Advertisement

Molecular Neurobiology

, Volume 54, Issue 2, pp 1379–1391 | Cite as

Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting

  • Ling Chen
  • Baobing Gao
  • Min Fang
  • Jie Li
  • Xiujuan Mi
  • Xin Xu
  • Wei Wang
  • Juan Gu
  • Bo Tang
  • Yanke Zhang
  • Zhihua Wang
  • Ao Zhan
  • Guojun Chen
  • Xuefeng WangEmail author
Article

Abstract

Repulsive guidance molecule a (RGMa) is a membrane-bound protein that inhibits axon outgrowth in the central nervous system. Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent spontaneous seizures. To explore the role of RGMa in epilepsy, we investigated the expression of RGMa in patients with TLE, pilocarpine-induced rat model, and pentylenetetrazol kindling model of epilepsy, and then we performed behavioral, histological, and electrophysiological analysis by lentivirus-mediated overexpression of RGMa in the hippocampus of animal model. We found that RGMa was significantly decreased in TLE patients and in experimental rats from 6 h to 60 days after pilocarpine-induced seizures. In two types of epileptic animal models, pilocarpine-induced model and pentylenetetrazol kindling model, overexpression of RGMa in the hippocampus of rats exerted seizure-suppressant effects. The reduced spontaneous seizures were accompanied by attenuation of hippocampal mossy fiber sprouting. In addition, overexpression of RGMa inhibited hyperexcitability of hippocampal neurons via suppressing NMDAR-mediated currents in Mg2+-free-induced organotypic slice model. Collectively, these results demonstrate that overexpression of RGMa could be an alternative strategy for epilepsy therapy.

Keywords

RGMa Temporal lobe epilepsy Mossy fiber sprouting Lentivirus 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81071039). The authors sincerely thank the patients and their families for their participation in this study. We thank the Xinqiao Hospital of the Third Military Medical University, Beijing Tiantan Hospital and Xuanwu Hospital of the Capital University of Medical Sciences for their support in brain tissue procurement, and the National Institutes of Health of China and the Ethics Committee on Human Research of the Chongqing Medical University.

Compliance with Ethical Standards

Informed consents were obtained from all the patients or their guardian. This study was approved by the ethics committees of Chongqing Medical University. All procedures were performed in compliance with the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR (2010) Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51(5):883–890. doi: 10.1111/j.1528-1167.2009.02481.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pitkanen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10(2):173–186. doi: 10.1016/S1474-4422(10)70310-0 CrossRefPubMedGoogle Scholar
  3. 3.
    French JA (2007) Refractory epilepsy: clinical overview. Epilepsia 48(Suppl 1):3–7. doi: 10.1111/j.1528-1167.2007.00992.x CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt D, Loscher W (2005) Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46(6):858–877. doi: 10.1111/j.1528-1167.2005.54904.x CrossRefPubMedGoogle Scholar
  5. 5.
    Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5(7):380–391. doi: 10.1038/nrneurol.2009.80 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22(15):6650–6658PubMedGoogle Scholar
  7. 7.
    Lynch M, Sutula T (2000) Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats. J Neurophysiol 83(2):693–704PubMedGoogle Scholar
  8. 8.
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26(3):321–330. doi: 10.1002/ana.410260303 CrossRefPubMedGoogle Scholar
  9. 9.
    Yaron A, Zheng B (2007) Navigating their way to the clinic: emerging roles for axon guidance molecules in neurological disorders and injury. Dev Neurobiol 67(9):1216–1231. doi: 10.1002/dneu.20512 CrossRefPubMedGoogle Scholar
  10. 10.
    Barnes G, Puranam RS, Luo Y, McNamara JO (2003) Temporal specific patterns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus. Hippocampus 13(1):1–20. doi: 10.1002/hipo.10041 CrossRefPubMedGoogle Scholar
  11. 11.
    Holtmaat AJ, Gorter JA, De Wit J, Tolner EA, Spijker S, Giger RJ, Lopes da Silva FH, Verhaagen J (2003) Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting. Exp Neurol 182(1):142–150CrossRefPubMedGoogle Scholar
  12. 12.
    Monnier PP, Sierra A, Macchi P, Deitinghoff L, Andersen JS, Mann M, Flad M, Hornberger MR et al (2002) RGM is a repulsive guidance molecule for retinal axons. Nature 419(6905):392–395. doi: 10.1038/nature01041 CrossRefPubMedGoogle Scholar
  13. 13.
    Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller BK, Strittmatter SM (2004) Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol 6(8):756–762. doi: 10.1038/ncb1156 CrossRefPubMedGoogle Scholar
  14. 14.
    Matsunaga E, Nakamura H, Chedotal A (2006) Repulsive guidance molecule plays multiple roles in neuronal differentiation and axon guidance. J Neurosci 26(22):6082–6088. doi: 10.1523/JNEUROSCI.4556-05.2006 CrossRefPubMedGoogle Scholar
  15. 15.
    Brinks H, Conrad S, Vogt J, Oldekamp J, Sierra A, Deitinghoff L, Bechmann I, Alvarez-Bolado G et al (2004) The repulsive guidance molecule RGMa is involved in the formation of afferent connections in the dentate gyrus. J Neurosci 24(15):3862–3869. doi: 10.1523/JNEUROSCI.5296-03.2004 CrossRefPubMedGoogle Scholar
  16. 16.
    Kyoto A, Hata K, Yamashita T (2007) Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury. Brain Res 1186:74–86. doi: 10.1016/j.brainres.2007.10.038 CrossRefPubMedGoogle Scholar
  17. 17.
    Schwab JM, Conrad S, Monnier PP, Julien S, Mueller BK, Schluesener HJ (2005) Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM). Eur J Neurosci 21(6):1569–1576. doi: 10.1111/j.1460-9568.2005.03962.x CrossRefPubMedGoogle Scholar
  18. 18.
    Schwab JM, Monnier PP, Schluesener HJ, Conrad S, Beschorner R, Chen L, Meyermann R, Mueller BK (2005) Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain. Arch Neurol 62(10):1561–1568. doi: 10.1001/archneur.62.10.1561 CrossRefPubMedGoogle Scholar
  19. 19.
    Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K (2013) Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: a possible hallmark of regenerative failure in Alzheimer's disease brains. Neuropathol Appl Neurobiol 39(2):109–120. doi: 10.1111/j.1365-2990.2012.01281.x CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Lv Y, Deng W, Peng X, Xiao Z, Xi Z, Chen G, Wang X (2015) 5-HT6 receptor recruitment of mTOR modulates seizure activity in epilepsy. Mol Neurobiol 51(3):1292–1299. doi: 10.1007/s12035-014-8806-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Hurttila H, Koponen JK, Kansanen E, Jyrkkanen HK, Kivela A, Kylatie R, Yla-Herttuala S, Levonen AL (2008) Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Ther 15(18):1271–1279. doi: 10.1038/gt.2008.75 CrossRefPubMedGoogle Scholar
  22. 22.
    Woldbye DP, Angehagen M, Gotzsche CR, Elbrond-Bek H, Sorensen AT, Christiansen SH, Olesen MV, Nikitidou L et al (2010) Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 133(9):2778–2788. doi: 10.1093/brain/awq219 CrossRefPubMedGoogle Scholar
  23. 23.
    Racine RJ, Gartner JG, Burnham WM (1972) Epileptiform activity and neural plasticity in limbic structures. Brain Res 47(1):262–268CrossRefPubMedGoogle Scholar
  24. 24.
    Diehl RG, Smialowski A, Gotwo T (1984) Development and persistence of kindled seizures after repeated injections of pentylenetetrazol in rats and guinea pigs. Epilepsia 25(4):506–510CrossRefPubMedGoogle Scholar
  25. 25.
    Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying western blots: pitfalls of densitometry. Electrophoresis 30(11):1845–1855. doi: 10.1002/elps.200800720 CrossRefPubMedGoogle Scholar
  26. 26.
    Lew FH, Buckmaster PS (2011) Is there a critical period for mossy fiber sprouting in a mouse model of temporal lobe epilepsy? Epilepsia 52(12):2326–2332. doi: 10.1111/j.1528-1167.2011.03315.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cavazos JE, Golarai G, Sutula TP (1991) Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 11(9):2795–2803PubMedGoogle Scholar
  28. 28.
    Capelli LP, Krepischi AC, Gurgel-Giannetti J, Mendes MF, Rodrigues T, Varela MC, Koiffmann CP, Rosenberg C (2012) Deletion of the RMGA and CHD2 genes in a child with epilepsy and mental deficiency. Eur J Med Genet 55(2):132–134. doi: 10.1016/j.ejmg.2011.10.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10(1):267–282PubMedGoogle Scholar
  30. 30.
    Mathern GW, Babb TL, Mischel PS, Vinters HV, Pretorius JK, Leite JP, Peacock WJ (1996) Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. Brain 119(Pt 3):965–987CrossRefPubMedGoogle Scholar
  31. 31.
    Ribak CE, Seress L, Weber P, Epstein CM, Henry TR, Bakay RA (1998) Alumina gel injections into the temporal lobe of rhesus monkeys cause complex partial seizures and morphological changes found in human temporal lobe epilepsy. J Comp Neurol 401(2):266–290. doi: 10.1002/(SICI)1096-9861(19981116)401 CrossRefPubMedGoogle Scholar
  32. 32.
    Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34(6):985–995CrossRefPubMedGoogle Scholar
  33. 33.
    Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697. doi: 10.1016/j.neuroscience.2006.03.012 CrossRefPubMedGoogle Scholar
  34. 34.
    Scharfman HE (2003) Insight into molecular mechanisms of catamenial epilepsy. Epilepsy Curr 3(3):86–88. doi: 10.1046/j.1535-7597.2003.03305.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5(4):1016–1022PubMedGoogle Scholar
  36. 36.
    Wuarin JP, Dudek FE (1996) Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 16(14):4438–4448PubMedGoogle Scholar
  37. 37.
    Yoshida J, Kubo T, Yamashita T (2008) Inhibition of branching and spine maturation by repulsive guidance molecule in cultured cortical neurons. Biochem Biophys Res Commun 372(4):725–729. doi: 10.1016/j.bbrc.2008.05.124 CrossRefPubMedGoogle Scholar
  38. 38.
    Shibata K, Nakahara S, Shimizu E, Yamashita T, Matsuki N, Koyama R (2013) Repulsive guidance molecule a regulates hippocampal mossy fiber branching in vitro. Neuroreport 24(11):609–615. doi: 10.1097/WNR.0b013e3283632c08 CrossRefPubMedGoogle Scholar
  39. 39.
    Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22(4):617–640. doi: 10.1016/j.yebeh.2011.07.024 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ling Chen
    • 1
    • 2
  • Baobing Gao
    • 1
  • Min Fang
    • 1
  • Jie Li
    • 3
  • Xiujuan Mi
    • 1
  • Xin Xu
    • 1
  • Wei Wang
    • 1
  • Juan Gu
    • 1
  • Bo Tang
    • 1
  • Yanke Zhang
    • 1
  • Zhihua Wang
    • 1
  • Ao Zhan
    • 1
  • Guojun Chen
    • 1
  • Xuefeng Wang
    • 1
    Email author
  1. 1.Department of Neurology, Chongqing Key Laboratory of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of NeurologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
  3. 3.Department of NeurologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina

Personalised recommendations