Molecular Neurobiology

, Volume 55, Issue 1, pp 751–762 | Cite as

Heterogeneity in Synaptogenic Profile of Astrocytes from Different Brain Regions

  • Andrea Schmidt Buosi
  • Isadora Matias
  • Ana Paula Bergamo Araujo
  • Carolina Batista
  • Flávia Carvalho Alcantara GomesEmail author


Astrocytes, the most abundant glial cells in the central nervous system (CNS), comprise a heterogeneous population of cells. However, how this heterogeneity impacts their function within brain homeostasis and response to injury and disease is still largely unknown. Recently, astrocytes have been recognized as important regulators of synapse formation and maturation. Here, we analyzed the synaptogenic property of astrocytes from different regions of the CNS. The effect of conditioned medium derived from astrocytes (astrocyte-conditioned medium (ACM)) from cerebral cortex, hippocampus, midbrain and cerebellum, in synapse formation, was evaluated. Synapse formation was analyzed by quantification of pre- and postsynaptic proteins, synaptophysin, and postsynaptic density protein 95 (PSD-95). ACM from the four regions increased significantly the number of synaptophysin/PSD-95 puncta on neurons from the same and different brain regions. Differences on astrocytic synaptogenic potential between the regions were observed according to ACM protein concentration. Thus, cerebellar astrocytes have higher synaptogenic effect when ACM is less concentrated. Also, heterotypical co-culture assays revealed that neurons from cerebral cortex and midbrain equally respond to ACM, indicating that differences in synapse effect are unlike to be neuron-autonomous. The expression profile of the synaptogenic molecules secreted by astrocytes from distinct brain regions was analyzed by qPCR. Gene expression of glypicans 4 and 6, hevin, and secreted protein-acidic and rich in cysteine (SPARC) greatly varies between astrocytes from different brain regions. Furthermore, in vivo analysis of hevin protein confirmed that variance. These findings highlight the heterogeneity of astrocytes and suggest that their synaptogenic potential may be different in each brain region, mainly due to distinct gene expression profiles.


Astrocyte Synapse Growth factors And heterogeneity 



We thank Marcelo Meloni and Grasiela Ventura for technical assistance. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ministério da Saúde, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

12035_2016_343_Fig7_ESM.gif (18 kb)
Fig S1

ACM synaptogenic property has a protein nature. Neuronal cultures with 12 DIV from cerebral cortex were treated for 3 h with DMEM/F12 (control), with cortex ACM and with boiled cortex ACM (boiled for 5 min). Excitatory synapse formation was analyzed by quantification of synaptic proteins puncta numbers. (n = 3). ***P < 0.001. (GIF 17 kb)

12035_2016_343_MOESM1_ESM.tif (3.3 mb)
High Resolution Image (TIFF 3369 kb)


  1. 1.
    Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231. doi: 10.1038/nature09612 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. doi: 10.1007/978-1-61779-452-0_3 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34(5):379–388. doi: 10.1159/000343723000343723 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci Off J Soc Neurosci 28(1):264–278. doi: 10.1523/JNEUROSCI.4178-07.2008 CrossRefGoogle Scholar
  5. 5.
    Garcia-Abreu J, Moura Neto V, Carvalho SL, Cavalcante LA (1995) Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. J Neurosci Res 40(4):471–477. doi: 10.1002/jnr.490400406 CrossRefPubMedGoogle Scholar
  6. 6.
    Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci Off J Soc Neurosci 27(25):6607–6619. doi: 10.1523/JNEUROSCI.0790-07.2007 CrossRefGoogle Scholar
  7. 7.
    Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2(3):175–186. doi: 10.1017/S1740925X06000202 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Romao LF, Sousa Vde O, Neto VM, Gomes FC (2008) Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 106(2):746–756. doi: 10.1111/j.1471-4159.2008.05428.x CrossRefPubMedGoogle Scholar
  9. 9.
    Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151. doi: 10.1002/glia.22821 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192PubMedGoogle Scholar
  11. 11.
    Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci Off J Soc Neurosci 29(10):3276–3287. doi: 10.1523/JNEUROSCI.4707-08.2009 CrossRefGoogle Scholar
  12. 12.
    Panatier A, Vallee J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798. doi: 10.1016/j.cell.2011.07.022 CrossRefPubMedGoogle Scholar
  13. 13.
    Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14(10):1276–1284. doi: 10.1038/nn.2929 CrossRefPubMedGoogle Scholar
  14. 14.
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi: 10.1038/369744a0 CrossRefPubMedGoogle Scholar
  15. 15.
    Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102(15):5606–5611. doi: 10.1073/pnas.0408483102 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758. doi: 10.1074/jbc.M700290200 CrossRefPubMedGoogle Scholar
  17. 17.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. doi: 10.1016/j.cell.2004.12.020 CrossRefPubMedGoogle Scholar
  18. 18.
    Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G et al (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins hevin and SPARC. Proc Natl Acad Sci U S A 108(32):E440–E449. doi: 10.1073/pnas.1104977108 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414. doi: 10.1038/nature11059 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059. doi: 10.1038/nature04671 CrossRefPubMedGoogle Scholar
  21. 21.
    Gomez-Casati ME, Murtie JC, Rio C, Stankovic K, Liberman MC, Corfas G (2010) Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci U S A 107(39):17005–17010. doi: 10.1073/pnas.1008938107 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigao P, Stipursky J, Kahn SA et al (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287(49):41432–41445. doi: 10.1074/jbc.M112.380824 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Williams ME, de Wit J, Ghosh A (2010) Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68(1):9–18. doi: 10.1016/j.neuron.2010.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steinmetz CC, Buard I, Claudepierre T, Nagler K, Pfrieger FW (2006) Regional variations in the glial influence on synapse development in the mouse CNS. J Physiol 577(Pt 1):249–261. doi: 10.1113/jphysiol.2006.117358 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291(5504):657–661. doi: 10.1126/science.291.5504.657 CrossRefPubMedGoogle Scholar
  26. 26.
    Ullian EM, Harris BT, Wu A, Chan JR, Barres BA (2004) Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25(2):241–251. doi: 10.1016/j.mcn.2003.10.011 CrossRefPubMedGoogle Scholar
  27. 27.
    McKellar CE, Shatz CJ (2009) Synaptogenesis in purified cortical subplate neurons. Cereb Cortex 19(8):1723–1737. doi: 10.1093/cercor/bhn194 CrossRefPubMedGoogle Scholar
  28. 28.
    Spacek J (1985) Three-dimensional analysis of dendritic spines. III Glial sheath Anatomy and embryology 171(2):245–252CrossRefPubMedGoogle Scholar
  29. 29.
    Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci Off J Soc Neurosci 19(16):6897–6906Google Scholar
  30. 30.
    Araujo AP, Diniz LP, Eller CM, de Matos BG, Martinez R, Gomes FC (2016) Effects of transforming growth factor beta 1 in cerebellar development: role in synapse formation. Front Cell Neurosci 10:104. doi: 10.3389/fncel.2016.00104 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  32. 32.
    Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77(9):699–706CrossRefPubMedGoogle Scholar
  33. 33.
    Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362. doi: 10.1126/science.1222381 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Diniz LP, Tortelli V, Garcia MN, Araujo AP, Melo HM, Silva GS, Felice FG, Alves-Leon SV et al (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 62(12):1917–1931. doi: 10.1002/glia.22713 CrossRefPubMedGoogle Scholar
  35. 35.
    Yeh TH, Lee DY, Gianino SM, Gutmann DH (2009) Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57(11):1239–1249. doi: 10.1002/glia.20845 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762. doi: 10.1016/j.cell.2008.10.029 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C et al (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A 101(22):8384–8389. doi: 10.1073/pnas.0402140101 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, et al. (2015) Astrocytes refine cortical connectivity at dendritic spines. Elife 4. doi: 10.7554/eLife.04047
  39. 39.
    Sullivan MM, Sage EH (2004) Hevin/SC1, a matricellular glycoprotein and potential tumor-suppressor of the SPARC/BM-40/Osteonectin family. Int J Biochem Cell Biol 36(6):991–996. doi: 10.1016/j.biocel.2004.01.017 CrossRefPubMedGoogle Scholar
  40. 40.
    Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC et al (2016) Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via hevin. Cell 164(1–2):183–196. doi: 10.1016/j.cell.2015.11.034 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594. doi: 10.1016/j.conb.2010.06.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45(2–3):191–202. doi: 10.1016/j.neuint.2003.08.015 CrossRefPubMedGoogle Scholar
  43. 43.
    Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 22(2):73–86. doi: 10.1016/j.ijdevneu.2003.12.008 CrossRefGoogle Scholar
  44. 44.
    Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 15(7):1270–1272CrossRefGoogle Scholar
  45. 45.
    Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiological research/Academia Scientiarum Bohemoslovaca 47(5):365–375Google Scholar
  46. 46.
    Seifert G, Steinhauser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7(9):1872–1881CrossRefPubMedGoogle Scholar
  47. 47.
    Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE et al (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509(7499):189–194. doi: 10.1038/nature13161 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Andrea Schmidt Buosi
    • 1
  • Isadora Matias
    • 1
  • Ana Paula Bergamo Araujo
    • 1
  • Carolina Batista
    • 1
  • Flávia Carvalho Alcantara Gomes
    • 1
    Email author
  1. 1.Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations