Advertisement

Molecular Neurobiology

, Volume 54, Issue 9, pp 7042–7062 | Cite as

Protective Potential of the Glutathione Peroxidase-1 Gene in Abnormal Behaviors Induced by Phencyclidine in Mice

  • The-Vinh Tran
  • Eun-Joo Shin
  • Ji Hoon Jeong
  • Ji Won Lee
  • Youngho Lee
  • Choon-Gon Jang
  • Seung-Yeol Nah
  • Xin Gen Lei
  • Kazuya Toriumi
  • Kiyofumi Yamada
  • Toshitaka Nabeshima
  • Hyoung-Chun KimEmail author
Article

Abstract

Escalating evidence suggests that the impairment of glutathione (GSH)-dependent systems is one of the etiologic factors of schizophrenia. GSH is an important substrate of glutathione peroxidase (GPx). Among GPx isozymes, selenium-dependent GPx (GPx-1) is recognized as a major type, and therefore, this study investigates the role of the GPx-1 gene in abnormal behaviors induced by repeated phencyclidine (PCP) treatment using GPx-1 knockout (KO) and overexpressing transgenic (GPx-1 TG) mice. PCP-induced abnormal behaviors were more pronounced in GPx-1 KO mice than abnormal behaviors in wild-type (WT) mice, and the abnormal behaviors were less pronounced in GPx-1 TG mice than abnormal behaviors in non-TG mice. PCP treatment significantly reduced GSH levels and enhanced oxidative burdens in the prefrontal cortex of the test animals. In addition, PCP treatment significantly upregulated the nuclear translocations of nuclear factor erythroid-2-related factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) p65, as well as their DNA binding activities and γ-glutamylcysteine (GCL) mRNA expression in WT and non-TG mice. However, GPx-1 KO abolished this upregulation system. In contrast, genetic overexpression of GPx-1 further upregulated Nrf2-dependent GSH synthetic system, but downregulated NF-κB p65 activity in the presence of PCP. Clozapine, an antipsychotic, significantly upregulated GPx-1 and Nrf2-dependent GSH synthetic systems in the presence of PCP, but failed to affect NF-κB p65 activity. Our results suggest that interactive modulations between the GPx-1 gene and Nrf2-dependent GSH induction are critical for attenuating PCP-induced abnormal behaviors in mice.

Keywords

Phencyclidine Schizophrenia Nrf2 transcription factor Clozapine Prefrontal cortex Glutathione peroxidase-1 knockout mice Glutathione peroxidase-1 overexpressing transgenic mice 

Notes

Acknowledgments

This study was supported by a grant (14182MFDS979) from the Korea Food and Drug Administration, Republic of Korea and in part by JSPS KAKENHI Grants (No. 26460240, 16K10195) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Grant in aid of SRF. The-Vinh Tran was supported by the BK21 PLUS program. The English in this document has been checked by at least two professional editors, both native speakers of English (E-Worldediting; www.eworldediting.com).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2016_239_MOESM1_ESM.pdf (487 kb)
ESM 1 (PDF 487 kb)

References

  1. 1.
    Andreasen NC, Flaum M, Swayze BV II, Tyrrell G, Arndt S (1990) Positive and negative symptoms in schizophrenia. A critical reappraisal. Arch Gen Psychiatry 47:615–621PubMedCrossRefGoogle Scholar
  2. 2.
    Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308PubMedCrossRefGoogle Scholar
  3. 3.
    Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084PubMedCrossRefGoogle Scholar
  4. 4.
    Noda Y, Kamei H, Mamiya T, Furukawa H, Nabeshima T (2000) Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions. Neuropsychopharmacology 23:375–387PubMedCrossRefGoogle Scholar
  5. 5.
    Noda A, Noda Y, Kamei H, Ichihara K, Mamiya T, Nagai T, Sugiura S, Furukawa H et al (2001) Phencyclidine impairs latent learning in mice: interaction between glutamatergic systems and sigma(1) receptors. Neuropsychopharmacology 24:451–460PubMedCrossRefGoogle Scholar
  6. 6.
    Enomoto T, Noda Y, Mouri A, Shin EJ, Wang D, Murai R, Hotta K, Furukawa H et al (2005) Long-lasting impairment of associative learning is correlated with a dysfunction of N-methyl-D-aspartate-extracellular signaling-regulated kinase signaling in mice after withdrawal from repeated administration of phencyclidine. Mol Pharmacol 68:1765–1774PubMedGoogle Scholar
  7. 7.
    Nabeshima T, Mouri A, Murai R, Noda Y (2006) Animal model of schizophrenia: dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine. Ann N Y Acad Sci 1086:160–168PubMedCrossRefGoogle Scholar
  8. 8.
    Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51:173–184PubMedCrossRefGoogle Scholar
  9. 9.
    Steullet P, Cabungcal JH, Monin A, Dwir D, O’Donnell P, Cuenod M, Do KQ (2014) Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a "central hub" in schizophrenia pathophysiology? Schizophr Res. doi: 10.1016/j.schres.2014.06.021 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Koga M, Serritella AV, Sawa A, Sedlak TW (2015) Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. doi: 10.1016/j.schres.2015.06.022 PubMedGoogle Scholar
  11. 11.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760PubMedCrossRefGoogle Scholar
  12. 12.
    Rabinovic AD, Hastings TG (1998) Role of endogenous glutathione in the oxidation of dopamine. J Neurochem 71:2071–2078PubMedCrossRefGoogle Scholar
  13. 13.
    Köhr G, Eckardt S, Lüddens H, Monyer H, Seeburg PH (1994) NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12:1031–1040PubMedCrossRefGoogle Scholar
  14. 14.
    Choi YB, Lipton SA (2000) Redox modulation of the NMDA receptor. Cell Mol Life Sci 57:1535–1541PubMedCrossRefGoogle Scholar
  15. 15.
    Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–238PubMedCrossRefGoogle Scholar
  16. 16.
    Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902PubMedCrossRefGoogle Scholar
  17. 17.
    Steullet P, Neijt HC, Cuénod M, Do KQ (2006) Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137:807–819PubMedCrossRefGoogle Scholar
  18. 18.
    Cabungcal JH, Nicolas D, Kraftsik R, Cuénod M, Do KQ, Hornung JP (2006) Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: relevance to schizophrenia. Neurobiol Dis 22:624–637PubMedCrossRefGoogle Scholar
  19. 19.
    Steullet P, Cabungcal JH, Kulak A, Kraftsik R, Chen Y, Dalton TP, Cuenod M, Do KQ (2010) Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J Neurosci 30:2547–2558PubMedCrossRefGoogle Scholar
  20. 20.
    das Neves Duarte JM, Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ (2012) N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry 71:1006–1014PubMedCrossRefGoogle Scholar
  21. 21.
    Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029PubMedCrossRefGoogle Scholar
  22. 22.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to amino-terminal Neh2 domain. Genes Dev 13:76–86PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Numazawa S, Yoshida T (2004) Nrf2-dependent gene expressions: a molecular toxicological aspect. J Toxicol Sci 29:81–89PubMedCrossRefGoogle Scholar
  24. 24.
    Liu F, Ichihara S, Valentine WM, Itoh K, Yamamoto M, Mohideen SS, Kitoh J, Ichihara G (2010) Increased susceptibility of Nrf2-null mice to 1-bromopropane-induced hepatotoxicity. Toxicol Sci 115:596–606PubMedCrossRefGoogle Scholar
  25. 25.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406PubMedGoogle Scholar
  26. 26.
    Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kB: an oxidative stress-responsive transcription factor of eukaryotic cells. Informa Healthcare 17:221–237Google Scholar
  27. 27.
    Musonda CA, Chipman JK (1998) Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-κB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19:1583–1589PubMedCrossRefGoogle Scholar
  28. 28.
    Canty TG Jr, Boyle EM Jr, Farr A, Morgan EN, Verrier ED, Pohlman TH (1999) Oxidative stress induces NF-κB nuclear translocation without degradation of IκBα. Circulation 100:II361–II364PubMedCrossRefGoogle Scholar
  29. 29.
    Volanti C, Matroule JY, Piette J (2002) Involvement of oxidative stress in NF-κB activation in endothelial cells treated by photodynamic therapy. Photochem Photobiol 75:36–45PubMedCrossRefGoogle Scholar
  30. 30.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bowie AG, Moynagh PN, O’Neill LA (1997) Lipid peroxidation is involved in the activation of NF-κB by tumor necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. Lack of involvement of H2O2 in NF-κB activation by either cytokine in both primary and transformed endothelial cells. J Biol Chem 272:25941–25950PubMedCrossRefGoogle Scholar
  32. 32.
    Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NF-κB in aging and disease. Aging Dis 2:449–465PubMedPubMedCentralGoogle Scholar
  33. 33.
    Thakurta IG, Chattopadhyay M, Ghosh A, Chakrabarti S (2012) Dietary supplementation with N-acetyl cysteine, α-tocopherol and α -lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology 13:479–488PubMedCrossRefGoogle Scholar
  34. 34.
    Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-κB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697PubMedCrossRefGoogle Scholar
  35. 35.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  36. 36.
    Herken H, Uz E, Ozyurt H, Söğüt S, Virit O, Akyol O (2001) Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 6:66–73PubMedCrossRefGoogle Scholar
  37. 37.
    Miljević C, Nikolić-Kokić A, Saicić ZS, Milosavljević M, Blagojević D, Tosevski DL, Jones DR, Spasić MB (2010) Correlation analysis confirms differences in antioxidant defense in the blood of types I and II schizophrenic male patients treated with anti-psychotic medication. Psychiatry Res 178:68–72PubMedCrossRefGoogle Scholar
  38. 38.
    Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479:317–320PubMedCrossRefGoogle Scholar
  39. 39.
    Raffa M, Mechri A, Othman LB, Fendri C, Gaha L, Kerkeni A (2009) Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuro-Psychopharmacol Biol Psychiatry 33:1178–1183CrossRefGoogle Scholar
  40. 40.
    Lei XG, Cheng WH, McClung JP (2007) Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr 27:41–61PubMedCrossRefGoogle Scholar
  41. 41.
    Shinkai T, De Luca V, Zai G, Shaikh S, Matsumoto C, Arnold PD, Hwang R, King N et al (2004) No association between the Pro197Leu polymorphism in the glutathione peroxidase (GPX1) gene and schizophrenia. Psychiatr Genet 14:177–180PubMedCrossRefGoogle Scholar
  42. 42.
    Matsuzawa D, Hashimoto K, Hashimoto T, Shimizu E, Watanabe H, Fujita Y, Iyo M (2009) Association study between the genetic polymorphisms of glutathione-related enzymes and schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 150B:86–94PubMedCrossRefGoogle Scholar
  43. 43.
    Souza RP, Tampakeras M, Basile V, Shinkai T, Rosa DV, Potkin S (2009) Lack of association of GPX1 and MnSOD genes with symptom severity and response to clozapine treatment in schizophrenia subjects. Hum Psychopharmacol 24:676–679PubMedCrossRefGoogle Scholar
  44. 44.
    Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Sugawara M, Funk CD (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng WH, Ho YS, Ross DA, Valentine BA, Combs GF, Lei XG (1997) Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr 127:1445–1450PubMedGoogle Scholar
  46. 46.
    Cheng WH, Combs GF Jr, Lei XG (1998) Knockout of cellular glutathione peroxidase affects selenium-dependent parameters similarly in mice fed adequate and excessive dietary selenium. Biofactors 7:311–321PubMedCrossRefGoogle Scholar
  47. 47.
    Cheng WH, Ho YS, Ross DA, Han Y, Combs GF Jr, Lei XG (1997) Overexpression of cellular glutathione peroxidase does not affect expression of plasma glutathione peroxidase or phospholipid hydroperoxide glutathione peroxidase in mice offered diets adequate or deficient in selenium. J Nutr 127:675–680PubMedGoogle Scholar
  48. 48.
    Cheng WH, Ho YS, Valentine BA, Ross DA, Combs GF Jr, Lei XG (1998) Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J Nutr 128:1070–1076PubMedGoogle Scholar
  49. 49.
    Shin EJ, Suh SK, Lim YK, Jhoo WK, Hjelle OP, Ottersen OP, Shin CY, Ko KH et al (2005) Ascorbate attenuates trimethyltin-induced oxidative burden and neuronal degeneration in the rat hippocampus by maintaining glutathione homeostasis. Neuroscience 133:715–727PubMedCrossRefGoogle Scholar
  50. 50.
    Kim HC, Bing G, Jhoo WK, Ko KH, Kim WK, Suh JH, Kim SJ, Kato K et al (2000) Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat. Brain Res 853:215–226PubMedCrossRefGoogle Scholar
  51. 51.
    Kim HC, Yamada K, Nitta A, Olariu A, Tran MH, Mizuno M, Nakajima A, Nagai T et al (2003) Immunocytochemical evidence that amyloid beta (1-42) impairs endogenous antioxidant systems in vivo. Neuroscience 119:399–419PubMedCrossRefGoogle Scholar
  52. 52.
    Liu XH, Kato H, Nakada N, Kogure K, Kato K (1993) An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res 625:29–37PubMedCrossRefGoogle Scholar
  53. 53.
    Kim HC, Jhoo WK, Kim WK, Suh JH, Shin EJ, Kato K, Ho Ko K (2000) An immunocytochemical study of mitochondrial manganese-superoxide dismutase in the rat hippocampus after kainate administration. Neurosci Lett 281:65–68PubMedCrossRefGoogle Scholar
  54. 54.
    Kurobe N, Kato K (1991) Sensitive enzyme immunoassay for rat Mn superoxide dismutase: tissue distribution and developmental profiles in the rat central nervous tissue, liver, and kidney. Biomed Res 12:97–103CrossRefGoogle Scholar
  55. 55.
    Shin EJ, Ko KH, Kim WK, Chae JS, Yen TP, Kim HJ, Wie MB, Kim HC (2008) Role of glutathione peroxidase in the ontogeny of hippocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem Int 52:1134–1147PubMedCrossRefGoogle Scholar
  56. 56.
    Eklöw L, Moldéus P, Orrenius S (1984) Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea. Eur J Biochem 138:459–463PubMedCrossRefGoogle Scholar
  57. 57.
    Jhoo JH, Kim HC, Nabeshima T, Yamada K, Shin EJ, Jhoo WK, Kim W, Kang KS et al (2004) Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav Brain Res 155:185–196PubMedCrossRefGoogle Scholar
  58. 58.
    Tran HY, Shin EJ, Saito K, Nguyen XK, Chung YH, Jeong JH, Bach JH, Park DH et al (2012) Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radic Biol Med 52:1159–1174PubMedCrossRefGoogle Scholar
  59. 59.
    Shin EJ, Nam Y, Tu TT, Lim YK, Wie MB, Kim DJ, Jeong JH, Kim HC (2016) Protein kinase Cδ mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 90:937–953PubMedCrossRefGoogle Scholar
  60. 60.
    Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER (1987) Age-related changes in oxidized proteins. J Biol Chem 262:5488–5491PubMedGoogle Scholar
  61. 61.
    Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, Park DH, Nakayama K et al (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav Brain Res 232:98–113PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jareño EJ, Bosch-Morell F, Fernández-Delgado R, Donat J, Romero FJ (1998) Serum malondialdehyde in HIV seropositive children. Free Radic Biol Med 24:503–506PubMedCrossRefGoogle Scholar
  63. 63.
    Kim HC, Jhoo WK, Choi DY, Im DH, Shin EJ, Suh JH, Floyd RA, Bing G (1999) Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res 851:76–86PubMedCrossRefGoogle Scholar
  64. 64.
    Shin EJ, Jeong JH, Chung CK, Kim DJ, Wie MB, Park ES, Chung YH, Nam Y et al (2015) Ceruloplasmin is an endogenous protectant against kainate neurotoxicity. Free Radic Biol Med 84:355–372PubMedCrossRefGoogle Scholar
  65. 65.
    Shin EJ, Chung YH, Le HL, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY et al (2014) Melatonin attenuates memory impairment induced by klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol 18. doi: 10.1093/ijnp/pyu105
  66. 66.
    Kim BK, Shin EJ, Kim HC, Chung YH, Dang DK, Jung BD, Park DH, Wie MB et al (2013) Platelet-activating factor receptor knockout mice are protected from MPTP-induced dopaminergic degeneration. Neurochem Int 63:121–132PubMedCrossRefGoogle Scholar
  67. 67.
    Shin EJ, Kim JM, Nguyen XK, Nguyen TT, Lee SY, Jung JH, Kim MJ, Whang WK et al (2011) Effects of gastrodia elata bl on phencyclidine-induced schizophrenia-like psychosis in mice. Curr Neuropharmacol 9:247–250PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nakajima A, Aoyama Y, Nguyen TT, Shin EJ, Kim HC, Yamada S, Nakai T, Nagai T et al (2013) Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav Brain Res 250:351–360PubMedCrossRefGoogle Scholar
  69. 69.
    Noda Y, Yamada K, Furukawa H, Nabeshima T (1995) Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br J Pharmacol 116:2531–2537PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nagai T, Noda Y, Une T, Furukawa K, Furukawa H, Kan QM, Nabeshima T (2003) Effect of AD-5423 on animal models of schizophrenia: phencyclidine-induced behavioral changes in mice. Neuroreport 14:269–272PubMedCrossRefGoogle Scholar
  71. 71.
    Reddy RD, Yao JK (1996) Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids 55:33–43PubMedCrossRefGoogle Scholar
  72. 72.
    Mahadik SP, Mukherjee S, Scheffer R, Correnti EE, Mahadik JS (1998) Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry 43:674–679PubMedCrossRefGoogle Scholar
  73. 73.
    Reddy R, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412PubMedCrossRefGoogle Scholar
  74. 74.
    Qiao H, Noda Y, Kamei H, Nagai T, Furukawa H, Miura H, Kayukawa Y, Ohta T et al (2001) Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. Neuroreport 12:11–15PubMedCrossRefGoogle Scholar
  75. 75.
    Aoyama Y, Mouri A, Toriumi K, Koseki T, Narusawa S, Ikawa N, Mamiya T, Nagai T et al (2014) Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor. Int J Neuropsychopharmacol 17:723–737PubMedCrossRefGoogle Scholar
  76. 76.
    Knable MB, Weinberger DR (1997) Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 11:123–131PubMedCrossRefGoogle Scholar
  77. 77.
    Robbins TW (1990) The case for frontostriatal dysfunction in schizophrenia. Schizophr Bull 16:391–402PubMedCrossRefGoogle Scholar
  78. 78.
    Weinberger DR, Berman KF (1996) Prefrontal function in schizophrenia. Confounds and controversies. Philos Trans R Soc Lond Ser B Biol Sci 351:1495–1503CrossRefGoogle Scholar
  79. 79.
    Goldman-Rakic PS, Selemon LD (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458PubMedCrossRefGoogle Scholar
  80. 80.
    Pantelis C, Barnes TR, Nelson HE, Tanner S, Weatherley L, Owen AM (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843PubMedCrossRefGoogle Scholar
  81. 81.
    Murai R, Noda Y, Matsui K, Kamei H, Mouri A, Matsuba K, Nitta A, Furukawa H et al (2007) Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling. Behav Brain Res 180:152–160PubMedCrossRefGoogle Scholar
  82. 82.
    Toriumi K, Mouri A, Narusawa S, Aoyama Y, Ikawa N, Lu L, Nagai T, Mamiya T et al (2012) Prenatal NMDA receptor antagonism impaired proliferation of neuronal progenitor, leading to fewer glutamatergic neurons in the prefrontal cortex. Neuropsychopharmacology 37:1387–1396PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Toriumi K, Oki M, Muto E, Tanaka J, Mouri A, Mamiya T, Kim HC, Nabeshima T (2016) Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex. Psychopharmacology 233:2373–2381PubMedCrossRefGoogle Scholar
  84. 84.
    Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213PubMedCrossRefGoogle Scholar
  85. 85.
    Yamada K, Kanba S, Anamizu S, Ohnishi K, Ashikari I, Yagi G, Asai M (1997) Low superoxide dismutase activity in schizophrenic patients with tardive dyskinesia. Psychol Med 27:1223–1225PubMedCrossRefGoogle Scholar
  86. 86.
    Radonjić NV, Knezević ID, Vilimanovich U, Kravić-Stevović T, Marina LV, Nikolić T, Todorović V, Bumbasirević V et al (2010) Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology 58:739–745PubMedCrossRefGoogle Scholar
  87. 87.
    Michel TM, Thome J, Martin D, Nara K, Zwerina S, Tatschner T, Weijers HG, Koutsilieri E (2004) Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm (Vienna) 111:1191–1201Google Scholar
  88. 88.
    Gama CS, Salvador M, Andreazza AC, Kapczinski F, Silva Belmonte-de-Abreu P (2006) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in schizophrenia: a study of patients treated with haloperidol or clozapine. Prog Neuro-Psychopharmacol Biol Psychiatry 30:512–515CrossRefGoogle Scholar
  89. 89.
    Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M et al (2008) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1677–1681CrossRefGoogle Scholar
  90. 90.
    Yao JK, Reddy R, McElhinny LG, van Kammen DP (1998) Effects of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 32:385–391PubMedCrossRefGoogle Scholar
  91. 91.
    Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A (2011) Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11:124. doi: 10.1186/1471-244X-11-124 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P (2007) Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA 104:16621–16626PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P et al (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728PubMedCrossRefGoogle Scholar
  94. 94.
    Yao JK, Leonard S, Reddy R (2006) Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93PubMedCrossRefGoogle Scholar
  95. 95.
    Altuntas I, Aksoy H, Coskun I, Cayköylü A, Akçay F (2000) Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med 38:1277–1281PubMedCrossRefGoogle Scholar
  96. 96.
    Yao JK, Reddy RD, van Kammen DP (1999) Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45:1512–1515PubMedCrossRefGoogle Scholar
  97. 97.
    Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K et al (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771PubMedCrossRefGoogle Scholar
  98. 98.
    Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038PubMedCrossRefGoogle Scholar
  99. 99.
    Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2006) Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 281:24756–24768PubMedCrossRefGoogle Scholar
  102. 102.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101:2040–2045PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, Yamamoto M (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28:2758–2770PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzym Regul 46:113–140CrossRefGoogle Scholar
  108. 108.
    Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuro-Psychopharmacol Biol Psychiatry 33:303–307CrossRefGoogle Scholar
  109. 109.
    Hu X, Zhou H, Zhang D, Yang S, Qian L, Wu HM, Chen PS, Wilson B et al (2012) Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J NeuroImmune Pharmacol 7:187–201PubMedCrossRefGoogle Scholar
  110. 110.
    Ribeiro BM, do Carmo MR, Freire RS, Rocha NF, Borella VC, de Menezes AT, Monte AS, Gomes PX et al (2013) Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res 151:12–19PubMedCrossRefGoogle Scholar
  111. 111.
    Möller M, Du Preez JL, Emsley R, Harvey BH (2011) Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. Eur Neuropsychopharmacol 21:471–483PubMedCrossRefGoogle Scholar
  112. 112.
    Möller M, Du Preez JL, Emsley R, Harvey BH (2012) Social isolation rearing in rats alters plasma tryptophan metabolism and is reversed by sub-chronic clozapine treatment. Neuropharmacology 62:2499–2506PubMedCrossRefGoogle Scholar
  113. 113.
    Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH (2013) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156–167PubMedCrossRefGoogle Scholar
  114. 114.
    Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, Kumagai T, Nakamura Y, Osawa T, Horio F et al (2002) A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. J Biol Chem 277:3456–3463PubMedCrossRefGoogle Scholar
  115. 115.
    Shirai Y, Fujita Y, Hashimoto K (2012) Effects of the antioxidant sulforaphane on hyperlocomotion and prepulse inhibition deficits in mice after phencyclidine administration. Clin Psychopharmacol Neurosci 10:94–98PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1159–1172CrossRefGoogle Scholar
  117. 117.
    Kaneko YS, Takayanagi T, Nagasaki H, Kodani Y, Nakashima A, Mori K, Suzuki A, Itoh M et al (2015) Aripiprazole increases NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells. J Neural Transm (Vienna) 122:757–772CrossRefGoogle Scholar
  118. 118.
    Song XQ, Lv LX, Li WQ, Hao YH, Zhao JP (2009) The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 65:481–488PubMedCrossRefGoogle Scholar
  119. 119.
    Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46:315–328PubMedCrossRefGoogle Scholar
  120. 120.
    Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066PubMedGoogle Scholar
  121. 121.
    Zhao C, Sun T, Li M (2012) Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion. Prog Neuro-Psychopharmacol Biol Psychiatry 38:175–182CrossRefGoogle Scholar
  122. 122.
    Ninan I, Jardemark KE, Wang RY (2003) Olanzapine and clozapine but not haloperidol reverse subchronic phencyclidine-induced functional hyperactivity of N-methyl-D-aspartate receptors in pyramidal cells of the rat medial prefrontal cortex. Neuropharmacology 44:462–472PubMedCrossRefGoogle Scholar
  123. 123.
    Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann N Y Acad Sci 1003:131–137PubMedCrossRefGoogle Scholar
  124. 124.
    Ichikawa J, Dai J, O’Laughlin IA, Fowler WL, Meltzer HY (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26:325–339PubMedCrossRefGoogle Scholar
  125. 125.
    Parada MA, Hernandez L, Puig de Parada M, Rada P, Murzi E (1997) Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 281:582–588PubMedGoogle Scholar
  126. 126.
    Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur J Pharmacol 269:R1–R2PubMedCrossRefGoogle Scholar
  127. 127.
    Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ et al (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartatereceptor activity. Proc Natl Acad Sci USA 100:13674–13679PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC et al (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • The-Vinh Tran
    • 1
  • Eun-Joo Shin
    • 1
  • Ji Hoon Jeong
    • 2
  • Ji Won Lee
    • 1
  • Youngho Lee
    • 1
  • Choon-Gon Jang
    • 3
  • Seung-Yeol Nah
    • 4
  • Xin Gen Lei
    • 5
  • Kazuya Toriumi
    • 6
  • Kiyofumi Yamada
    • 7
  • Toshitaka Nabeshima
    • 8
  • Hyoung-Chun Kim
    • 1
    Email author
  1. 1.Neuropsychopharmacology and Toxicology Program, College of PharmacyKangwon National UniversityChunchonRepublic of Korea
  2. 2.Department of Pharmacology, College of MedicineChung-Ang UniversitySeoulRepublic of Korea
  3. 3.Department of Pharmacology, School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
  4. 4.Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics CenterKonkuk UniversitySeoulRepublic of Korea
  5. 5.Department of Animal ScienceCornell UniversityIthacaUSA
  6. 6.Project for Schizophrenia Research, Department of Psychiatry and Behavioral SciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  7. 7.Department of Neuropsychopharmacology and Hospital PharmacyNagoya University Graduate School of MedicineNagoyaJapan
  8. 8.Advanced Diagnostic System Research LaboratoryFujita Health University Graduate School of Health SciencesToyoakeJapan

Personalised recommendations