Advertisement

Molecular Neurobiology

, Volume 54, Issue 2, pp 1440–1455 | Cite as

Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke

  • Shuai Jiang
  • Chao Deng
  • Jianjun Lv
  • Chongxi Fan
  • Wei Hu
  • Shouyin Di
  • Xiaolong Yan
  • Zhiqiang Ma
  • Zhenxing LiangEmail author
  • Yang YangEmail author
Article

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a neuroprotective transcription factor that has recently attracted increased attention. Stroke, a common and serious neurological disease, is currently a leading cause of death in the USA so far. It is therefore of vital importance to explore how Nrf2 behaves in stroke. In this review, we first introduce the structural features of Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) and briefly depict the activation, inactivation, and regulation processes of the Nrf2 pathway. Next, we discuss the physiopathological mechanisms, upstream modulators, and downstream targets of the Nrf2 pathway. Following this background, we expand our discussion to the roles of Nrf2 in ischemic and hemorrhagic stroke and provide several potential future directions. The information presented here may be useful in the design of future experimental research and increase the likelihood of using Nrf2 as a therapeutic target for stroke in the future.

Keywords

Nuclear factor erythroid 2-related factor 2 Oxidative stress Ischemia Hemorrhage 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81500263) and China Postdoctoral Science Foundation (2015M572681).

References

  1. 1.
    Flynn RW, MacWalter RS, Doney AS (2008) The cost of cerebral ischaemia. Neuropharmacology 55(3):250–256PubMedCrossRefGoogle Scholar
  2. 2.
    Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802(1):80–91PubMedCrossRefGoogle Scholar
  3. 3.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Yamamoto M, Ho E (2011) Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res 28(12):3171–3179PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kim SW, Lee HK, Shin JH, Lee JK (2013) Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving It from p65. Free Radic Biol Med 65:468–476PubMedCrossRefGoogle Scholar
  6. 6.
    Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25(44):10321–10335PubMedCrossRefGoogle Scholar
  7. 7.
    Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91(21):9926–9930PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Choi BH, Kang KS, Kwak MK (2014) Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules 19(8):12727–12759PubMedCrossRefGoogle Scholar
  9. 9.
    Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Holzle F, Kan YW, Pufe T et al (2014) Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 234(4):538–47PubMedCrossRefGoogle Scholar
  10. 10.
    Cho HY, Jedlicka AE, Gladwell W, Marzec J, McCaw ZR, Bienstock R, Kleeberger SR et al. (2014) Association of Nrf2 polymorphism haplotypes with acute lung injury phenotypes in inbred strains of mice. Antioxid Redox SignalGoogle Scholar
  11. 11.
    Zhou S, Sun W, Zhang Z, Zheng Y (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid Med Cell Longev 2014:260429PubMedPubMedCentralGoogle Scholar
  12. 12.
    Tang W, Jiang YF, Ponnusamy M, Diallo M (2014) Role of Nrf2 in chronic liver disease. World J Gastroenterol 20(36):13079–13087PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yang Y, Jiang S, Yan J, Li Y, Xin Z, Lin Y, Qu Y (2014) An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders. Cytokine Growth Factor RevGoogle Scholar
  14. 14.
    Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7(3):218–229PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47PubMedCrossRefGoogle Scholar
  16. 16.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322PubMedCrossRefGoogle Scholar
  17. 17.
    Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M (2005) Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25(18):8044–8051PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557PubMedCrossRefGoogle Scholar
  19. 19.
    Nioi P, Nguyen T, Sherratt PJ, Pickett CB (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 25(24):10895–10906PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6(10):857–868PubMedCrossRefGoogle Scholar
  21. 21.
    McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279(30):31556–31567PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, Yamamoto M (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28(8):2758–2770PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (2008) Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol 230(3):383–389PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McMahon M, Lamont DJ, Beattie KA, Hayes JD (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107(44):18838–18843PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tong KI, Padmanabhan B, Kobayashi A, Shang C, Hirotsu Y, Yokoyama S, Yamamoto M (2007) Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol 27(21):7511–7521PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378(Pt 2):373–382PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283(14):8984–8994PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278(45):44675–44682PubMedCrossRefGoogle Scholar
  32. 32.
    Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23(23):8786–8794PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kaspar JW, Jaiswal AK (2010) An autoregulatory loop between Nrf2 and Cul3-Rbx1 controls their cellular abundance. J Biol Chem 285(28):21349–21358PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, Tobon-Velasco JC, Devijver H et al (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol 32(17):3486–3499PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jain AK, Jaiswal AK (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510PubMedCrossRefGoogle Scholar
  36. 36.
    Niture SK, Jaiswal AK (2009) Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2. J Biol Chem 284(20):13856–13868PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gan L, Johnson JA (2013) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys ActaGoogle Scholar
  38. 38.
    Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169PubMedCrossRefGoogle Scholar
  39. 39.
    Kontos HA (1989) Oxygen radicals in CNS damage. Chem Biol Interact 72(3):229–255PubMedCrossRefGoogle Scholar
  40. 40.
    Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J (1978) Free radicals in cerebral ischemia. Stroke 9(5):445–447PubMedCrossRefGoogle Scholar
  41. 41.
    Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Puisieux F, Deplanque D, Bulckaen H, Maboudou P, Gele P, Lhermitte M, Lebuffe G, Bordet R (2004) Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathion peroxidase. Brain Res 1027(1–2):30–37PubMedCrossRefGoogle Scholar
  43. 43.
    Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA (2007) epsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 1184:345–353PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Thompson JW, Narayanan SV, Perez-Pinzon MA (2012) Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 10(4):354–369PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A 98(6):3410–3415PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhao X, Aronowski J (2013) Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl Stroke Res 4(1):71–75PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li T, Wang H, Ding Y, Zhou M, Zhou X, Zhang X, Ding K, He J et al (2014) Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Res 1558:90–99PubMedCrossRefGoogle Scholar
  49. 49.
    Liou AK, Clark RS, Henshall DC, Yin XM, Chen J (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 69(2):103–142PubMedCrossRefGoogle Scholar
  50. 50.
    Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH (2014) Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 130(3):156–163PubMedCrossRefGoogle Scholar
  51. 51.
    Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29PubMedCrossRefGoogle Scholar
  52. 52.
    Philipson KA, Elder MG, White JO (1985) The effects of medroxyprogesterone acetate on enzyme activities in human endometrial carcinoma. J Steroid Biochem 23(6A):1059–1064PubMedCrossRefGoogle Scholar
  53. 53.
    Leiros M, Alonso E, Sanchez JA, Rateb ME, Ebel R, Houssen WE, Jaspars M, Alfonso A et al (2014) Mitigation of ROS insults by Streptomyces secondary metabolites in primary cortical neurons. ACS Chem Neurosci 5(1):71–80PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang C, Zhang Z, Zhao Q, Wang X, Ji H, Zhang Y (2013) (S)-ZJM-289 Preconditioning Induces a Late Phase Protection Against Nervous Injury Induced by Transient Cerebral Ischemia and Oxygen-Glucose Deprivation. Neurotox ResGoogle Scholar
  55. 55.
    Meng X, Wang M, Wang X, Sun G, Ye J, Xu H, Sun X (2014) Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways. Free Radic ResGoogle Scholar
  56. 56.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14(8):996–1007PubMedCrossRefGoogle Scholar
  58. 58.
    Xu H, Zhou YL, Zhang XY, Lu P, Li GS (2010) Activation of PERK signaling through fluoride-mediated endoplasmic reticulum stress in OS732 cells. Toxicology 277(1–3):1–5PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB et al. (2014) Endoplasmic Reticulum Stress: Relevance and Therapeutics in Central Nervous System Diseases. Mol Neurobiol 51(3):1343–1352Google Scholar
  60. 60.
    Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wang W, Kang J, Li H, Su J, Wu J, Xu Y, Yu H, Xiang X et al (2013) Regulation of endoplasmic reticulum stress in rat cortex by p62/ZIP through the Keap1-Nrf2-ARE signalling pathway after transient focal cerebral ischaemia. Brain Inj 27(7–8):924–933PubMedCrossRefGoogle Scholar
  64. 64.
    Yan F, Li J, Chen J, Hu Q, Gu C, Lin W, Chen G (2014) Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett 563:160–165PubMedCrossRefGoogle Scholar
  65. 65.
    Das Sarma J (2014) Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 20(2):122–136PubMedCrossRefGoogle Scholar
  66. 66.
    Lee IS, Ryu DK, Lim J, Cho S, Kang BY, Choi HJ (2012) Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neurosci Lett 509(1):17–21PubMedCrossRefGoogle Scholar
  67. 67.
    Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J et al (2013) Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 250:239–249PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23(1):34–44PubMedCrossRefGoogle Scholar
  69. 69.
    Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL et al (2013) Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 24(12):2127–2137PubMedCrossRefGoogle Scholar
  70. 70.
    Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14(12):2347–2360PubMedCrossRefGoogle Scholar
  71. 71.
    Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC et al (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med 65:1012–1022PubMedCrossRefGoogle Scholar
  72. 72.
    Soane L, Li Dai W, Fiskum G, Bambrick LL (2010) Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J Neurosci Res 88(6):1355–1363PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bergstrom P, Andersson HC, Gao Y, Karlsson JO, Nodin C, Anderson MF, Nilsson M, Hammarsten O (2011) Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage. Neuropharmacology 60(2–3):343–353PubMedCrossRefGoogle Scholar
  74. 74.
    Porritt MJ, Andersson HC, Hou L, Nilsson A, Pekna M, Pekny M, Nilsson M (2012) Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane. PLoS One 7(7), e41090PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao XD, Zhou YT, Lu XJ (2013) Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 62(9):857–863PubMedCrossRefGoogle Scholar
  77. 77.
    Jo C, Kim S, Cho SJ, Choi KJ, Yun SM, Koh YH, Johnson GV, Park SI et al. (2014) Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS LettGoogle Scholar
  78. 78.
    Shin JH, Kim SW, Jin Y, Kim ID, Lee JK (2012) Ethyl pyruvate-mediated Nrf2 activation and hemeoxygenase 1 induction in astrocytes confer protective effects via autocrine and paracrine mechanisms. Neurochem Int 61(1):89–99PubMedCrossRefGoogle Scholar
  79. 79.
    Kim HS, Cho IH, Kim JE, Shin YJ, Jeon JH, Kim Y, Yang YM, Lee KH et al (2008) Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia. Free Radic Biol Med 45(7):950–963PubMedCrossRefGoogle Scholar
  80. 80.
    Yu YM, Kim JB, Lee KW, Kim SY, Han PL, Lee JK (2005) Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke 36(10):2238–2243PubMedCrossRefGoogle Scholar
  81. 81.
    Lee EJ, Kim HS (2011) Inhibitory mechanism of MMP-9 gene expression by ethyl pyruvate in lipopolysaccharide-stimulated BV2 microglial cells. Neurosci Lett 493(1–2):38–43PubMedCrossRefGoogle Scholar
  82. 82.
    National Toxicology P (1997) NTP Toxicology and Carcinogenesis Studies of t-Butylhydroquinone (CAS No. 1948-33-0) in F344/N Rats and B6C3F(1) Mice (Feed Studies). Natl Toxicol Program Tech Rep Ser 459:1–326Google Scholar
  83. 83.
    Saykally JN, Rachmany L, Hatic H, Shaer A, Rubovitch V, Pick CG, Citron BA (2012) The nuclear factor erythroid 2-like 2 activator, tert-butylhydroquinone, improves cognitive performance in mice after mild traumatic brain injury. Neuroscience 223:305–314PubMedCrossRefGoogle Scholar
  84. 84.
    Wang Z, Ji C, Wu L, Qiu J, Li Q, Shao Z, Chen G (2014) Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway. PLoS One 9(5), e97685PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lamb JG, Franklin MR (2000) Early events in the induction of rat hepatic UDP-glucuronosyltransferases, glutathione S-transferase, and microsomal epoxide hydrolase by 1,7-phenanthroline: comparison with oltipraz, tert-butyl-4-hydroxyanisole, and tert-butylhydroquinone. Drug Metab Dispos 28(9):1018–1023PubMedGoogle Scholar
  86. 86.
    Nakamura Y, Kumagai T, Yoshida C, Naito Y, Miyamoto M, Ohigashi H, Osawa T, Uchida K (2003) Pivotal role of electrophilicity in glutathione S-transferase induction by tert-butylhydroquinone. Biochemistry 42(14):4300–4309PubMedCrossRefGoogle Scholar
  87. 87.
    Munzel PA, Schmohl S, Buckler F, Jaehrling J, Raschko FT, Kohle C, Bock KW (2003) Contribution of the Ah receptor to the phenolic antioxidant-mediated expression of human and rat UDP-glucuronosyltransferase UGT1A6 in Caco-2 and rat hepatoma 5L cells. Biochem Pharmacol 66(5):841–847PubMedCrossRefGoogle Scholar
  88. 88.
    Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J (2005) Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci 83(2):313–328PubMedCrossRefGoogle Scholar
  89. 89.
    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650PubMedCrossRefGoogle Scholar
  90. 90.
    Geddes JW, Pettigrew LC, Holtz ML, Craddock SD, Maines MD (1996) Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci Lett 210(3):205–208PubMedCrossRefGoogle Scholar
  91. 91.
    Fu R, Zhao ZQ, Zhao HY, Zhao JS, Zhu XL (2006) Expression of heme oxygenase-1 protein and messenger RNA in permanent cerebral ischemia in rats. Neurol Res 28(1):38–45PubMedCrossRefGoogle Scholar
  92. 92.
    Bidmon HJ, Emde B, Oermann E, Kubitz R, Witte OW, Zilles K (2001) Heme oxygenase-1 (HSP-32) and heme oxygenase-2 induction in neurons and glial cells of cerebral regions and its relation to iron accumulation after focal cortical photothrombosis. Exp Neurol 168(1):1–22PubMedCrossRefGoogle Scholar
  93. 93.
    Saleem S, Zhuang H, Biswal S, Christen Y, Dore S (2008) Ginkgo biloba extract neuroprotective action is dependent on heme oxygenase 1 in ischemic reperfusion brain injury. Stroke 39(12):3389–3396PubMedCrossRefGoogle Scholar
  94. 94.
    Shah ZA, Nada SE, Dore S (2011) Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience 180:248–255PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zhang F, Wang S, Zhang M, Weng Z, Li P, Gan Y, Zhang L, Cao G et al (2012) Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke 43(5):1390–1397PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wang B, Cao W, Biswal S, Dore S (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42(9):2605–2610PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C et al (2006) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med 41(4):579–589PubMedCrossRefGoogle Scholar
  98. 98.
    Srisook K, Kim C, Cha YN (2005) Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid Redox Signal 7(11–12):1674–1687PubMedCrossRefGoogle Scholar
  99. 99.
    Igarashi K, Sun J (2006) The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 8(1–2):107–118PubMedCrossRefGoogle Scholar
  100. 100.
    Jyrkkanen HK, Kuosmanen S, Heinaniemi M, Laitinen H, Kansanen E, Mella-Aho E, Leinonen H, Yla-Herttuala S et al (2011) Novel insights into the regulation of antioxidant-response-element-mediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2. Biochem J 440(2):167–174PubMedCrossRefGoogle Scholar
  101. 101.
    Perez-de-Puig I, Martin A, Gorina R, de la Rosa X, Martinez E, Planas AM (2013) Induction of hemeoxygenase-1 expression after inhibition of hemeoxygenase activity promotes inflammation and worsens ischemic brain damage in mice. Neuroscience 243:22–32PubMedCrossRefGoogle Scholar
  102. 102.
    Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130(Pt 6):1643–1652PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J et al (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633PubMedCrossRefGoogle Scholar
  104. 104.
    Shang H, Yang D, Zhang W, Li T, Ren X, Wang X, Zhao W (2013) Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit. Free Radic Res 47(5):368–375PubMedCrossRefGoogle Scholar
  105. 105.
    Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501(1):116–123PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Stringer JL, Gaikwad A, Gonzales BN, Long DJ Jr, Marks LM, Jaiswal AK (2004) Presence and induction of the enzyme NAD(P)H: quinone oxidoreductase 1 in the central nervous system. J Comp Neurol 471(3):289–297PubMedCrossRefGoogle Scholar
  107. 107.
    Dong H, Shertzer HG, Genter MB, Gonzalez FJ, Vasiliou V, Jefcoate C, Nebert DW (2013) Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins. Biochem Biophys Res Commun 435(4):727–732PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kwon J, Han E, Bui CB, Shin W, Lee J, Lee S, Choi YB, Lee AH et al (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13(2):150–156PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wu J, Li Q, Wang X, Yu S, Li L, Wu X, Chen Y, Zhao J et al (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8(3), e59843PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Li B, Sun J, Lv G, Yu Y, Wang G, Xie K, Jiao Y, Yu Y (2014) Sevoflurane postconditioning attenuates cerebral ischemia-reperfusion injury via protein kinase B/nuclear factor-erythroid 2-related factor 2 pathway activation. Int J Dev Neurosci 38C:79–86CrossRefGoogle Scholar
  111. 111.
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  113. 113.
    Hayes JD, Chanas SA, Henderson CJ, McMahon M, Sun C, Moffat GJ, Wolf CR, Yamamoto M (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28(2):33–41PubMedCrossRefGoogle Scholar
  114. 114.
    Meyer DA, Torres-Altoro MI, Tan Z, Tozzi A, Di Filippo M, DiNapoli V, Plattner F, Kansy JW et al (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34(24):8259–8267PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Posada-Duque RA, Barreto GE, Cardona-Gomez GP (2014) Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 8:231PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Giera S, Braeuning A, Kohle C, Bursch W, Metzger U, Buchmann A, Schwarz M (2010) Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci 115(1):22–33PubMedCrossRefGoogle Scholar
  117. 117.
    Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141PubMedCrossRefGoogle Scholar
  118. 118.
    Tanaka N, Ikeda Y, Ohta Y, Deguchi K, Tian F, Shang J, Matsuura T, Abe K (2011) Expression of Keap1-Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res 1370:246–253PubMedCrossRefGoogle Scholar
  119. 119.
    Heiss WD (2014) Radionuclide Imaging in Ischemic Stroke. J Nucl MedGoogle Scholar
  120. 120.
    Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, Beyer C, Wruck CJ (2012) Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci 46(3):578–584PubMedCrossRefGoogle Scholar
  121. 121.
    Araki T, Yamada M, Ohnishi H, Sano SI, Hatanaka H (2000) BIT/SHPS-1 enhances brain-derived neurotrophic factor-promoted neuronal survival in cultured cerebral cortical neurons. J Neurochem 75(4):1502–1510PubMedCrossRefGoogle Scholar
  122. 122.
    Wang L, Lu Y, Deng S, Zhang Y, Yang L, Guan Y, Matozaki T, Ohnishi H et al (2012) SHPS-1 deficiency induces robust neuroprotection against experimental stroke by attenuating oxidative stress. J Neurochem 122(4):834–843PubMedCrossRefGoogle Scholar
  123. 123.
    Feigin VL, Rinkel GJ, Lawes CM, Algra A, Bennett DA, van Gijn J, Anderson CS (2005) Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke 36(12):2773–2780PubMedCrossRefGoogle Scholar
  124. 124.
    Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286PubMedCrossRefGoogle Scholar
  125. 125.
    Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S et al (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 43(3):408–414PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, Aronowski J (2014) Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J NeurochemGoogle Scholar
  127. 127.
    Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26(11):1341–1353PubMedCrossRefGoogle Scholar
  128. 128.
    Harms KM, Li L, Cunningham LA (2010) Murine neural stem/progenitor cells protect neurons against ischemia by HIF-1alpha-regulated VEGF signaling. PLoS One 5(3), e9767PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, Narasimhan P, Maier CM et al (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32(10):3462–3473PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S et al (2010) Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 3(ra52)Google Scholar
  131. 131.
    Malik YS, Sheikh MA, Zhu X (2013) Doxycycline can stimulate cytoprotection in neural stem cells with oxygen-glucose deprivation-reoxygenation injury: a potential approach to enhance effectiveness of cell transplantation therapy. Biochem Biophys Res Commun 432(2):355–358PubMedCrossRefGoogle Scholar
  132. 132.
    Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29(5):873–885PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD et al (2012) Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 43(10):2794–2799PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zhang X, Jizhang Y, Xu X, Kwiecien TD, Li N, Zhang Y, Ji X, Ren C et al (2014) Protective effects of remote ischemic conditioning against ischemia/reperfusion-induced retinal injury in rats. Vis Neurosci 31(3):245–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shuai Jiang
    • 1
    • 2
  • Chao Deng
    • 3
  • Jianjun Lv
    • 4
  • Chongxi Fan
    • 5
  • Wei Hu
    • 4
  • Shouyin Di
    • 4
  • Xiaolong Yan
    • 4
  • Zhiqiang Ma
    • 4
  • Zhenxing Liang
    • 1
    Email author
  • Yang Yang
    • 1
    • 4
    Email author
  1. 1.Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Aerospace MedicineThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of Cardiovascular Surgery, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  4. 4.Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi’anChina
  5. 5.Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations