Skip to main content

Advertisement

Log in

Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methylenetetrahydrofolate reductase (MTHFR) is key enzyme of folate/homocysteine pathway. Case control association studies on MTHFR C677T polymorphism and Alzheimer’s disease (AD) have been repeatedly performed over the last two decades, but the results are inconclusive. The aim of the present study was to assess the risk of MTHFR C677T polymorphism for AD. Forty-one studies were identified by a search of PubMed, Google Scholar, Elsevier, and Springer Link databases, up to January 2015. Odds ratios (ORs) with corresponding 95 % confidence interval (CI) were calculated using fixed effect model or random effect model. The subgroup analyses based on ethnicity were performed. MTHFR C677T polymorphism had a significant association with susceptibility to AD in all genetic models (for T vs C OR = 1.29, 95 % CI = 1.07–1.56, p = 0.003; for TT + CT vs CC OR = 1.29, 95 % CI = 1.19–1.40, p = 0.0004; for TT vs CC OR = 1.31, 95 % CI = 1.16–1.48, p = 0.001; for CT vs CC OR = 1.24, 95 % CI = 1.13–1.35, p < 0.004; and for TT vs CT + CC OR = 1.13, 95 % CI = 1.00–1.28, p = 0.02). Results of present meta-analysis supported that the MTHFR C677T polymorphism was associated with an increased risk of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luchsinger J, Mayeux R (2004) Cardiovascular risk factors and Alzheimer’s diseases. Curr Atheroscler Rep 6:261–266

    Article  PubMed  Google Scholar 

  2. Wingo TS, Lah JJ, Levey AI, Cutler DJ (2012) Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol 69:59–64

    Article  PubMed  Google Scholar 

  3. Prince DL, Sisodia SS, Borchett DR (1998) Alzheimer disease: when or why? Nat Genet 19:314–316

    Article  Google Scholar 

  4. Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA, Levesque G, Rogaev EI et al (1996) Fifteen-year longitudinal study of blood pressure and dementia. Lancet 347:1141–1145

    Article  Google Scholar 

  5. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  6. Ott A, Stolk RP, van Harskamp F et al (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology 53:1937–1942

    Article  CAS  PubMed  Google Scholar 

  7. Jick H, Zornberg GL, Jick SS et al (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  CAS  PubMed  Google Scholar 

  8. Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, Lucca U (2004) Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 80:114–122

    CAS  PubMed  Google Scholar 

  9. Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130:129–132

    CAS  PubMed  Google Scholar 

  10. Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V (2015) Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis 9:25005003

    Google Scholar 

  11. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  12. Yamada K, Zhoutao C, Rima R, Mathews RG (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci U S A 98:14853–14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rozen R (1997) Genetic predisposition to hyperhomocysteinemia: deficiency of methelenetetrahydrofolate reductase (MTHFR). Thromb Haemost 78:523–526

    CAS  PubMed  Google Scholar 

  14. Pepe G, Venegas OC, Giusti B, Brunelli T, Marcucci R, Attanasio M et al (1998) Heterogeneity in world distribution of thermolabile C677T mutation in 5, 10-methylenetetrahydrofolate reductase. Am J Hum Genet 63:917–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schneider JA, Rees DC, Liu YT, Clegg JB (1998) World distribution of a common methylenetetrahydrofalate reductase mutation. Am J Hum Gene 62:1258–1260

    Article  CAS  Google Scholar 

  16. Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Renlund M et al (2003) Geographical and ethnic variation of the 677C > T allele of 5,10-methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J Med Genet 40:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spiridonova MG, Stepanov VA, Maksimova NR, Puzyrev VP (2004) Population study of frequency of methylenetetrahydrofolate reductase C677T gene polymorphism in Yakutia. Genetika 40:704–708

    CAS  PubMed  Google Scholar 

  18. Rai V, Yadav U, Kumar P (2012) Prevalence of methylenetetrahydrofolate reductase C677T polymorphism in eastern Uttar Pradesh. Indian J Human Genetics 18:43–46

    Article  CAS  Google Scholar 

  19. Kluijtmans LA, Young IS, Boreham CA, Murray L, McMaster D, McNulty H et al (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488

    Article  CAS  PubMed  Google Scholar 

  20. Devlin AM, Clarke R, Birks J, Evans JG, Halsted CH (2006) Interactions among polymorphisms in folate-metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr 83:708–713

    CAS  PubMed  Google Scholar 

  21. Chapman J, Wang N, Treves A, Korczyn AD, Bornstein NM (1998) ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke 29:1401–1404

    Article  CAS  PubMed  Google Scholar 

  22. Brunelli T, Bagnoli S, Giusti B, Nacmias B, Pepe G, Sorbi S, Abbate R (2001) The C677T methylenetetrahydrofolate reductase mutation is not associated with Alzheimer’s disease. Neurosci Lett 315:103–105

    Article  CAS  PubMed  Google Scholar 

  23. Zuliani G, Ble A, Zanca R, Munari MR, Zurlo A, Vavalle C, Atti AR, Fellin R (2001) Genetic polymorphisms in older subjects with vascular or Alzheimer’s dementia. Acta Neurol Scand 103:304–308

    Article  CAS  PubMed  Google Scholar 

  24. Religa D, Styczynska M, Peplonska B, Gabryelewicz T, Pfeffer A, Chodakowska M, Luczywek E, Wasiak B et al (2003) Homocysteine, apolipoproteine E and methylenetetrahydrofolate reductase in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 16:64–70

    Article  CAS  PubMed  Google Scholar 

  25. Seripa D, Forno GD, Matera MG, Gravina C, Margaglione M, Palermo MT, Wekstein DR, Antuono P et al (2003) Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol Aging 24:933–939

    Article  CAS  PubMed  Google Scholar 

  26. Linnebank M, Linnebank A, Jeub M, Klockgether T, Wullne U, Kolsch H, Heun R, Koch HG et al (2004) Lack of genetic dispositions to hyperhomocysteinemia in Alzheimer disease. Am J Med Genet A 131:101–102

    Article  PubMed  Google Scholar 

  27. Wang B, Jin F, Kan R, Ji S, Zhang C, Lu Z, Zheng C, Yang Z et al (2005) Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer’s disease. J Mol Neurosci 27:23–27

    Article  PubMed  Google Scholar 

  28. Pandey P, Pradhan S, Modi DR, Mittal B (2009) MTHFR and ACE gene polymorphisms and risk of vascular and degenerative dementias in the elderly. Brain Cogn 71:295–299

    Article  PubMed  Google Scholar 

  29. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012

    Article  CAS  PubMed  Google Scholar 

  30. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  31. Higgins JP, Thompson SE (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  32. Whitehead A (2002) Meta-analysis of controlled clinical trials. John Wiley & Sons Ltd, Chichester, West Sussex, England

    Book  Google Scholar 

  33. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  34. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  35. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  36. Egger M, Dave Smith G, Schneider M, Minde C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bax L, Yu ILM, Tsuruta N, Moons KG (2006) Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nishiyama M, Kato Y, Hashimoto M, Yukawa S, Omori K (2000) Apolipoprotein E, methylenetetrahydrofolate reductase (MTHFR) mutation and the risk of senile dementia—an epidemiological study using the polymerase chain reaction (PCR) method. J Epidemiol 10:163–172

    Article  CAS  PubMed  Google Scholar 

  39. Pollak RD, Pollak A, Idelson M, Bejarano-Achache I, Doron D, Blumenfeld A (2000) The C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene and vascular dementia. J Am Geriatr Soc 48:664–668

    Article  CAS  PubMed  Google Scholar 

  40. Postiglione A, Milan G, Ruocco A, Gallotta G, Guiotto G, Di Minno G (2001) Plasma folate, vitamin B(12), and total homocysteine and homozygosity for the C677T mutation of the 5,10-methylene tetrahydrofolate reductase gene in patients with Alzheimer’s dementia. A case-control study. Gerontology 47(6):324–329

    Article  CAS  PubMed  Google Scholar 

  41. McIlroy SP, Dynan KB, Lawson JT, Patterson CC, Passmore AP (2002) Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke 33:2351–2356

    Article  CAS  PubMed  Google Scholar 

  42. Wakutani Y, Kowa H, Kusumi M, Yamagata K, Wada-Isoe K, Adachi Y, Takeshima T, Urakam K et al (2002) Genetic analysis of vascular factors in Alzheimer’s disease. Ann N Y Acad Sci 977:232–238

    Article  CAS  PubMed  Google Scholar 

  43. Anello G, Gueant-Rodriguez RM, Bosco P, Gueant JL, Romano A, Namour B, Spada R, Caraci F et al (2004) Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport 15:859–861

    Article  CAS  PubMed  Google Scholar 

  44. Bi S, Pan S, Zhang Y, Wu J (2004) Relationship between folate £-vitamin B12 plasma homocysteine levels and polymorphism of MTHFR gene in Alzheimer’s disease. Chin J Mod Med 977:15–18

  45. Jiang K, Li F, Zhang M, Qian Y, Wang D, Zhang Y, Jiang S (2004) A study on relationship between the C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene and Alzheimer disease. Shanghai Arch Psyc 16:196–208

    Google Scholar 

  46. Kida T, Kamino K, Yamamoto M, Kanayama D, Tanaka T, Kudo T, Takeda M (2004) C677T polymorphism of methylenetetrahydrofolate reductase gene affects plasma homocysteine level and is a genetic factor of late-onset Alzheimer’s disease. Psychogeriatrics 4:4–10

    Article  Google Scholar 

  47. Liao W, Huang S, Chen S, Wang Y, Liu X (2004) The relationship of polymorphism of MTHFR and plasma homocysteine level with Alzheimer’s disease. Zhong Guo You Sheng Yi Yi Chuan 12:13–15

    Google Scholar 

  48. Wang L, Ye L, Wu D, Liu J, Niu J (2004) Genetic risk factors of sporadic Alzheimer’s disease among Chinese in Beijing. Chin J Geriatr 23:460–463

    Google Scholar 

  49. Fernandez LL, Scheibe RM (2005) Is MTHFR polymorphism a risk factor for Alzheimer disease like APOE? Arq Neuropsiquiatr 63:1–6

    Article  PubMed  Google Scholar 

  50. Zhang YD, Ke XY, Shen W, Liu Y (2005) Relationship of homocysteine and gene polymorphisms of its related metabolic enzymes with Alzheimer’s disease. Chin Med Sci J 20:247–251

    CAS  PubMed  Google Scholar 

  51. da Silva VC, Ramos FJ, Freitas EM, de Brito-Marques PR, Cavalcanti MN, D’Almeida V, Cabral-Filho JE, Muniz MT (2006) Alzheimer’s disease in Brazilian elderly has a relation with homocysteine but not with MTHFR polymorphisms. Arq Neuropsiquiatr 64:941–945

    Article  PubMed  Google Scholar 

  52. Keikhaee MR, Hashemi SB, Najmabadi H, Noroozian M (2006) C677T methylentetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in patients with Alzheimer’s disease in Iranian population. Neurochem Res 31:1079–1083

    Article  CAS  PubMed  Google Scholar 

  53. Wehr H, Bednarska-Makaruk M, Łojkowska W, Graban A, Hoffman-Zacharska D, Kuczynska-Zardzewiały A, Mrugała J, Rodo M et al (2006) Differences in risk factors for dementia with neurodegenerative traits and for vascular dementia. Dement. Geriatr Cogn Disord 22:1–7

    Article  CAS  Google Scholar 

  54. Dorszewska J, Florczak J, Rozycka A, Kempisty B, Jaroszewska-Kolecka J, Chojnacka K, Trzeciak WH, Kozubski W (2007) Oxidative DNA damage and level of thiols as related to polymorphisms of MTHFR, MTR, MTHFD1 in Alzheimer’s and Parkinson’s diseases. Acta Neurobiol Exp (Wars) 67:113–129

    Google Scholar 

  55. Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Shin HY, Yoon JS (2008) Methylenetetrahydrofolate reductase gene and risk of Alzheimer’s disease in Koreans. Int J Geriatr Psychiatry 23:454–459

    Article  PubMed  Google Scholar 

  56. Yuan Y, Ye Q, Chen Y, Zhang S, Li H, Lu R, Mei G, Li Y et al (2007) Plasma homocysteine level and MTHFR gene polymorphism in old age depression and mild Alzheimer’s disease. Chin J Geriatr 26:767–769

    CAS  Google Scholar 

  57. Zhang X (2007) Relationship of Hcy and its related enzyme gene polymorphisms with Alzheimer’s disease. Chin Med Sci J 20:1–28

  58. Styczynska M, Strosznajder JB, Religa D, Chodakowska-Zebrowska M, Pfeffer A, Gabryelewicz T, Czapsk GA, Kobrys M et al (2008) Association between genetic and environmental factors and the risk of Alzheimer’s disease. Folia Neuropathol 46:249–254

    CAS  PubMed  Google Scholar 

  59. Zhang J, Dai Q, Lu W, Meng F (2008) Seruam homocysteine level and MTHFR gene polymorphism and Alzheimer’s disease (AD) risk. Chin J Postgrad Med 31:40–42

    CAS  Google Scholar 

  60. Bi XH, Zhao HL, Zhang ZX, Zhan JW (2009) Association of RFC1 A80G and MTHFR C677T polymorphisms with Alzheimer’s disease. Neurobiol Aging 30:1601–1607

    Article  CAS  PubMed  Google Scholar 

  61. Giedraitis V, Kilander L, Degerman-Gunnarsson M, Sundelof J, Axelsson T, Syvanen AC, Lannfelt L, Glaser A (2009) Genetic analysis of Alzheimer’s disease in the Uppsala longitudinal study of adult men. Dement. Geriatr Cogn Disord 27:59–68

    Article  Google Scholar 

  62. Li K, Liu S, Yao S, Wang B, Dai D, Yao L (2009) Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dement. Geriatr Cogn Disord 27:286–291

    Article  CAS  Google Scholar 

  63. Ferlazzo N, Gorgone G, Caccamo D, Curro M, Condello S, Pisani F, Ernieri F, Rossini PM et al (2011) The 894G > T (Glu298Asp) variant in the endothelial NOS gene and MTHFR polymorphisms influence homocysteine levels in patients with cognitive decline. Neuromolecular Med 13:167–174

    Article  CAS  PubMed  Google Scholar 

  64. Coppede F, Tannorella P, Pezzini I, Migheli F, Ricci G, Caldarazzo lenco E, Piaceri I, Polin A et al (2012) Folate, homocysteine, vitamin B12, and polymorphisms of genes participating in one-carbon metabolism in late-onset Alzheimer’s disease patients and healthy controls. Antioxid Redox Signal 17:195–204

    Article  CAS  PubMed  Google Scholar 

  65. Deng X, Wang Y (2012) Association between methylenetetrahydrofolate reductase C677T and methionine synthase A2756G gene polymorphisms, Hcy plasma levels and Alzheimer’s disease. Shi Yong Yi Xue 28:3545–3548

    CAS  Google Scholar 

  66. Mansoori N, Tripathi M, Luthra K, Alam R, Lakshmy R, Sharma S, Arulselvi S, Parveen S et al (2012) MTHFR (677 and 1298) and IL-6-174 G/C genes in pathogenesis of Alzheimer’s and vascular dementia and their epistatic interaction. Neurobiol Aging 33(1003):e1001–e1008

    Google Scholar 

  67. Divyakolu S, Tejaswini Y, Thomas W, Thumoju S, Sreekanth VR, Vasavi M, OmSai VR, Nagaratna V et al (2013) Evaluation of C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene in various neurological disorders. Neurol Disord 2(1):1000142

    Google Scholar 

  68. Elhawary NA, Hewedi D, Arab A, Teama S, Shaibah H, Tayeb MT, Bogari N (2013) The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer’s disease in an Egyptian population. Dis Markers 35:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chhillar N, Singh NK, Banerjee BD, Bala K, Basu M, Sharma D (2014) Intergenotypic variation of vitamin B12 and folate in AD: in North Indian population. Ann Indian Acad Neurol 17(3):308–312

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mansouri L, Fekih-Mrissa N, Klai S, Mansour M, Gritli N, Mrissa R (2013) Association of methylenetetrahydrofolate reductase polymorphisms with susceptibility to Alzheimer’s disease. Clin Neurol Neurosurg 115:1693–1696

    Article  PubMed  Google Scholar 

  71. Kronenberg G, Colla M, Endres M (2009) Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 9:315–323

    Article  CAS  PubMed  Google Scholar 

  72. Yoo JH, Choi GD, Kang SS (2000) Pathogenicity of thermolabile methylenetetrahydrofolate reductase for vascular dementia. Arterioscler Thromb Vasc Biol 20:1921–1925

    Article  CAS  PubMed  Google Scholar 

  73. Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20

    Article  CAS  PubMed  Google Scholar 

  74. Sachdev PS (2005) Homocysteine and brain atrophy. Pro Neuropsychopharmacology Biol Psychiatry 29:1152–1161

    Article  CAS  Google Scholar 

  75. Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J et al (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22:1752–1762

    CAS  PubMed  Google Scholar 

  76. Mattson MP, Shea TB (2003) Folate and homocysteien metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  77. Zhang MY, Miao L, Li YS, Hu GY (2010) Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to Alzheimer’s disease. Neurosci Res 68:142–150

    Article  CAS  PubMed  Google Scholar 

  78. Hasegawa T, Ukai W, Jo DG, Xu X, Mattson MP, Nakagawa M, Araki W, Saito T et al (2005) Homocysteic acid induces intraneuronal accumulation of neurotoxic Abeta42: implications for the pathogenesis of Alzheimer’s disease. J Neurosci Res 80:869–876

    Article  CAS  PubMed  Google Scholar 

  79. Ji C, Kaplowitz N (2004) Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol 10:1699–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S (2006) Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  81. Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neurosci Lett 188:70–74

    Article  PubMed  Google Scholar 

  82. Stuhlinger MC, Oka RK, Graf EE, Schmolzer I, Upson BM, Kapoor O, Szuba A, Malinow MR et al (2003) Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylar. Circulation 108:933–938

    Article  PubMed  Google Scholar 

  83. Kartal ON, Taha S, Azzi A (2005) Homocysteine induces DNA synthesis and proliferation of vascular smooth muscle cells by interfering with MAPK kinase pathway. Biofactors 24:193–199

    Article  Google Scholar 

  84. Midorikawa S, Sanada H, Hashimoto S, Watanabe T (2000) Enhancement by homocysteine of plasminogen activator inhibitor-1 gene expression and secretion from vascular endothelial and smooth muscle cells. Biochem Biophys Res Commun 272:182–185

    Article  CAS  PubMed  Google Scholar 

  85. Munafo MR, Flint J (2004) Meta-analysis of genetic association studies. Trends Genet 20:439–444

    Article  CAS  PubMed  Google Scholar 

  86. Rai V, Yadav U, Kumar P, Yadav SK, Mishra OP (2014) Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies. PLoS ONE 9:e108552

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang W, Wang Y, Gong F, Zhu W, Fu S (2013) MTHFR C677T polymorphism and risk of congenital heart defects: evidence from 29 case-control and TDT studies. PLoS ONE 8:e58041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL, et al. (2014) Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm. 2014; [Ahead of print DOI: 10.1007/s00702-014-1261-8].

  89. Peerbooms OL, van Os J, Drukker M, Kenis G, Hoogveld L, de Hert M et al (2011) Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 25:1530–1543

    Article  CAS  PubMed  Google Scholar 

  90. Wu YL, Ding XX, Sun YH, Yang HY, Chen J, Zhao X, Jiang YH, Lv XL et al (2013) Association between MTHFR C677T polymorphism and depression: an updated meta-analysis of 26 studies. Prog Neuro-Psychopharmacol Biol Psychiatry 46:78–85

    Article  CAS  Google Scholar 

  91. Rai V (2014) The methylenetetrahydrofolate reductase C677T polymorphism and breast cancer risk in Asian populations. Asian Pac J Cancer Prev 15:5853–5860

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authoress is highly grateful to Leon Bax (Chief Scientific Officer at BiostatXL, UMC Utrecht) for his valuable suggestions, which help me in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, V. Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis. Mol Neurobiol 54, 1173–1186 (2017). https://doi.org/10.1007/s12035-016-9722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9722-8

Keywords

Navigation