 37.
    Karlsgodt KH, Robleto K, Trantham-Davidson H, Jairl C, Cannon TD, Lavin A, Jentsch JD (2011) Reduced dysbindin expression mediates N-methyl-d-aspartate receptor hypofunction and impaired working memory performance. Biol Psychiatry 69(1):28–34. doi: 10.1016/j.biopsych.2010.09.012 PubMedCrossRefGoogle Scholar
  38. 38.
    Glen WB Jr, Horowitz B, Carlson GC, Cannon TD, Talbot K, Jentsch JD, Lavin A (2014) Dysbindin-1 loss compromises NMDAR-dependent synaptic plasticity and contextual fear conditioning. Hippocampus 24(2):204–213. doi: 10.1002/hipo.22215 PubMedCrossRefGoogle Scholar
  39. 39.
    Sztainberg Y, Chen A (2010) An environmental enrichment model for mice. Nat Protoc 5(9):1535–1539. doi: 10.1038/nprot.2010.114 PubMedCrossRefGoogle Scholar
  40. 40.
    Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ (2008) Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome—Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci 27(12):3342–3350PubMedCrossRefGoogle Scholar
  41. 41.
    Nag N, Moriuchi JM, Peitzman CG, Ward BC, Kolodny NH, Berger-Sweeney JE (2009) Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res 196(1):44–48PubMedCrossRefGoogle Scholar
  42. 42.
    Canfran-Duque A, Casado ME, Pastor O, Sanchez-Wandelmer J, de la Pena G, Lerma M, Mariscal P, Bracher F et al (2013) Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. J Lipid Res 54(2):310–324. doi: 10.1194/jlr.M026948 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lauressergues E, Staels B, Valeille K, Majd Z, Hum DW, Duriez P, Cussac D (2010) Antipsychotic drug action on SREBPs-related lipogenesis and cholesterogenesis in primary rat hepatocytes. Naunyn Schmiedeberg’s Arch Pharmacol 381(5):427–439. doi: 10.1007/s00210-010-0499-4 CrossRefGoogle Scholar
  44. 44.
    Kristiana I, Sharpe LJ, Catts VS, Lutze-Mann LH, Brown AJ (2010) Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol. Pharmacogenomics J 10(5):396–407PubMedCrossRefGoogle Scholar
  45. 45.
    Raeder MB, Ferno J, Vik-Mo AO, Steen VM (2006) SREBP activation by antipsychotic- and antidepressant-drugs in cultured human liver cells: relevance for metabolic side-effects? Mol Cell Biochem 289(1-2):167–173PubMedCrossRefGoogle Scholar
  46. 46.
    Steiner J, Martins-de-Souza D, Schiltz K, Sarnyai Z, Westphal S, Isermann B, Dobrowolny H, Turck CW et al (2014) Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Front Cell Neurosci 8:384. doi: 10.3389/fncel.2014.00384 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hunt MC, Siponen MI, Alexson SE (2012) The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta 1822(9):1397–1410. doi: 10.1016/j.bbadis.2012.03.009 PubMedCrossRefGoogle Scholar
  48. 48.
    Holmsen H, Hindenes JO, Fukami M (1992) Glycerophospholipid metabolism: back to the future. Thromb Res 67(3):313–323PubMedCrossRefGoogle Scholar
  49. 49.
    Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19-20):2305–2316. doi: 10.1007/s00018-005-5195-z PubMedCrossRefGoogle Scholar
  50. 50.
    Marcus PI, Talalay P (1956) Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. J Biol Chem 218(2):661–674PubMedGoogle Scholar
  51. 51.
    Labrie F, Luu-The V, Lin SX, Labrie C, Simard J, Breton R, Belanger A (1997) The key role of 17 beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62(1):148–158PubMedCrossRefGoogle Scholar
  52. 52.
    Haller JF, Krawczyk SA, Gostilovitch L, Corkey BE, Zoeller RA (2011) Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1alpha to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease. Biochim Biophys Acta 1812(11):1393–1402. doi: 10.1016/j.bbadis.2011.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Okamoto K, Kakuma T, Fukuchi S, Masaki T, Sakata T, Yoshimatsu H (2006) Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes. Brain Res 1081(1):19–27PubMedCrossRefGoogle Scholar
  54. 54.
    Kim JH, Ong WY (2009) Localization of the transcription factor, sterol regulatory element binding protein-2 (SREBP-2) in the normal rat brain and changes after kainate-induced excitotoxic injury. J Chem Neuroanat 37(2):71–77PubMedCrossRefGoogle Scholar
  55. 55.
    Ong WY, Hu CY, Soh YP, Lim TM, Pentchev PG, Patel SC (2000) Neuronal localization of sterol regulatory element binding protein-1 in the rodent and primate brain: a light and electron microscopic immunocytochemical study. Neuroscience 97(1):143–153PubMedCrossRefGoogle Scholar
  56. 56.
    Korb E, Finkbeiner S (2011) Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 34(11):591–598. doi: 10.1016/j.tins.2011.08.007 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Taghibiglou C, Martin HG, Lai TW, Cho T, Prasad S, Kojic L, Lu J, Liu Y et al (2009) Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat Med 15(12):1399–1406PubMedCrossRefGoogle Scholar
  58. 58.
    Le HS, Muhleisen TW, Djurovic S, Ferno J, Ouriaghi Z, Mattheisen M, Vasilescu C, Raeder MB et al (2010) Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Mol Psychiatry 15(5):463–472. doi: 10.1038/mp.2008.110 CrossRefGoogle Scholar
  59. 59.
    Le HS, Theisen FM, Haberhausen M, Raeder MB, Ferno J, Gebhardt S, Hinney A, Remschmidt H et al (2009) Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry 14(3):308–317CrossRefGoogle Scholar
  60. 60.
    Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid H, Lovlie R et al (2005) Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J 5(5):298–304. doi: 10.1038/sj.tpj.6500323 PubMedCrossRefGoogle Scholar
  61. 61.
    McEvoy J, Baillie RA, Zhu H, Buckley P, Keshavan MS, Nasrallah HA, Dougherty GG, Yao JK et al (2013) Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One 8(7):e68717. doi: 10.1371/journal.pone.0068717 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ledesma MD, Martin MG, Dotti CG (2012) Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res 51(1):23–35PubMedCrossRefGoogle Scholar
  63. 63.
    Krugel U (2015) Purinergic receptors in psychiatric disorders. Neuropharmacology. doi: 10.1016/j.neuropharm.2015.10.032 PubMedGoogle Scholar
  64. 64.
    LaSalle JM, Powell WT, Yasui DH (2013) Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 36(8):460–470. doi: 10.1016/j.tins.2013.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Spell C, Kolsch H, Lutjohann D, Kerksiek A, Hentschel F, Damian M, von Bergmann K, Rao ML et al (2004) SREBP-1a polymorphism influences the risk of Alzheimer’s disease in carriers of the ApoE4 allele. Dement Geriatr Cogn Disord 18(3-4):245–249PubMedCrossRefGoogle Scholar
  66. 66.
    Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, Strand A, Tarditi A et al (2005) Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J Neurosci 25(43):9932–9939PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yong Chen
    • 1
  • Sookhee Bang
    • 1
  • Mary F. McMullen
    • 1
  • Hala Kazi
    • 1
  • Konrad Talbot
    • 1
  • Mei-Xuan Ho
    • 3
  • Greg Carlson
    • 1
  • Steven E. Arnold
    • 1
  • Wei-Yi Ong
    • 3
    Email author
  • Sangwon F. Kim
    • 1
    • 2
    Email author
  1. 1.Department of Psychiatry, Center for Neurobiology and BehaviorPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Anatomy and Neurobiology Research ProgrammeNational University of SingaporeSingaporeSingapore

Personalised recommendations