Molecular Neurobiology

, Volume 54, Issue 10, pp 7706–7721 | Cite as

Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson’s Disease

  • Ji-Yeun Park
  • Seung-Nam Kim
  • Junsang Yoo
  • Jaehwan Jang
  • Ahreum Lee
  • Ju-Young Oh
  • Hongwon Kim
  • Seung Tack Oh
  • Seong-Uk Park
  • Jongpil Kim
  • Hi-Joon Park
  • Songhee Jeon


Acupuncture has shown the therapeutic effect on various neurodegenerative disorders including Parkinson’s disease (PD). While investigating the neuroprotective mechanism of acupuncture, we firstly found the novel function of melanin-concentrating hormone (MCH) as a potent neuroprotective candidate. Here, we explored whether hypothalamic MCH mediates the neuroprotective action of acupuncture. In addition, we aimed at evaluating the neuroprotective effects of MCH and elucidating underlying mechanism in vitro and in vivo PD models. First, we tested whether hypothalamic MCH mediates the neuroprotective effects of acupuncture by challenging MCH-R1 antagonist (i.p.) in mice PD model. We also investigated whether MCH has a beneficial role in dopaminergic neuronal protection in vitro primary midbrain and human neuronal cultures and in vivo MPTP-induced, Pitx3−/−, and A53T mutant mice PD models. Transcriptomics followed by quantitative PCR and western blot analyses were performed to reveal the neuroprotective mechanism of MCH. We first found that hypothalamic MCH biosynthesis was directly activated by acupuncture treatment and that administration of an MCH-R1 antagonist reverses the neuroprotective effects of acupuncture. A novel finding is that MCH showed a beneficial role in dopaminergic neuron protection via downstream pathways related to neuronal survival. This is the first study to suggest the novel neuroprotective action of MCH as well as the involvement of hypothalamic MCH in the acupuncture effects in PD, which holds great promise for the application of MCH in the therapy of neurodegenerative diseases.


Parkinson’s disease Acupuncture Melanin-concentrating hormone (MCH) Lateral hypothalamus Dopamine neuroprotection 



This work was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (No. HI13C0540).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2016_258_Fig7_ESM.gif (30 kb)
Supplemental Figure 1

Distribution of MCH neurons expressing c-Fos after acupuncture treatment. MCH cell distribution in the LH, PF, DMH and ZI (open circles). Double-labelled c-Fos + ⁄ MCH+cells (filled triangles) distinguished from single-labelled MCH+cells (open circles) in one Control, MPTP, MPTP+AP and MPTP+CP representative brain (n = 5 per group). f, fornix; PF, perifornical area; DMH, dorsomedial hypothalamus; LH, lateral hypothalamus; ZI, zona incerta;. Grey box (650 × 650 μm) represents the counting area of MCH Magnification bar, 500 μm. (GIF 30 kb)

12035_2016_258_MOESM1_ESM.tif (890 kb)
High Resolution Image (TIFF 890 kb)
12035_2016_258_Fig8_ESM.gif (113 kb)
Supplemental Figure 2

Effects of MCH on the survival and maintenance of midbrain dopamine neurons. (A) Methodology used to assess the effect of MCH on primary midbrain dopaminergic neurons. Primary midbrains containing the SN pars compacta (SNpc) and VTA were prepared from postnatal day 1 mice, and the cultures were treated with MCH with or without TC-MCH7c (MCH receptor type 1 antagonist) 5 days after plating. (B and C) Phase contrast images (B) and the number of dopaminergic neurons (C) in the control, MCH-, and MCH+TC-MCH7c-treated midbrain dopamine neurons (n = 3 per group). (D) Immunostaining for the neuronal markers TUJ-1 and MAP-2 in MCH- and MCH + TC-MCH7c-treated dopaminergic neurons. (E) Number of dopaminergic neurons among midbrain dopaminergic neurons treated with different concentrations (n = 5 per group). (F) qRT-PCR analysis of dopaminergic neuronal markers in control and MCH-treated dopaminergic neurons (n = 3 per group). (G) qRT-PCR analysis of dopaminergic neuronal markers in dopaminergic neurons treated with different concentrations of MCH (n = 3 per group). Scale bar, 100 μm. Data are expressed as mean ± SEM. * P < 0.05, ** P < 0.01, and *** P < 0.001 vs. control group; ††† P < 0.001 vs. MCH group in one-way ANOVA followed by a Newman-Keuls test (C, E, and G) or Student’s t test (F). (GIF 112 kb)

12035_2016_258_MOESM2_ESM.tif (3.2 mb)
High Resolution Image (TIFF 3292 kb)
12035_2016_258_Fig9_ESM.gif (16 kb)
Supplemental Figure 3

Effect of MCH on body weight and food intake. (A) Changes in body weight of control, MCH, AP, and AP+TC-MCH7c groups at the end of the experiment (day 12) (n=3 per group). (B) Total weight gain and total food intake were examined for 4 weeks in synuclein A53T Tg mice (n = 3 per group). Data are expressed as mean ± SEM. Statistical comparisons were made by one-way ANOVA or Student’s t-test. (GIF 15 kb)

12035_2016_258_MOESM3_ESM.tif (408 kb)
High Resolution Image (TIFF 408 kb)
12035_2016_258_Fig10_ESM.gif (35 kb)
Supplemental Figure 4

Neuroprotective effects of MCH treatment in differentiated SH-SY5Y cells. (A) Cell death induced by 6-OHDA (100 μM) was prevented after 50 or 100 nM MCH treatment. (B-D) Increased levels of pp38 and pIκBα after 6-OHDA administration were diminished after 100 nM MCH treatment (n = 4 per group). Data represent the mean ± SEM. ** P < 0.01, *** P < 0.001 vs. control group, ## P < 0.01, ### P < 0.001 vs. 6-OHDA group via one-way ANOVA followed by Newman-Keuls test. (GIF 35 kb)

12035_2016_258_MOESM4_ESM.tif (1007 kb)
High Resolution Image (TIFF 1007 kb)


  1. 1.
    Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Gen 16(2):R183–R194CrossRefPubMedGoogle Scholar
  2. 2.
    Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe WH (2009) A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol 8(10):929–937CrossRefPubMedGoogle Scholar
  3. 3.
    Lang AE, Melamed E, Poewe W, Rascol O (2013) Trial designs used to study neuroprotective therapy in Parkinson’s disease. Movement disorders: Mov Disorders 28(1):86–95CrossRefGoogle Scholar
  4. 4.
    Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399(6738 Suppl):A32–A39CrossRefPubMedGoogle Scholar
  5. 5.
    Olanow CW, Kieburtz K, Schapira AH (2008) Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 64(Suppl 2):S101–S110PubMedGoogle Scholar
  6. 6.
    Zhang G, Xiong N, Zhang Z, Liu L, Huang J, Yang J, Wu J, Lin Z et al (2015) Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson’s disease: a systematic review and meta-analysis. PLoS One 10(3):e0118498CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ghaffari BD, Kluger B (2014) Mechanisms for alternative treatments in Parkinson’s disease: acupuncture, tai chi, and other treatments. Curr Neurol Neurosci 14(6):451CrossRefGoogle Scholar
  8. 8.
    Bega D, Zadikoff C (2014) Complementary & alternative management of Parkinson’s disease: an evidence-based review of eastern influenced practices. Mov Disord 7(2):57–66CrossRefGoogle Scholar
  9. 9.
    Bega D, Gonzalez-Latapi P, Zadikoff C, Simuni T (2014) A review of the clinical evidence for complementary and alternative therapies in Parkinson’s disease. Curr Treat Options Neurol 16(10):314CrossRefPubMedGoogle Scholar
  10. 10.
    Kim SN, Doo AR, Park JY, Bae H, Chae Y, Shim I, Lee H, Moon W et al (2011) Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of Parkinson’s disease. PLoS One 6(11):e27566CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim SN, Doo AR, Park JY, Choo HJ, Shim I, Park JJ, Chae Y, Lee B et al (2014) Combined treatment with acupuncture reduces effective dose and alleviates adverse effect of L-dopa by normalizing Parkinson’s disease-induced neurochemical imbalance. Brain Res 1544:33–44CrossRefPubMedGoogle Scholar
  12. 12.
    Liang XB, Liu XY, Li FQ, Luo Y, Lu J, Zhang WM, Wang XM, Han JS (2002) Long-term high-frequency electro-acupuncture stimulation prevents neuronal degeneration and up-regulates BDNF mRNA in the substantia nigra and ventral tegmental area following medial forebrain bundle axotomy. Brain Res Mol Brain Res 108(1–2):51–59CrossRefPubMedGoogle Scholar
  13. 13.
    Wang S, Fang J, Ma J, Wang Y, Liang S, Zhou D, Sun G (2013) Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson’s disease rats. Neural Regener Res 8(6):540–549Google Scholar
  14. 14.
    Jeon S, Kim YJ, Kim ST, Moon W, Chae Y, Kang M, Chung MY, Lee H et al (2008) Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson’s disease mouse model. Proteomics 8(22):4822–4832CrossRefPubMedGoogle Scholar
  15. 15.
    Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K et al (2003) Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol 180(1):93–98CrossRefPubMedGoogle Scholar
  16. 16.
    Kim SN, Kim ST, Doo AR, Park JY, Moon W, Chae Y, Yin CS, Lee H et al (2011) Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson’s disease. Int J Neurosci 121(10):562–569CrossRefPubMedGoogle Scholar
  17. 17.
    Takeshige C (1985) Differentiation between acupuncture and non-acupuncture points by association with analgesia inhibitory system. Acupunct Electrother Res 10(3):195–202CrossRefPubMedGoogle Scholar
  18. 18.
    Ishibashi S (1986) The effect of auricular electroacupuncture on the neuronal activity of the thalamic and hypothalamic neurons of the rat. Acupunct Electrother Res 11(1):15–23CrossRefPubMedGoogle Scholar
  19. 19.
    Yu Z, Xia Y, Ju C, Shao Q, Mao Z, Gu Y, Xu B (2013) Electroacupuncture regulates glucose-inhibited neurons in treatment of simple obesity. Neural Regener Res 8(9):809–816Google Scholar
  20. 20.
    Choi GS, Oha SD, Han JB, Bae HS, Cho YW, Yun YS, Lee WK, Ahn HJ et al (2002) Modulation of natural killer cell activity affected by electroacupuncture through lateral hypothalamic area in rats. Neurosci Lett 329(1):1–4CrossRefPubMedGoogle Scholar
  21. 21.
    Takeshige C, Kobori M, Hishida F, Luo CP, Usami S (1992) Analgesia inhibitory system involvement in nonacupuncture point-stimulation-produced analgesia. Brain Res Bull 28(3):379–391CrossRefPubMedGoogle Scholar
  22. 22.
    Takeshige C, Oka K, Mizuno T, Hisamitsu T, Luo CP, Kobori M, Mera H, Fang TQ (1993) The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Brain Res Bull 30(1–2):53–67CrossRefPubMedGoogle Scholar
  23. 23.
    Takeshige C, Zhao WH, Guo SY (1991) Convergence from the preoptic area and arcuate nucleus to the median eminence in acupuncture and nonacupuncture point stimulation analgesia. Brain Res Bull 26(5):771–778CrossRefPubMedGoogle Scholar
  24. 24.
    Guyon A, Conductier G, Rovere C, Enfissi A, Nahon JL (2009) Melanin-concentrating hormone producing neurons: activities and modulations. Peptides 30(11):2031–2039CrossRefPubMedGoogle Scholar
  25. 25.
    Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130(Pt 6):1586–1595CrossRefPubMedGoogle Scholar
  26. 26.
    Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt J, van Duinen SG, Lammers GJ, Swaab DF (2007) Hypocretin (orexin) loss in Parkinson’s disease. Brain 130(Pt 6):1577–1585CrossRefPubMedGoogle Scholar
  27. 27.
    Willis GL (2008) Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci 19(4–5):245–316PubMedGoogle Scholar
  28. 28.
    Ju Z, Cui H, Guo X, Yang H, He J, Wang K (2013) Molecular mechanisms underlying the effects of acupuncture on neuropathic pain. Neural Regener Res 8(25):2350–2359Google Scholar
  29. 29.
    Rapson LM, Wells N, Pepper J, Majid N, Boon H (2003) Acupuncture as a promising treatment for below-level central neuropathic pain: a retrospective study. J Spinal Cord Med 26(1):21–26CrossRefPubMedGoogle Scholar
  30. 30.
    MacPherson H (2014) Acupuncture for depression: state of the evidence. Acupunct Med 32(4):304–305CrossRefPubMedGoogle Scholar
  31. 31.
    Sniezek DP, Siddiqui IJ (2013) Acupuncture for treating anxiety and depression in women: a clinical systematic review. Med Acupunct 25(3):164–172CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heo I, Shin BC, Kim YD, Hwang EH, Han CW, Heo KH (2013) Acupuncture for spinal cord injury and its complications: a systematic review and meta-analysis of randomized controlled trials. eCAM 2013:364216PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhou J, Peng W, Xu M, Li W, Liu Z (2015) The effectiveness and safety of acupuncture for patients with Alzheimer disease: a systematic review and meta-analysis of randomized controlled trials. Medicine 94(22):e933CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang Z, Liang P, Zhao Z, Han Y, Song H, Xu J, Lu J, Li K (2014) Acupuncture modulates resting state hippocampal functional connectivity in Alzheimer disease. PLoS One 9(3):e91160CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang Z, Nie B, Li D, Zhao Z, Han Y, Song H, Xu J, Shan B et al (2012) Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study. PLoS One 7(8):e42730CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cho SY, Shim SR, Rhee HY, Park HJ, Jung WS, Moon SK, Park JM, Ko CN et al (2012) Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Rel Disord 18(8):948–952CrossRefGoogle Scholar
  37. 37.
    Askenasy JJ (2001) Approaching disturbed sleep in late Parkinson’s disease: first step toward a proposal for a revised UPDRS. Parkinsonism Rel Disord 8(2):123–131CrossRefGoogle Scholar
  38. 38.
    Langston JW, Forno LS (1978) The hypothalamus in Parkinson disease. Ann Neurol 3(2):129–133CrossRefPubMedGoogle Scholar
  39. 39.
    Kremer HP, Bots GT (1993) Lewy bodies in the lateral hypothalamus: do they imply neuronal loss? Mov Disord 8(3):315–320CrossRefPubMedGoogle Scholar
  40. 40.
    Bai L, Harris RE, Kong J, Lao L, Napadow V, Zhao B (2014) Neurobiological mechanisms of acupuncture 2014. eCAM 2014:765068PubMedPubMedCentralGoogle Scholar
  41. 41.
    Harris RE, Zubieta JK, Scott DJ, Napadow V, Gracely RH, Clauw DJ (2009) Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs). NeuroImage 47(3):1077–1085CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Napadow V, Dhond RP, Kim J, LaCount L, Vangel M, Harris RE, Kettner N, Park K (2009) Brain encoding of acupuncture sensation—coupling on-line rating with fMRI. NeuroImage 47(3):1055–1065CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Katai Z, Adori C, Kitka T, Vas S, Kalmar L, Kostyalik D, Tothfalusi L, Palkovits M et al (2013) Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Psychopharmacol 228(3):439–449CrossRefGoogle Scholar
  44. 44.
    Monzon ME, de Souza MM, Izquierdo LA, Izquierdo I, Barros DM, de Barioglio SR (1999) Melanin-concentrating hormone (MCH) modifies memory retention in rats. Peptides 20(12):1517–1519CrossRefPubMedGoogle Scholar
  45. 45.
    Dolphin AC (1998) Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506(Pt 1):3–11CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dascal N (2001) Ion-channel regulation by G proteins. TEM 12(9):391–398PubMedGoogle Scholar
  47. 47.
    Curtis J, Finkbeiner S (1999) Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth. J Neurosci Res 58(1):88–95CrossRefPubMedGoogle Scholar
  48. 48.
    Cotta-Grand N, Rovère C, Guyon A, Cervantes A, Brau F, Nahon JL (2009) Melanin-concentrating hormone induces neurite outgrowth in human neuroblastoma SH-SY5Y cells through p 53 and MAPKinase signaling pathways. Peptides 30(11):2014–2024CrossRefPubMedGoogle Scholar
  49. 49.
    Adams JP, Sweatt JD (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 42:135–163CrossRefPubMedGoogle Scholar
  50. 50.
    Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445CrossRefPubMedGoogle Scholar
  51. 51.
    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623CrossRefPubMedGoogle Scholar
  52. 52.
    Hawes BE, Kil E, Green B, O’Neill K, Fried S, Graziano MP (2000) The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinol 141(12):4524–4532CrossRefGoogle Scholar
  53. 53.
    Pissios P, Trombly DJ, Tzameli I, Maratos-Flier E (2003) Melanin-concentrating hormone receptor 1 activates extracellular signal-regulated kinase and synergizes with G (s)-coupled pathways. Endocrinol 144(8):3514–3523CrossRefGoogle Scholar
  54. 54.
    Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59(6):914–931CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. BioEssays 31(9):944–952CrossRefPubMedGoogle Scholar
  56. 56.
    Spasic MR, Callaerts P, Norga KK (2009) AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 15(4):309–316CrossRefPubMedGoogle Scholar
  57. 57.
    Spasic MR, Callaerts P, Norga KK (2008) Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neuroscience 28(25):6419–6429CrossRefPubMedGoogle Scholar
  58. 58.
    Choi MK, Jin QR, Ahn SH, Bae MA, Song IS (2010) Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica 40(12):817–825CrossRefPubMedGoogle Scholar
  59. 59.
    Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, Paunovic V, Ardah MT et al (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11CrossRefPubMedGoogle Scholar
  60. 60.
    Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27(52):14239–14247CrossRefPubMedGoogle Scholar
  62. 62.
    Dhuria SV, Fine JM, Bingham D, Svitak AL, Burns RB, Baillargeon AM, Panter SS, Kazi AN et al (2016) Food consumption and activity levels increase in rats following intranasal hypocretin-1. Neurosci Lett 627:155–159CrossRefPubMedGoogle Scholar
  63. 63.
    Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci U S A 106(16):6772–67777CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pissios P, Frank L, Kennedy AR, Porter DR, Marino FE, Liu FF, Pothos EN, Maratos-Flier E (2008) Dysregulation of the mesolimbic dopamine system and reward in MCH-/- mice. Biol Psychiatry 64(3):184–191CrossRefPubMedGoogle Scholar
  65. 65.
    Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y et al (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 13(7):883–888CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Torres-Rosas R, Yehia G, Pena G, Mishra P, del Rocio T-BM, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A et al (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nature Med 20(3):291–295CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ji-Yeun Park
    • 1
    • 2
  • Seung-Nam Kim
    • 1
    • 3
  • Junsang Yoo
    • 4
  • Jaehwan Jang
    • 1
  • Ahreum Lee
    • 1
    • 5
  • Ju-Young Oh
    • 1
    • 5
  • Hongwon Kim
    • 4
  • Seung Tack Oh
    • 4
  • Seong-Uk Park
    • 1
    • 6
  • Jongpil Kim
    • 4
  • Hi-Joon Park
    • 1
    • 5
  • Songhee Jeon
    • 7
  1. 1.Integrative Parkinson’s Disease Research Group, Acupuncture & Meridian Science Research CenterKyung Hee UniversitySeoulRepublic of Korea
  2. 2.College of Korean MedicineDaejeon UniversityDaejeonRepublic of Korea
  3. 3.Department of Meridian and AcupointDongguk UniversityGoyang-siRepublic of Korea
  4. 4.Department of Biomedical EngineeringDongguk UniversitySeoulRepublic of Korea
  5. 5.Department of Korean Medical Science, Graduate School of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
  6. 6.Stroke and Neurological Disorders CenterKyung Hee University Hospital at GangdongSeoulRepublic of Korea
  7. 7.Department of Biomedical Sciences, Center for Creative Biomedical ScientistsChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations