Advertisement

Molecular Neurobiology

, Volume 54, Issue 9, pp 7401–7459 | Cite as

Neurotrophin Signaling and Stem Cells—Implications for Neurodegenerative Diseases and Stem Cell Therapy

  • Subrata Pramanik
  • Yanuar Alan Sulistio
  • Klaus HeeseEmail author
Article

Abstract

Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer’s disease (AD) and Parkinson’s disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.

Keywords

Neurotrophin BDNF NGF TRK Stem cell Alzheimer’s disease Parkinson’s disease 

Notes

Acknowledgments

This study was supported by Hanyang University and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2009178).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276(16):12660–12666. doi: 10.1074/jbc.M008104200 PubMedCrossRefGoogle Scholar
  2. 2.
    Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564. doi: 10.1098/rstb.2006.1894 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. doi: 10.1038/nrn3379 PubMedCrossRefGoogle Scholar
  4. 4.
    Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Lessmann V (2015) Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron 86(4):1041–1054. doi: 10.1016/j.neuron.2015.04.007 PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci U S A 40(10):1014–1018PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69(5):341–374. doi: 10.1016/S0301-0082(03)00019-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162PubMedCrossRefGoogle Scholar
  8. 8.
    Arevalo JC, Wu SH (2006) Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci 63(13):1523–1537. doi: 10.1007/s00018-006-6010-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Hempstead BL (2014) Deciphering proneurotrophin actions. Handb Exp Pharmacol 220:17–32. doi: 10.1007/978-3-642-45106-5_2 PubMedCrossRefGoogle Scholar
  10. 10.
    Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35(4):261–270. doi: 10.1016/j.tins.2012.01.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Willnow TE, Petersen CM, Nykjaer A (2008) VPS10P-domain receptors—regulators of neuronal viability and function. Nat Rev Neurosci 9(12):899–909. doi: 10.1038/nrn2516 PubMedCrossRefGoogle Scholar
  12. 12.
    Gotz R, Koster R, Winkler C, Raulf F, Lottspeich F, Schartl M, Thoenen H (1994) Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372(6503):266–269. doi: 10.1038/372266a0 PubMedCrossRefGoogle Scholar
  13. 13.
    Lai KO, Fu WY, Ip FC, Ip NY (1998) Cloning and expression of a novel neurotrophin, NT-7, from carp. Mol Cell Neurosci 11(1-2):64–76. doi: 10.1006/mcne.1998.0666 PubMedCrossRefGoogle Scholar
  14. 14.
    Nilsson AS, Fainzilber M, Falck P, Ibanez CF (1998) Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett 424(3):285–290. doi: 10.1016/S0014-5793(98)00192-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Berkemeier LR, Ozcelik T, Francke U, Rosenthal A (1992) Human chromosome 19 contains the neurotrophin-5 gene locus and three related genes that may encode novel acidic neurotrophins. Somat Cell Mol Genet 18(3):233–245. doi: 10.1007/BF01233860 PubMedCrossRefGoogle Scholar
  16. 16.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  18. 18.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  19. 19.
    Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7(2):131–142. doi: 10.1038/nrd2403 PubMedCrossRefGoogle Scholar
  20. 20.
    Goodell MA, Nguyen H, Shroyer N (2015) Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 16(5):299–309. doi: 10.1038/nrm3980 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85(2):635–678. doi: 10.1152/physrev.00054.2003 PubMedCrossRefGoogle Scholar
  22. 22.
    Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717. doi: 10.1242/dev.086165 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rookmaaker MB, Schutgens F, Verhaar MC, Clevers H (2015) Development and application of human adult stem or progenitor cell organoids. Nat Rev Nephrol 11(9):546–554. doi: 10.1038/nrneph.2015.118 PubMedCrossRefGoogle Scholar
  24. 24.
    Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557. doi: 10.1158/0008-5472.CAN-05-3986 PubMedCrossRefGoogle Scholar
  25. 25.
    Lotem J, Sachs L (2006) Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 25(59):7663–7672. doi: 10.1038/sj.onc.1209816 PubMedCrossRefGoogle Scholar
  26. 26.
    Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366(1575):2198–2207. doi: 10.1098/rstb.2011.0016 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684. doi: 10.1016/j.stem.2012.05.005 PubMedCrossRefGoogle Scholar
  28. 28.
    Tomellini E, Lagadec C, Polakowska R, Le Bourhis X (2014) Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 71(13):2467–2481. doi: 10.1007/s00018-014-1564-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181(2):115–129. doi: 10.1016/S0014-4886(03)00037-2 PubMedCrossRefGoogle Scholar
  30. 30.
    Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24(3):344–350. doi: 10.1038/nbt1189 PubMedCrossRefGoogle Scholar
  31. 31.
    Levi-Montalcini R, Hamburger V (1953) A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo. J Exp Zool 123(2):233–287. doi: 10.1002/jez.1401230203 CrossRefGoogle Scholar
  32. 32.
    Cohen S, Levi-Montalcini R (1956) A nerve growth-stimulating factor isolated from snake venom. Proc Natl Acad Sci U S A 42(9):571–574PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tischler AS, Riseberg JC, Hardenbrook MA, Cherington V (1993) Nerve growth factor is a potent inducer of proliferation and neuronal differentiation for adult rat chromaffin cells in vitro. J Neurosci 13(4):1533–1542PubMedGoogle Scholar
  34. 34.
    Misko TP, Radeke MJ, Shooter EM (1987) Nerve growth factor in neuronal development and maintenance. J Exp Biol 132:177–190PubMedGoogle Scholar
  35. 35.
    Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. doi: 10.1146/annurev.neuro.24.1.1217 PubMedCrossRefGoogle Scholar
  36. 36.
    Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 15(9):6213–6221PubMedGoogle Scholar
  37. 37.
    Lorigados Pedre L, Pavon Fuentes N, Alvarez Gonzalez L, McRae A, Serrano Sanchez T, Blanco Lescano L, Macias Gonzalez R (2002) Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain Res 952(1):122–127. doi: 10.1016/S0006-8993(02)03222-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Shamini Ayyadhury BSP, Klaus Heese BSP (2007) Neurotrophins—more than neurotrophic. Curr Immunol Rev 3(3):189–215. doi: 10.2174/157339507781483504 CrossRefGoogle Scholar
  39. 39.
    Heese K, Inoue N, Sawada T (2006) NF-kappaB regulates B-cell-derived nerve growth factor expression. Cell Mol Immunol 3(1):63–66PubMedGoogle Scholar
  40. 40.
    Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19(11):514–520. doi: 10.1016/S0166-2236(96)10058-8 PubMedCrossRefGoogle Scholar
  41. 41.
    Indo Y (2014) Neurobiology of pain, interoception and emotional response: lessons from nerve growth factor-dependent neurons. Eur J Neurosci 39(3):375–391. doi: 10.1111/ejn.12448 PubMedCrossRefGoogle Scholar
  42. 42.
    Lewin GR, Nykjaer A (2014) Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 39(3):363–374. doi: 10.1111/ejn.12466 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Torcia M, Bracci-Laudiero L, Lucibello M et al (1996) Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85(3):345–356. doi: 10.1016/S0092-8674(00)81113-7 PubMedCrossRefGoogle Scholar
  44. 44.
    Einarsdottir E, Carlsson A, Minde J et al (2004) A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 13(8):799–805. doi: 10.1093/hmg/ddh096 PubMedCrossRefGoogle Scholar
  45. 45.
    Hallbook F (1999) Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr Opin Neurobiol 9(5):616–621. doi: 10.1016/S0959-4388(99)00011-2 PubMedCrossRefGoogle Scholar
  46. 46.
    Ullrich A, Gray A, Berman C, Dull TJ (1983) Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature 303(5920):821–825PubMedCrossRefGoogle Scholar
  47. 47.
    Fahnestock M, Yu G, Coughlin MD (2004) ProNGF: a neurotrophic or an apoptotic molecule? Prog Brain Res 146:101–110. doi: 10.1016/S0079-6123(03)46007-X PubMedCrossRefGoogle Scholar
  48. 48.
    Darling TL, Petrides PE, Beguin P, Frey P, Shooter EM, Selby M, Rutter WJ (1983) The biosynthesis and processing of proteins in the mouse 7S nerve growth factor complex. Cold Spring Harb Symp Quant Biol 48(Pt 1):427–434PubMedCrossRefGoogle Scholar
  49. 49.
    Garzon D, Yu G, Fahnestock M (2004) A new brain-derived neurotrophic factor transcript and decrease inbrain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem 82(5):1058–1064. doi: 10.1046/j.1471-4159.2002.01030.x CrossRefGoogle Scholar
  50. 50.
    Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379(3):247–250PubMedCrossRefGoogle Scholar
  51. 51.
    Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294(5548):1945–1948. doi: 10.1126/science.1065057 PubMedCrossRefGoogle Scholar
  52. 52.
    Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18(2):210–220. doi: 10.1006/mcne.2001.1016 PubMedCrossRefGoogle Scholar
  53. 53.
    Yepes M, Lawrence DA (2004) Tissue-type plasminogen activator and neuroserpin: a well-balanced act in the nervous system? Trends Cardiovasc Med 14(5):173–180. doi: 10.1016/j.tcm.2004.03.004 PubMedCrossRefGoogle Scholar
  54. 54.
    Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 35(7):338–348. doi: 10.1016/j.tips.2014.04.010 PubMedCrossRefGoogle Scholar
  55. 55.
    Miranda E, Lomas DA (2006) Neuroserpin: a serpin to think about. Cell Mol Life Sci 63(6):709–722. doi: 10.1007/s00018-005-5077-4 PubMedCrossRefGoogle Scholar
  56. 56.
    Bradshaw RA, Murray-Rust J, Ibanez CF, McDonald NQ, Lapatto R, Blundell TL (1994) Nerve growth factor: structure/function relationships. Protein Sci 3(11):1901–1913. doi: 10.1002/pro.5560031102 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bax B, Blundell TL, Murray-Rust J, McDonald NQ (1997) Structure of mouse 7S NGF: a complex of nerve growth factor with four binding proteins. Structure 5(10):1275–1285. doi: 10.1016/S0969-2126(97)00280-3 PubMedCrossRefGoogle Scholar
  58. 58.
    Freund-Michel V, Frossard N (2008) The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 117(1):52–76. doi: 10.1016/j.pharmthera.2007.07.003 PubMedCrossRefGoogle Scholar
  59. 59.
    Eibl JK, Strasser BC, Ross GM (2012) Structural, biological, and pharmacological strategies for the inhibition of nerve growth factor. Neurochem Int 61(8):1266–1275. doi: 10.1016/j.neuint.2012.10.008 PubMedCrossRefGoogle Scholar
  60. 60.
    Robinson RC, Radziejewski C, Stuart DI, Jones EY (1995) Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry 34(13):4139–4146PubMedCrossRefGoogle Scholar
  61. 61.
    Feng D, Kim T, Ozkan E, Light M, Torkin R, Teng KK, Hempstead BL, Garcia KC (2010) Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J Mol Biol 396(4):967–984. doi: 10.1016/j.jmb.2009.12.030 PubMedCrossRefGoogle Scholar
  62. 62.
    Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1(5):549–553PubMedPubMedCentralGoogle Scholar
  63. 63.
    Barde YA, Davies AM, Johnson JE, Lindsay RM, Thoenen H (1987) Brain derived neurotrophic factor. Prog Brain Res 71:185–189PubMedCrossRefGoogle Scholar
  64. 64.
    Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341(6238):149–152. doi: 10.1038/341149a0 PubMedCrossRefGoogle Scholar
  65. 65.
    Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70(5):271–288. doi: 10.1002/dneu.20774 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10(3):209–219. doi: 10.1038/nrd3366 PubMedCrossRefGoogle Scholar
  67. 67.
    Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7(4):276–285. doi: 10.2174/157015909790031210 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322. doi: 10.1038/nrneurol.2009.54 PubMedCrossRefGoogle Scholar
  69. 69.
    Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10(4):345–352. doi: 10.1038/sj.mp.4001637 PubMedCrossRefGoogle Scholar
  70. 70.
    Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. doi: 10.3389/fncel.2014.00430 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Prakash YS, Martin RJ (2014) Brain-derived neurotrophic factor in the airways. Pharmacol Ther 143(1):74–86. doi: 10.1016/j.pharmthera.2014.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lee DH, Geyer E, Flach AC, Jung K, Gold R, Flugel A, Linker RA, Luhder F (2012) Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination. Acta Neuropathol 123(2):247–258. doi: 10.1007/s00401-011-0890-3 PubMedCrossRefGoogle Scholar
  73. 73.
    Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406. doi: 10.1016/j.ygeno.2007.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Negro A, Tavella A, Grandi C, Skaper SD (1994) Production and characterization of recombinant rat brain-derived neurotrophic factor and neurotrophin-3 from insect cells. J Neurochem 62(2):471–478PubMedCrossRefGoogle Scholar
  75. 75.
    Harte-Hargrove LC, Maclusky NJ, Scharfman HE (2013) Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 239:46–66. doi: 10.1016/j.neuroscience.2012.12.029 PubMedCrossRefGoogle Scholar
  76. 76.
    Mowla SJ, Pareek S, Farhadi HF et al (1999) Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J Neurosci 19(6):2069–2080PubMedGoogle Scholar
  77. 77.
    Faria RS, Sartori CR, Canova F, Ferrari EA (2013) Classical aversive conditioning induces increased expression of mature-BDNF in the hippocampus and amygdala of pigeons. Neuroscience 255:122–133. doi: 10.1016/j.neuroscience.2013.09.054 PubMedCrossRefGoogle Scholar
  78. 78.
    Carlino D, De Vanna M, Tongiorgi E (2013) Is altered BDNF biosynthesis a general feature in patients with cognitive dysfunctions? Neuroscientist 19(4):345–353. doi: 10.1177/1073858412469444 PubMedCrossRefGoogle Scholar
  79. 79.
    Nagappan G, Zaitsev E, Senatorov VV Jr, Yang J, Hempstead BL, Lu B (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106(4):1267–1272. doi: 10.1073/pnas.0807322106 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Pang PT, Teng HK, Zaitsev E et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695):487–491. doi: 10.1126/science.1100135 PubMedCrossRefGoogle Scholar
  81. 81.
    Robinson RC, Radziejewski C, Spraggon G et al (1999) The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci 8(12):2589–2597. doi: 10.1110/ps.8.12.2589 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247(4949 Pt 1):1446–1451PubMedCrossRefGoogle Scholar
  83. 83.
    Chalazonitis A (1996) Neurotrophin-3 as an essential signal for the developing nervous system. Mol Neurobiol 12(1):39–53. doi: 10.1007/BF02740746 PubMedCrossRefGoogle Scholar
  84. 84.
    Maisonpierre PC, Le Beau MM, Espinosa R 3rd et al (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10(3):558–568PubMedCrossRefGoogle Scholar
  85. 85.
    Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263. doi: 10.1016/S0079-6123(03)46016-0 PubMedCrossRefGoogle Scholar
  86. 86.
    Bates B, Rios M, Trumpp A, Chen C, Fan G, Bishop JM, Jaenisch R (1999) Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2(2):115–117. doi: 10.1038/5669 PubMedCrossRefGoogle Scholar
  87. 87.
    Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE (2007) The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4(2):143–151PubMedCrossRefGoogle Scholar
  88. 88.
    Roh J, Muelleman T, Tawfik O, Thomas SM (2015) Perineural growth in head and neck squamous cell carcinoma: a review. Oral Oncol 51(1):16–23. doi: 10.1016/j.oraloncology.2014.10.004 PubMedCrossRefGoogle Scholar
  89. 89.
    Tauszig-Delamasure S, Bouzas-Rodriguez J (2011) Targeting neurotrophin-3 and its dependence receptor tyrosine kinase receptor C: a new antitumoral strategy. Expert Opin Ther Targets 15(7):847–858. doi: 10.1517/14728222.2011.575361 PubMedCrossRefGoogle Scholar
  90. 90.
    Yano H, Torkin R, Martin LA, Chao MV, Teng KK (2009) Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing. J Neurosci 29(47):14790–14802. doi: 10.1523/JNEUROSCI.2059-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Farhadi HF, Mowla SJ, Petrecca K, Morris SJ, Seidah NG, Murphy RA (2000) Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J Neurosci 20(11):4059–4068PubMedGoogle Scholar
  92. 92.
    Butte MJ, Hwang PK, Mobley WC, Fletterick RJ (1998) Crystal structure of neurotrophin-3 homodimer shows distinct regions are used to bind its receptors. Biochemistry 37(48):16846–16852. doi: 10.1021/bi981254o PubMedCrossRefGoogle Scholar
  93. 93.
    Ibanez CF (1996) Neurotrophin-4: the odd one out in the neurotrophin family. Neurochem Res 21(7):787–793PubMedCrossRefGoogle Scholar
  94. 94.
    Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7(5):857–866PubMedCrossRefGoogle Scholar
  95. 95.
    Koliatsos VE, Cayouette MH, Berkemeier LR, Clatterbuck RE, Price DL, Rosenthal A (1994) Neurotrophin 4/5 is a trophic factor for mammalian facial motor neurons. Proc Natl Acad Sci U S A 91(8):3304–3308PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zheng JL, Stewart RR, Gao WQ (1995) Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J Neurosci 15(7 Pt 2):5079–5087PubMedGoogle Scholar
  97. 97.
    Cohen A, Bray GM, Aguayo AJ (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol 25(8):953–959. doi: 10.1002/neu.480250805 PubMedCrossRefGoogle Scholar
  98. 98.
    Hondermarck H (2012) Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 23(6):357–365. doi: 10.1016/j.cytogfr.2012.06.004 PubMedCrossRefGoogle Scholar
  99. 99.
    Szczepankiewicz A, Rachel M, Sobkowiak P, Kycler Z, Wojsyk-Banaszak I, Schoneich N, Skibinska M, Breborowicz A (2012) Serum neurotrophin-3 and neurotrophin-4 levels are associated with asthma severity in children. Eur Respir J 39(4):1035–1037. doi: 10.1183/09031936.00136611 PubMedCrossRefGoogle Scholar
  100. 100.
    Aven L, Paez-Cortez J, Achey R, Krishnan R, Ram-Mohan S, Cruikshank WW, Fine A, Ai X (2014) An NT4/TrkB-dependent increase in innervation links early-life allergen exposure to persistent airway hyperreactivity. FASEB J 28(2):897–907. doi: 10.1096/fj.13-238212 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Grewe M, Vogelsang K, Ruzicka T, Stege H, Krutmann J (2000) Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Investig Dermatol 114(6):1108–1112. doi: 10.1046/j.1523-1747.2000.00974.x PubMedCrossRefGoogle Scholar
  102. 102.
    Kanda N, Koike S, Watanabe S (2005) Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther 315(2):796–804. doi: 10.1124/jpet.105.091645 PubMedCrossRefGoogle Scholar
  103. 103.
    Yoshizaki K, Yamamoto S, Yamada A et al (2008) Neurotrophic factor neurotrophin-4 regulates ameloblastin expression via full-length TrkB. J Biol Chem 283(6):3385–3391. doi: 10.1074/jbc.M704913200 PubMedCrossRefGoogle Scholar
  104. 104.
    Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401(6749):184–188. doi: 10.1038/43705 PubMedCrossRefGoogle Scholar
  105. 105.
    Greco A, Villa R, Pierotti MA (1996) Genomic organization of the human NTRK1 gene. Oncogene 13(11):2463–2466PubMedGoogle Scholar
  106. 106.
    Barker PA, Lomen-Hoerth C, Gensch EM, Meakin SO, Glass DJ, Shooter EM (1993) Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J Biol Chem 268(20):15150–15157PubMedGoogle Scholar
  107. 107.
    Tacconelli A, Farina AR, Cappabianca L et al (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6(4):347–360. doi: 10.1016/j.ccr.2004.09.011 PubMedCrossRefGoogle Scholar
  108. 108.
    Meakin SO, Gryz EA, MacDonald JI (1997) A kinase insert isoform of rat TrkA supports nerve growth factor-dependent cell survival but not neurite outgrowth. J Neurochem 69(3):954–967PubMedCrossRefGoogle Scholar
  109. 109.
    Dubus P, Parrens M, El-Mokhtari Y, Ferrer J, Groppi A, Merlio JP (2000) Identification of novel trkA variants with deletions in leucine-rich motifs of the extracellular domain. J Neuroimmunol 107(1):42–49PubMedCrossRefGoogle Scholar
  110. 110.
    Jullien J, Guili V, Reichardt LF, Rudkin BB (2002) Molecular kinetics of nerve growth factor receptor trafficking and activation. J Biol Chem 277(41):38700–38708. doi: 10.1074/jbc.M202348200 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zhou J, Valletta JS, Grimes ML, Mobley WC (1995) Multiple levels for regulation of TrkA in PC12 cells by nerve growth factor. J Neurochem 65(3):1146–1156PubMedCrossRefGoogle Scholar
  112. 112.
    Marlin MC, Li G (2015) Biogenesis and function of the NGF/TrkA signaling endosome. Int Rev Cell Mol Biol 314:239–257. doi: 10.1016/bs.ircmb.2014.10.002 PubMedCrossRefGoogle Scholar
  113. 113.
    Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM (1999) Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290(1):149–159. doi: 10.1006/jmbi.1999.2816 PubMedCrossRefGoogle Scholar
  114. 114.
    Urfer R, Tsoulfas P, O’Connell L, Hongo JA, Zhao W, Presta LG (1998) High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors. J Biol Chem 273(10):5829–5840PubMedCrossRefGoogle Scholar
  115. 115.
    Bertrand T, Kothe M, Liu J et al (2012) The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition. J Mol Biol 423(3):439–453. doi: 10.1016/j.jmb.2012.08.002 PubMedCrossRefGoogle Scholar
  116. 116.
    Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M, Barde YA (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467(7311):59–63. doi: 10.1038/nature09336 PubMedCrossRefGoogle Scholar
  117. 117.
    Soppet D, Escandon E, Maragos J et al (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65(5):895–903PubMedCrossRefGoogle Scholar
  118. 118.
    Slaugenhaupt SA, Blumenfeld A, Liebert CB et al (1995) The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene. Genomics 25(3):730–732PubMedCrossRefGoogle Scholar
  119. 119.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi: 10.1146/annurev.neuro.24.1.677 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ninkina N, Grashchuck M, Buchman VL, Davies AM (1997) TrkB variants with deletions in the leucine-rich motifs of the extracellular domain. J Biol Chem 272(20):13019–13025PubMedCrossRefGoogle Scholar
  121. 121.
    Baxter GT, Radeke MJ, Kuo RC et al (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17(8):2683–2690PubMedGoogle Scholar
  122. 122.
    Stoilov P, Castren E, Stamm S (2002) Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 290(3):1054–1065. doi: 10.1006/bbrc.2001.6301 PubMedCrossRefGoogle Scholar
  123. 123.
    Forooghian F, Kojic L, Gu Q, Prasad SS (2001) Identification of a novel truncated isoform of trkB in the kitten primary visual cortex. J Mol Neurosci 17(1):81–88. doi: 10.1385/JMN:17:1:81 PubMedCrossRefGoogle Scholar
  124. 124.
    Barbacid M (1995) Neurotrophic factors and their receptors. Curr Opin Cell Biol 7(2):148–155PubMedCrossRefGoogle Scholar
  125. 125.
    Feng Y, Vetro A, Kiss E et al (2008) Association of the neurotrophic tyrosine kinase receptor 3 (NTRK3) gene and childhood-onset mood disorders. Am J Psychiatry 165(5):610–616. doi: 10.1176/appi.ajp.2007.07050805 PubMedCrossRefGoogle Scholar
  126. 126.
    Lamballe F, Klein R, Barbacid M (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66(5):967–979PubMedCrossRefGoogle Scholar
  127. 127.
    Lamballe F, Tapley P, Barbacid M (1993) trkC encodes multiple neurotrophin-3 receptors with distinct biological properties and substrate specificities. EMBO J 12(8):3083–3094PubMedPubMedCentralGoogle Scholar
  128. 128.
    Valenzuela DM, Maisonpierre PC, Glass DJ et al (1993) Alternative forms of rat TrkC with different functional capabilities. Neuron 10(5):963–974PubMedCrossRefGoogle Scholar
  129. 129.
    Tsoulfas P, Soppet D, Escandon E, Tessarollo L, Mendoza-Ramirez JL, Rosenthal A, Nikolics K, Parada LF (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron 10(5):975–990PubMedCrossRefGoogle Scholar
  130. 130.
    Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325(6105):593–597. doi: 10.1038/325593a0 PubMedCrossRefGoogle Scholar
  131. 131.
    Huebner K, Isobe M, Chao M et al (1986) The nerve growth-factor receptor gene is at human-chromosome region 17q12-17q22, distal to the chromosome-17 breakpoint in acute leukemias. Proc Natl Acad Sci U S A 83(5):1403–1407. doi: 10.1073/pnas.83.5.1403 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. doi: 10.1038/nrn1078 PubMedCrossRefGoogle Scholar
  133. 133.
    Kraemer BR, Yoon SO, Carter BD (2014) The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 220:121–164. doi: 10.1007/978-3-642-45106-5_6 PubMedCrossRefGoogle Scholar
  134. 134.
    Barrett GL (2000) The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol 61(2):205–229. doi: 10.1016/S0301-0082(99)00056-8 PubMedCrossRefGoogle Scholar
  135. 135.
    von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G (2001) Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4(10):977–978. doi: 10.1038/nn730 CrossRefGoogle Scholar
  136. 136.
    Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69(5):737–749PubMedCrossRefGoogle Scholar
  137. 137.
    Poser R, Dokter M, von Bohlen Und Halbach V, Berger SM, Busch R, Baldus M, Unsicker K, von Bohlen Und Halbach O (2015) Impact of a deletion of the full-length and short isoform of p75NTR on cholinergic innervation and the population of postmitotic doublecortin positive cells in the dentate gyrus. Front Neuroanat 9:63. doi: 10.3389/fnana.2015.00063 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sabry MA, Fares M, Folkesson R, Al-Ramadan M, Alabkal J, Al-Kafaji G, Hassan M (2016) Commentary: Impact of a deletion of the full-length and short isoform of p75NTR on cholinergic innervation and the population of postmitotic doublecortin positive cells in the dentate gyrus. Front Neuroanat 10:14. doi: 10.3389/fnana.2016.00014 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Langevin C, Jaaro H, Bressanelli S, Fainzilber M, Tuffereau C (2002) Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem 277(40):37655–37662. doi: 10.1074/jbc.M201374200 PubMedCrossRefGoogle Scholar
  140. 140.
    Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5(11):1131–1136. doi: 10.1038/nn1102-1131 PubMedCrossRefGoogle Scholar
  141. 141.
    Nykjaer A, Lee R, Teng KK et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848. doi: 10.1038/nature02319 PubMedCrossRefGoogle Scholar
  142. 142.
    Grob PM, Ross AH, Koprowski H, Bothwell M (1985) Characterization of the human melanoma nerve growth factor receptor. J Biol Chem 260(13):8044–8049PubMedGoogle Scholar
  143. 143.
    Gong Y, Cao P, Yu HJ, Jiang T (2008) Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature 454(7205):789–793. doi: 10.1038/nature07089 PubMedGoogle Scholar
  144. 144.
    Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35. doi: 10.1016/j.tins.2011.06.007 PubMedCrossRefGoogle Scholar
  145. 145.
    Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 846:1–12. doi: 10.1007/978-1-61779-536-7_1 PubMedCrossRefGoogle Scholar
  146. 146.
    Deinhardt K, Chao MV (2014) Trk receptors. Handb Exp Pharmacol 220:103–119. doi: 10.1007/978-3-642-45106-5_5 PubMedCrossRefGoogle Scholar
  147. 147.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. doi: 10.1038/378785a0 PubMedCrossRefGoogle Scholar
  148. 148.
    Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A 97(20):11074–11079. doi: 10.1073/pnas.190297597 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65(4):391–426PubMedCrossRefGoogle Scholar
  150. 150.
    Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR, Miller FD (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol 146(5):955–966PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Besset V, Scott RP, Ibanez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275(50):39159–39166. doi: 10.1074/jbc.M006908200 PubMedCrossRefGoogle Scholar
  152. 152.
    Auer M, Hausott B, Klimaschewski L (2011) Rho GTPases as regulators of morphological neuroplasticity. Ann Anat 193(4):259–266. doi: 10.1016/j.aanat.2011.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2(2):a001818. doi: 10.1101/cshperspect.a001818 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49. doi: 10.1101/gad.1256405 PubMedCrossRefGoogle Scholar
  155. 155.
    Khodosevich K, Monyer H (2010) Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 11:18. doi: 10.1186/1471-2202-11-18 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Schwamborn JC, Puschel AW (2004) The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7(9):923–929. doi: 10.1038/nn1295 PubMedCrossRefGoogle Scholar
  157. 157.
    Schwartz M (2004) Rho signalling at a glance. J Cell Sci 117(Pt 23):5457–5458. doi: 10.1242/jcs.01582 PubMedCrossRefGoogle Scholar
  158. 158.
    Chen C, Wirth A, Ponimaskin E (2012) Cdc42: an important regulator of neuronal morphology. Int J Biochem Cell Biol 44(3):447–451. doi: 10.1016/j.biocel.2011.11.022 PubMedCrossRefGoogle Scholar
  159. 159.
    Azzarelli R, Kerloch T, Pacary E (2014) Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci 8:445. doi: 10.3389/fncel.2014.00445 PubMedGoogle Scholar
  160. 160.
    Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K (2005) PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7(3):270–277. doi: 10.1038/ncb1227 PubMedCrossRefGoogle Scholar
  161. 161.
    Shepherd TR, Hard RL, Murray AM, Pei D, Fuentes EJ (2011) Distinct ligand specificity of the Tiam1 and Tiam2 PDZ domains. Biochemistry 50(8):1296–1308. doi: 10.1021/bi1013613 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Watabe-Uchida M, John KA, Janas JA, Newey SE, Van Aelst L (2006) The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 51(6):727–739. doi: 10.1016/j.neuron.2006.07.020 PubMedCrossRefGoogle Scholar
  163. 163.
    Ng J, Luo L (2004) Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44(5):779–793. doi: 10.1016/j.neuron.2004.11.014 PubMedCrossRefGoogle Scholar
  164. 164.
    Yamaguchi Y, Katoh H, Yasui H, Mori K, Negishi M (2001) RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276(22):18977–18983. doi: 10.1074/jbc.M100254200 PubMedCrossRefGoogle Scholar
  165. 165.
    Nusser N, Gosmanova E, Zheng Y, Tigyi G (2002) Nerve growth factor signals through TrkA, phosphatidylinositol 3-kinase, and Rac1 to inactivate RhoA during the initiation of neuronal differentiation of PC12 cells. J Biol Chem 277(39):35840–35846. doi: 10.1074/jbc.M203617200 PubMedCrossRefGoogle Scholar
  166. 166.
    Arakawa Y, Bito H, Furuyashiki T et al (2003) Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161(2):381–391. doi: 10.1083/jcb.200210149 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Shirazi Fard S, Kele J, Vilar M, Paratcha G, Ledda F (2010) Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS One 5(3), e9647. doi: 10.1371/journal.pone.0009647 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Zhou P, Porcionatto M, Pilapil M et al (2007) Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55(1):53–68. doi: 10.1016/j.neuron.2007.05.030 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ (2002) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 4(8):621–625. doi: 10.1038/ncb833 PubMedGoogle Scholar
  170. 170.
    Kuruvilla R, Ye H, Ginty DD (2000) Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27(3):499–512PubMedCrossRefGoogle Scholar
  171. 171.
    Zhou Y, Lu TJ, Xiong ZQ (2009) NGF-dependent retrograde signaling: survival versus death. Cell Res 19(5):525–526. doi: 10.1038/cr.2009.47 PubMedCrossRefGoogle Scholar
  172. 172.
    Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M (2011) The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 221(2):515–526. doi: 10.1016/j.bbr.2010.02.024 PubMedCrossRefGoogle Scholar
  173. 173.
    Madziar B, Shah S, Brock M et al (2008) Nerve growth factor regulates the expression of the cholinergic locus and the high-affinity choline transporter via the Akt/PKB signaling pathway. J Neurochem 107(5):1284–1293. doi: 10.1111/j.1471-4159.2008.05681.x PubMedCrossRefGoogle Scholar
  174. 174.
    Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35(1):65–76PubMedCrossRefGoogle Scholar
  175. 175.
    Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17(3):401–411PubMedCrossRefGoogle Scholar
  176. 176.
    Lentz SI, Knudson CM, Korsmeyer SJ, Snider WD (1999) Neurotrophins support the development of diverse sensory axon morphologies. J Neurosci 19(3):1038–1048PubMedGoogle Scholar
  177. 177.
    Liu RY, Snider WD (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 21(17):RC164PubMedGoogle Scholar
  178. 178.
    Namikawa K, Honma M, Abe K et al (2000) Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 20(8):2875–2886PubMedGoogle Scholar
  179. 179.
    Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn JH, Mattson MP, Krieglstein J (2002) Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 115(4):1089–1108PubMedCrossRefGoogle Scholar
  180. 180.
    Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR (1999) L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401(6754):703–708. doi: 10.1038/44378 PubMedCrossRefGoogle Scholar
  181. 181.
    Kim MS, Shutov LP, Gnanasekaran A, Lin Z, Rysted JE, Ulrich JD, Usachev YM (2014) Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3beta (GSK3beta) pathway. J Biol Chem 289(45):31349–31360. doi: 10.1074/jbc.M114.587188 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Bazenet CE, Mota MA, Rubin LL (1998) The small GTP-binding protein Cdc42 is required for nerve growth factor withdrawal-induced neuronal death. Proc Natl Acad Sci U S A 95(7):3984–3989PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Rosario M, Franke R, Bednarski C, Birchmeier W (2007) The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. J Cell Biol 178(3):503–516. doi: 10.1083/jcb.200609146 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162(7):1267–1279. doi: 10.1083/jcb.200304021 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11(3):297–305. doi: 10.1016/S0959-4388(00)00211-7 PubMedCrossRefGoogle Scholar
  186. 186.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362. doi: 10.1126/science.286.5443.1358 PubMedCrossRefGoogle Scholar
  187. 187.
    Mullen LM, Pak KK, Chavez E, Kondo K, Brand Y, Ryan AF (2012) Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain Res 1430:25–34. doi: 10.1016/j.brainres.2011.10.054 PubMedCrossRefGoogle Scholar
  188. 188.
    Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25(49):11288–11299. doi: 10.1523/JNEUROSCI.2284-05.2005 PubMedCrossRefGoogle Scholar
  189. 189.
    Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25(49):11300–11312. doi: 10.1523/JNEUROSCI.2270-05.2005 PubMedCrossRefGoogle Scholar
  190. 190.
    Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci 43(10):3319–3326PubMedGoogle Scholar
  191. 191.
    Hetman M, Cavanaugh JE, Kimelman D, Xia Z (2000) Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20(7):2567–2574PubMedGoogle Scholar
  192. 192.
    Miller JR, Moon RT (1996) Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev 10(20):2527–2539PubMedCrossRefGoogle Scholar
  193. 193.
    Hetman M, Hsuan SL, Habas A, Higgins MJ, Xia Z (2002) ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons. J Biol Chem 277(51):49577–49584. doi: 10.1074/jbc.M111227200 PubMedCrossRefGoogle Scholar
  194. 194.
    Hetman M, Kanning K, Cavanaugh JE, Xia Z (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274(32):22569–22580. doi: 10.1074/jbc.274.32.22569 PubMedCrossRefGoogle Scholar
  195. 195.
    Cohen P, Goedert M (2004) GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3(6):479–487. doi: 10.1038/nrd1415 PubMedCrossRefGoogle Scholar
  196. 196.
    Davies AM, Horton A, Burton LE, Schmelzer C, Vandlen R, Rosenthal A (1993) Neurotrophin-4/5 is a mammalian-specific survival factor for distinct populations of sensory neurons. J Neurosci 13(11):4961–4967PubMedGoogle Scholar
  197. 197.
    Minichiello L, Casagranda F, Tatche RS, Stucky CL, Postigo A, Lewin GR, Davies AM, Klein R (1998) Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21(2):335–345PubMedCrossRefGoogle Scholar
  198. 198.
    Vadodaria KC, Brakebusch C, Suter U, Jessberger S (2013) Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci 33(3):1179–1189. doi: 10.1523/JNEUROSCI.2103-12.2013 PubMedCrossRefGoogle Scholar
  199. 199.
    Luikart BW, Zhang W, Wayman GA, Kwon CH, Westbrook GL, Parada LF (2008) Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling. J Neurosci 28(27):7006–7012. doi: 10.1523/JNEUROSCI.0195-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Liot G, Gabriel C, Cacquevel M, Ali C, MacKenzie ET, Buisson A, Vivien D (2004) Neurotrophin-3-induced PI-3 kinase/Akt signaling rescues cortical neurons from apoptosis. Exp Neurol 187(1):38–46. doi: 10.1016/j.expneurol.2004.01.002 PubMedCrossRefGoogle Scholar
  201. 201.
    Kobayashi M, Matsuoka I (2000) Enhancement of sympathetic neuron survival by synergistic action of NT3 and GDNF. Neuroreport 11(11):2541–2545PubMedCrossRefGoogle Scholar
  202. 202.
    Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394. doi: 10.1038/nrn812 PubMedCrossRefGoogle Scholar
  203. 203.
    Funahashi Y, Namba T, Nakamuta S, Kaibuchi K (2014) Neuronal polarization in vivo: Growing in a complex environment. Curr Opin Neurobiol 27:215–223. doi: 10.1016/j.conb.2014.04.009 PubMedCrossRefGoogle Scholar
  204. 204.
    Okada N, Wada K, Goldsmith BA, Koizumi S (1996) SHP-2 is involved in neurotrophin signaling. Biochem Biophys Res Commun 229(2):607–611. doi: 10.1006/bbrc.1996.1851 PubMedCrossRefGoogle Scholar
  205. 205.
    Easton JB, Royer AR, Middlemas DS (2006) The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J Neurochem 97(3):834–845. doi: 10.1111/j.1471-4159.2006.03789.x PubMedCrossRefGoogle Scholar
  206. 206.
    Goldsmith BA, Koizumi S (1997) Transient association of the phosphotyrosine phosphatase SHP-2 with TrkA is induced by nerve growth factor. J Neurochem 69(3):1014–1019PubMedCrossRefGoogle Scholar
  207. 207.
    Dance M, Montagner A, Salles JP, Yart A, Raynal P (2008) The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20(3):453–459. doi: 10.1016/j.cellsig.2007.10.002 PubMedCrossRefGoogle Scholar
  208. 208.
    Uren RT, Turnley AM (2014) Regulation of neurotrophin receptor (Trk) signaling: suppressor of cytokine signaling 2 (SOCS2) is a new player. Front Mol Neurosci 7:39. doi: 10.3389/fnmol.2014.00039 PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Arevalo JC, Yano H, Teng KK, Chao MV (2004) A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J 23(12):2358–2368. doi: 10.1038/sj.emboj.7600253 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Feng GS (2007) Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res 17(1):37–41. doi: 10.1038/sj.cr.7310140 PubMedCrossRefGoogle Scholar
  211. 211.
    Shen Y, Inoue N, Heese K (2010) Neurotrophin-4 (ntf4) mediates neurogenesis in mouse embryonic neural stem cells through the inhibition of the signal transducer and activator of transcription-3 (stat3) and the modulation of the activity of protein kinase B. Cell Mol Neurobiol 30(6):909–916. doi: 10.1007/s10571-010-9520-1 PubMedCrossRefGoogle Scholar
  212. 212.
    Miranda C, Fumagalli T, Anania MC, Vizioli MG, Pagliardini S, Pierotti MA, Greco A (2010) Role of STAT3 in in vitro transformation triggered by TRK oncogenes. PLoS One 5(3), e9446. doi: 10.1371/journal.pone.0009446 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR (2005) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci U S A 102(41):14889–14894. doi: 10.1073/pnas.0507125102 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Yamauchi J, Chan JR, Miyamoto Y, Tsujimoto G, Shooter EM (2005) The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proc Natl Acad Sci U S A 102(14):5198–5203. doi: 10.1073/pnas.0501160102 PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Cherfils J (2014) GEFs and GAPs: mechanisms and structures. In: Ras superfamily small G proteins: biology and mechanisms 1. Springer, pp 51–63Google Scholar
  216. 216.
    Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309. doi: 10.1152/physrev.00003.2012 PubMedCrossRefGoogle Scholar
  217. 217.
    Yamauchi J, Chan JR, Shooter EM (2003) Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A 100(24):14421–14426. doi: 10.1073/pnas.2336152100 PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Newbern JM, Li X, Shoemaker SE et al (2011) Specific functions for ERK/MAPK signaling during PNS development. Neuron 69(1):91–105. doi: 10.1016/j.neuron.2010.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4(10):981–988. doi: 10.1038/nn720 PubMedCrossRefGoogle Scholar
  220. 220.
    Finegan KG, Wang X, Lee EJ, Robinson AC, Tournier C (2009) Regulation of neuronal survival by the extracellular signal-regulated protein kinase 5. Cell Death Differ 16(5):674–683. doi: 10.1038/cdd.2008.193 PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Morooka T, Nishida E (1998) Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem 273(38):24285–24288PubMedCrossRefGoogle Scholar
  222. 222.
    Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296(5573):1648–1649. doi: 10.1126/science.1071552 PubMedCrossRefGoogle Scholar
  223. 223.
    Li Y, Holtzman DM, Kromer LF, Kaplan DR, Chua-Couzens J, Clary DO, Knusel B, Mobley WC (1995) Regulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J Neurosci 15(4):2888–2905PubMedGoogle Scholar
  224. 224.
    Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603–614. doi: 10.1038/nrn1726 PubMedCrossRefGoogle Scholar
  225. 225.
    Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28(9):464–471. doi: 10.1016/j.tins.2005.07.003 PubMedCrossRefGoogle Scholar
  226. 226.
    Ortega JA, Alcantara S (2010) BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration. Cereb Cortex 20(9):2132–2144. doi: 10.1093/cercor/bhp275 PubMedCrossRefGoogle Scholar
  227. 227.
    Cheng A, Coksaygan T, Tang H, Khatri R, Balice-Gordon RJ, Rao MS, Mattson MP (2007) Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem 100(6):1515–1530. doi: 10.1111/j.1471-4159.2006.04337.x PubMedGoogle Scholar
  228. 228.
    Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11(2):172–178. doi: 10.1101/lm.67804 PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Gottschalk WA, Jiang H, Tartaglia N, Feng L, Figurov A, Lu B (1999) Signaling mechanisms mediating BDNF modulation of synaptic plasticity in the hippocampus. Learn Mem 6(3):243–256PubMedPubMedCentralGoogle Scholar
  230. 230.
    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204. doi: 10.1016/j.neuron.2010.03.035 PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125. doi: 10.1016/j.pneurobio.2005.06.003 PubMedCrossRefGoogle Scholar
  232. 232.
    Cavanaugh JE, Ham J, Hetman M, Poser S, Yan C, Xia Z (2001) Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J Neurosci 21(2):434–443PubMedGoogle Scholar
  233. 233.
    Wang W, Pan YW, Zou J, Li T, Abel GM, Palmiter RD, Storm DR, Xia Z (2014) Genetic activation of ERK5 MAP kinase enhances adult neurogenesis and extends hippocampus-dependent long-term memory. J Neurosci 34(6):2130–2147. doi: 10.1523/JNEUROSCI.3324-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Ohtsuka M, Fukumitsu H, Furukawa S (2009) Neurotrophin-3 stimulates neurogenetic proliferation via the extracellular signal-regulated kinase pathway. J Neurosci Res 87(2):301–306. doi: 10.1002/jnr.21855 PubMedCrossRefGoogle Scholar
  235. 235.
    Aletsee C, Beros A, Mullen L, Palacios S, Pak K, Dazert S, Ryan AF (2001) Ras/MEK but not p38 signaling mediates NT-3-induced neurite extension from spiral ganglion neurons. J Assoc Res Otolaryngol 2(4):377–387PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Ming G, Song H, Berninger B, Inagaki N, Tessier-Lavigne M, Poo M (1999) Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23(1):139–148PubMedCrossRefGoogle Scholar
  237. 237.
    Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157(4):565–570. doi: 10.1083/jcb.200202010 PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6(5):461–467. doi: 10.1038/nn1045 PubMedGoogle Scholar
  239. 239.
    Fujita Y, Yamashita T (2014) Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8:338. doi: 10.3389/fnins.2014.00338 PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Yamada M, Numakawa T, Koshimizu H, Tanabe K, Wada K, Koizumi S, Hatanaka H (2002) Distinct usages of phospholipase C gamma and Shc in intracellular signaling stimulated by neurotrophins. Brain Res 955(1-2):183–190PubMedCrossRefGoogle Scholar
  241. 241.
    Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H (2009) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A 106(2):647–652. doi: 10.1073/pnas.0800888106 PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Blanquet PR (2000) Identification of two persistently activated neurotrophin-regulated pathways in rat hippocampus. Neuroscience 95(3):705–719PubMedCrossRefGoogle Scholar
  243. 243.
    Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20:70–78. doi: 10.1152/physiol.00042.2004 CrossRefGoogle Scholar
  244. 244.
    Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36(1):121–137PubMedCrossRefGoogle Scholar
  245. 245.
    Mizoguchi Y, Ishibashi H, Nabekura J (2003) The action of BDNF on GABA(A) currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J Physiol 548(Pt 3):703–709. doi: 10.1113/jphysiol.2003.038935 PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Canossa M, Gartner A, Campana G, Inagaki N, Thoenen H (2001) Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO J 20(7):1640–1650. doi: 10.1093/emboj/20.7.1640 PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Yang F, He X, Feng L, Mizuno K, Liu XW, Russell J, Xiong WC, Lu B (2001) PI-3 kinase and IP3 are both necessary and sufficient to mediate NT3-induced synaptic potentiation. Nat Neurosci 4(1):19–28. doi: 10.1038/82858 PubMedCrossRefGoogle Scholar
  248. 248.
    Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98(6):3555–3560. doi: 10.1073/pnas.061020198 PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Lee FS, Rajagopal R, Chao MV (2002) Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev 13(1):11–17PubMedCrossRefGoogle Scholar
  250. 250.
    Domeniconi M, Chao MV (2010) Transactivation of Trk receptors in spinal motor neurons. Histol Histopathol 25(9):1207–1213PubMedGoogle Scholar
  251. 251.
    Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24(30):6650–6658. doi: 10.1523/JNEUROSCI.0010-04.2004 PubMedCrossRefGoogle Scholar
  252. 252.
    Jeanneteau F, Chao MV (2006) Promoting neurotrophic effects by GPCR ligands. Novartis Found Symp 276:181–189, discussion 189–192, 233–187, 275–181PubMedCrossRefGoogle Scholar
  253. 253.
    Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J Biol Chem 277(11):9096–9102. doi: 10.1074/jbc.M107421200 PubMedCrossRefGoogle Scholar
  254. 254.
    Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci U S A 104(43):17210–17215. doi: 10.1073/pnas.0705267104 PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Puehringer D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16(4):407–415. doi: 10.1038/nn.3333 PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23(1-2):15–24. doi: 10.1016/j.cytogfr.2012.01.002 PubMedCrossRefGoogle Scholar
  257. 257.
    Li YX, Xu Y, Ju D, Lester HA, Davidson N, Schuman EM (1998) Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 95(18):10884–10889PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Steinbeck JA, Methner A (2005) Translational downregulation of the noncatalytic growth factor receptor TrkB.T1 by ischemic preconditioning of primary neurons. Gene Expr 12(2):99–106PubMedCrossRefGoogle Scholar
  259. 259.
    Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F, Lessmann V (2004) Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 117(Pt 24):5803–5814. doi: 10.1242/jcs.01511 PubMedCrossRefGoogle Scholar
  260. 260.
    Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16(10):3123–3129PubMedPubMedCentralGoogle Scholar
  261. 261.
    Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3(4):342–349. doi: 10.1038/73911 PubMedCrossRefGoogle Scholar
  262. 262.
    Brodeur GM, Minturn JE, Ho R et al (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15(10):3244–3250. doi: 10.1158/1078-0432.CCR-08-1815 PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Carim-Todd L, Bath KG, Fulgenzi G et al (2009) Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci 29(3):678–685. doi: 10.1523/JNEUROSCI.5060-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Ohira K, Funatsu N, Homma KJ, Sahara Y, Hayashi M, Kaneko T, Nakamura S (2007) Truncated TrkB-T1 regulates the morphology of neocortical layer I astrocytes in adult rat brain slices. Eur J Neurosci 25(2):406–416. doi: 10.1111/j.1460-9568.2007.05282.x PubMedCrossRefGoogle Scholar
  265. 265.
    Ohira K, Kumanogoh H, Sahara Y, Homma KJ, Hirai H, Nakamura S, Hayashi M (2005) A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci 25(6):1343–1353. doi: 10.1523/JNEUROSCI.4436-04.2005 PubMedCrossRefGoogle Scholar
  266. 266.
    Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M (2006) TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun 342(3):867–874. doi: 10.1016/j.bbrc.2006.02.033 PubMedCrossRefGoogle Scholar
  267. 267.
    Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23(4):1416–1423PubMedGoogle Scholar
  268. 268.
    Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17(3):1201–1211PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Aroeira RI, Sebastiao AM, Valente CA (2015) BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 63(12):2181–2197. doi: 10.1002/glia.22884 PubMedCrossRefGoogle Scholar
  270. 270.
    Michaelsen K, Zagrebelsky M, Berndt-Huch J, Polack M, Buschler A, Sendtner M, Korte M (2010) Neurotrophin receptors TrkB.T1 and p75NTR cooperate in modulating both functional and structural plasticity in mature hippocampal neurons. Eur J Neurosci 32(11):1854–1865. doi: 10.1111/j.1460-9568.2010.07460.x PubMedCrossRefGoogle Scholar
  271. 271.
    Kryl D, Barker PA (2000) TTIP is a novel protein that interacts with the truncated T1 TrkB neurotrophin receptor. Biochem Biophys Res Commun 279(3):925–930. doi: 10.1006/bbrc.2000.4058 PubMedCrossRefGoogle Scholar
  272. 272.
    Palko ME, Coppola V, Tessarollo L (1999) Evidence for a role of truncated trkC receptor isoforms in mouse development. J Neurosci 19(2):775–782PubMedGoogle Scholar
  273. 273.
    Menn B, Timsit S, Calothy G, Lamballe F (1998) Differential expression of TrkC catalytic and noncatalytic isoforms suggests that they act independently or in association. J Comp Neurol 401(1):47–64PubMedCrossRefGoogle Scholar
  274. 274.
    Esteban PF, Yoon HY, Becker J et al (2006) A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J Cell Biol 173(2):291–299. doi: 10.1083/jcb.200512013 PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Ibanez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35(7):431–440. doi: 10.1016/j.tins.2012.03.007 PubMedCrossRefGoogle Scholar
  276. 276.
    Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350(6320):678–683. doi: 10.1038/350678a0 PubMedCrossRefGoogle Scholar
  277. 277.
    Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276(35):32687–32695. doi: 10.1074/jbc.M011674200 PubMedCrossRefGoogle Scholar
  278. 278.
    Meeker R, Williams K (2014) Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 9(5):615–628. doi: 10.1007/s11481-014-9566-9 PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Gentry JJ, Rutkoski NJ, Burke TL, Carter BD (2004) A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. J Biol Chem 279(16):16646–16656. doi: 10.1074/jbc.M309209200 PubMedCrossRefGoogle Scholar
  280. 280.
    Linggi MS, Burke TL, Williams BB, Harrington A, Kraemer R, Hempstead BL, Yoon SO, Carter BD (2005) Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem 280(14):13801–13808. doi: 10.1074/jbc.M410435200 PubMedCrossRefGoogle Scholar
  281. 281.
    Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277(50):48043–48050. doi: 10.1074/jbc.M205324200 PubMedCrossRefGoogle Scholar
  282. 282.
    Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA (1995) Ceramide activates the stress-activated protein kinases. J Biol Chem 270(39):22689–22692PubMedCrossRefGoogle Scholar
  283. 283.
    Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M (2002) Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem 277(12):9812–9818. doi: 10.1074/jbc.M109862200 PubMedCrossRefGoogle Scholar
  284. 284.
    Hamanoue M, Middleton G, Wyatt S, Jaffray E, Hay RT, Davies AM (1999) p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci 14(1):28–40. doi: 10.1006/mcne.1999.0770 PubMedCrossRefGoogle Scholar
  285. 285.
    Khursigara G, Orlinick JR, Chao MV (1999) Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem 274(5):2597–2600PubMedCrossRefGoogle Scholar
  286. 286.
    Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272(5261):542–545PubMedCrossRefGoogle Scholar
  287. 287.
    Khursigara G, Bertin J, Yano H, Moffett H, DiStefano PS, Chao MV (2001) A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J Neurosci 21(16):5854–5863PubMedGoogle Scholar
  288. 288.
    Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci U S A 107(8):3817–3822. doi: 10.1073/pnas.0909276107 PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Volosin M, Trotter C, Cragnolini A, Kenchappa RS, Light M, Hempstead BL, Carter BD, Friedman WJ (2008) Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci 28(39):9870–9879. doi: 10.1523/JNEUROSCI.2841-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Kenchappa RS, Zampieri N, Chao MV, Barker PA, Teng HK, Hempstead BL, Carter BD (2006) Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron 50(2):219–232. doi: 10.1016/j.neuron.2006.03.011 PubMedCrossRefGoogle Scholar
  291. 291.
    Geetha T, Kenchappa RS, Wooten MW, Carter BD (2005) TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO J 24(22):3859–3868. doi: 10.1038/sj.emboj.7600845 PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Chen J, Wu X, Shao B, Zhao W, Shi W, Zhang S, Ni L, Shen A (2011) Increased expression of TNF receptor-associated factor 6 after rat traumatic brain injury. Cell Mol Neurobiol 31(2):269–275. doi: 10.1007/s10571-010-9617-6 PubMedCrossRefGoogle Scholar
  293. 293.
    Wu X, Xu XM (2016) RhoA/Rho kinase in spinal cord injury. Neural Regen Res 11(1):23–27. doi: 10.4103/1673-5374.169601 PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Meeker RB, Williams KS (2015) The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 10(5):721–725. doi: 10.4103/1673-5374.156967 PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24(3):585–593. doi: 10.1016/S0896-6273(00)81114-9 PubMedCrossRefGoogle Scholar
  296. 296.
    Song W, Volosin M, Cragnolini AB, Hempstead BL, Friedman WJ (2010) ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 30(46):15608–15615. doi: 10.1523/JNEUROSCI.2581-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Sheng M, Sabatini BL, Sudhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4(5). doi: 10.1101/cshperspect.a005777
  298. 298.
    Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572. doi: 10.1007/978-3-7091-0932-8_24 PubMedCrossRefGoogle Scholar
  299. 299.
    Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3(12). doi: 10.1101/cshperspect.a005637
  300. 300.
    Calabresi P, Mercuri NB, Di Filippo M (2009) Synaptic plasticity, dopamine and Parkinson’s disease: one step ahead. Brain 132(Pt 2):285–287. doi: 10.1093/brain/awn340 PubMedGoogle Scholar
  301. 301.
    Tancredi V, D’Arcangelo G, Mercanti D, Calissano P (1993) Nerve growth factor inhibits the expression of long-term potentiation in hippocampal slices. Neuroreport 4(2):147–150PubMedCrossRefGoogle Scholar
  302. 302.
    Brancucci A, Kuczewski N, Covaceuszach S, Cattaneo A, Domenici L (2004) Nerve growth factor favours long-term depression over long-term potentiation in layer II-III neurones of rat visual cortex. J Physiol 559(Pt 2):497–506. doi: 10.1113/jphysiol.2004.068049 PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H (1997) Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci 17(17):6707–6716PubMedGoogle Scholar
  304. 304.
    Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29(35):10883–10889. doi: 10.1523/JNEUROSCI.2594-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Arias ER, Valle-Leija P, Morales MA, Cifuentes F (2014) Differential contribution of BDNF and NGF to long-term potentiation in the superior cervical ganglion of the rat. Neuropharmacology 81:206–214. doi: 10.1016/j.neuropharm.2014.02.001 PubMedCrossRefGoogle Scholar
  306. 306.
    Edelmann E, Lessmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76(Pt C):610–627. doi: 10.1016/j.neuropharm.2013.05.043 PubMedCrossRefGoogle Scholar
  307. 307.
    Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250. doi: 10.1007/978-3-642-45106-5_9 PubMedCrossRefGoogle Scholar
  308. 308.
    Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9(6):1081–1088PubMedCrossRefGoogle Scholar
  309. 309.
    Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381(6584):706–709. doi: 10.1038/381706a0 PubMedCrossRefGoogle Scholar
  310. 310.
    Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(19):8856–8860PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145PubMedCrossRefGoogle Scholar
  312. 312.
    Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077. doi: 10.1038/nn1510 PubMedCrossRefGoogle Scholar
  313. 313.
    Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11(2):131–133. doi: 10.1038/nn2038 PubMedCrossRefGoogle Scholar
  314. 314.
    Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 66(Suppl 1):3–17CrossRefGoogle Scholar
  315. 315.
    Bliss TV, Collingridge GL, Morris RG (2014) Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci 369 (1633):20130129. doi: 10.1098/rstb.2013.0129 Google Scholar
  316. 316.
    Chen G, Kolbeck R, Barde YA, Bonhoeffer T, Kossel A (1999) Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci 19(18):7983–7990PubMedGoogle Scholar
  317. 317.
    Ma L, Reis G, Parada LF, Schuman EM (1999) Neuronal NT-3 is not required for synaptic transmission or long-term potentiation in area CA1 of the adult rat hippocampus. Learn Mem 6(3):267–275PubMedPubMedCentralGoogle Scholar
  318. 318.
    Kaplan DR, Cooper E (2001) PI-3 kinase and IP3: partners in NT3-induced synaptic transmission. Nat Neurosci 4(1):5–7. doi: 10.1038/82897 PubMedCrossRefGoogle Scholar
  319. 319.
    Galvan EJ, Cosgrove KE, Barrionuevo G (2011) Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 60(5):740–747. doi: 10.1016/j.neuropharm.2010.11.008 PubMedCrossRefGoogle Scholar
  320. 320.
    Ramos-Languren LE, Escobar ML (2013) Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci 37(8):1248–1259. doi: 10.1111/ejn.12141 PubMedCrossRefGoogle Scholar
  321. 321.
    Xie CW, Sayah D, Chen QS, Wei WZ, Smith D, Liu X (2000) Deficient long-term memory and long-lasting long-term potentiation in mice with a targeted deletion of neurotrophin-4 gene. Proc Natl Acad Sci U S A 97(14):8116–8121. doi: 10.1073/pnas.140204597 PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Fan G, Egles C, Sun Y, Minichiello L, Renger JJ, Klein R, Liu G, Jaenisch R (2000) Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nat Neurosci 3(4):350–357. doi: 10.1038/73921 PubMedCrossRefGoogle Scholar
  323. 323.
    Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21(3):823–831. doi: 10.3233/JAD-2010-100264 PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Callaghan CK, Kelly AM (2013) Neurotrophins play differential roles in short and long-term recognition memory. Neurobiol Learn Mem 104:39–48. doi: 10.1016/j.nlm.2013.04.011 PubMedCrossRefGoogle Scholar
  325. 325.
    Wondolowski J, Dickman D (2013) Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 7:223. doi: 10.3389/fncel.2013.00223 PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Stewart MH, Bendall SC, Bhatia M (2008) Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med (Berl) 86(8):875–886. doi: 10.1007/s00109-008-0356-9 CrossRefGoogle Scholar
  327. 327.
    Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227(2):271–278. doi: 10.1006/dbio.2000.9912 PubMedCrossRefGoogle Scholar
  328. 328.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97(21):11307–11312. doi: 10.1073/pnas.97.21.11307 PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Bentz K, Molcanyi M, Riess P et al (2007) Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences. J Neurosci Res 85(5):1057–1064. doi: 10.1002/jnr.21219 PubMedCrossRefGoogle Scholar
  330. 330.
    Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G, Campagnolo L (2009) p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res 315(18):3220–3232. doi: 10.1016/j.yexcr.2009.08.014 PubMedCrossRefGoogle Scholar
  331. 331.
    Wobus AM, Grosse R, Schoneich J (1988) Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomed Biochim Acta 47(12):965–973PubMedGoogle Scholar
  332. 332.
    Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, Benvenisty N (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res 913(2):201–205. doi: 10.1016/S0006-8993(01)02776-7 PubMedCrossRefGoogle Scholar
  333. 333.
    Levenberg S, Burdick JA, Kraehenbuehl T, Langer R (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11(3-4):506–512. doi: 10.1089/ten.2005.11.506 PubMedCrossRefGoogle Scholar
  334. 334.
    Leschik J, Eckenstaler R, Nieweg K, Lichtenecker P, Brigadski T, Gottmann K, Lessmann V, Lutz B (2013) Embryonic stem cells stably expressing BDNF-GFP exhibit a BDNF-release-dependent enhancement of neuronal differentiation. J Cell Sci 126(Pt 21):5062–5073. doi: 10.1242/jcs.135384 PubMedCrossRefGoogle Scholar
  335. 335.
    Xu R, Srinivasan SP, Sureshkumar P et al (2015) Effects of synthetic neural adhesion molecule mimetic peptides and related proteins on the cardiomyogenic differentiation of mouse embryonic stem cells. Cell Physiol Biochem 35(6):2437–2450. doi: 10.1159/000374044 PubMedCrossRefGoogle Scholar
  336. 336.
    Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80(3):588–601. doi: 10.1016/j.neuron.2013.10.037 PubMedCrossRefGoogle Scholar
  337. 337.
    Lindvall O, Kokaia Z (2011) Stem cell research in stroke: how far from the clinic? Stroke 42(8):2369–2375. doi: 10.1161/STROKEAHA.110.599654 PubMedCrossRefGoogle Scholar
  338. 338.
    Tong LM, Fong H, Huang Y (2015) Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp Mol Med 47, e151. doi: 10.1038/emm.2014.124 PubMedPubMedCentralCrossRefGoogle Scholar
  339. 339.
    Islam O, Loo TX, Heese K (2009) Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Curr Neurovasc Res 6(1):42–53. doi: 10.2174/156720209787466028#sthash.4DDR9O4h.dpuf PubMedCrossRefGoogle Scholar
  340. 340.
    Lachyankar MB, Condon PJ, Quesenberry PJ, Litofsky NS, Recht LD, Ross AH (1997) Embryonic precursor cells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Exp Neurol 144(2):350–360. doi: 10.1006/exnr.1997.6434 PubMedCrossRefGoogle Scholar
  341. 341.
    Ahmed S, Reynolds B, Weiss S (1995) BDNF enhances the differentiation but not the survival of CNS stem cell- derived neuronal precursors. J Neurosci 15(8):5765–5778PubMedGoogle Scholar
  342. 342.
    Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378(1):135–157. doi: 10.1002/(SICI)1096-9861(19970203)378:1<135::AID-CNE8>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  343. 343.
    Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85(9):1851–1862. doi: 10.1002/jnr.21319 PubMedCrossRefGoogle Scholar
  344. 344.
    Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38(1):65–81. doi: 10.1002/(SICI)1097-4695(199901)38:1<65::AID-NEU5>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  345. 345.
    Barnabe-Heider F, Miller FD (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 23(12):5149–5160PubMedGoogle Scholar
  346. 346.
    Temple S, Qian X (1995) bFGF, neurotrophins, and the control or cortical neurogenesis. Neuron 15(2):249–252. doi: 10.1016/0896-6273(95)90030-6 PubMedCrossRefGoogle Scholar
  347. 347.
    Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19(5):475–479. doi: 10.1038/88158 PubMedCrossRefGoogle Scholar
  348. 348.
    Liu F, Xuan A, Chen Y, Zhang J, Xu L, Yan Q, Long D (2014) Combined effect of nerve growth factor and brainderived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep 10(4):1739–1745. doi: 10.3892/mmr.2014.2393 PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Ito H, Nakajima A, Nomoto H, Furukawa S (2003) Neurotrophins facilitate neuronal differentiation of cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors Mash1 and Math1. J Neurosci Res 71(5):648–658. doi: 10.1002/jnr.10532 PubMedCrossRefGoogle Scholar
  350. 350.
    Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ (2013) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/beta-catenin signaling pathway. J Neurosci Res 91(1):30–41. doi: 10.1002/jnr.23138 PubMedGoogle Scholar
  351. 351.
    Tervonen TA, Ajamian F, De Wit J, Verhaagen J, Castren E, Castren M (2006) Overexpression of a truncated TrkB isoform increases the proliferation of neural progenitors. Eur J Neurosci 24(5):1277–1285. doi: 10.1111/j.1460-9568.2006.05010.x PubMedCrossRefGoogle Scholar
  352. 352.
    Chen SQ, Cai Q, Shen YY, Cai XY, Lei HY (2014) Combined use of NGF/BDNF/bFGF promotes proliferation and differentiation of neural stem cells in vitro. Int J Dev Neurosci 38:74–78. doi: 10.1016/j.ijdevneu.2014.08.002 PubMedCrossRefGoogle Scholar
  353. 353.
    Lu HX, Hao ZM, Jiao Q et al (2011) Neurotrophin-3 gene transduction of mouse neural stem cells promotes proliferation and neuronal differentiation in organotypic hippocampal slice cultures. Med Sci Monit 17(11):BR305–BR311. doi: 10.12659/MSM.882039 PubMedPubMedCentralGoogle Scholar
  354. 354.
    Jin L, Hu X, Feng L (2005) NT3 inhibits FGF2-induced neural progenitor cell proliferation via the PI3K/GSK3 pathway. J Neurochem 93(5):1251–1261. doi: 10.1111/j.1471-4159.2005.03118.x PubMedCrossRefGoogle Scholar
  355. 355.
    Jansson LC, Louhivuori L, Wigren HK, Nordstrom T, Louhivuori V, Castren ML, Akerman KE (2012) Brain-derived neurotrophic factor increases the motility of a particular N-methyl-D-aspartate/GABA-responsive subset of neural progenitor cells. Neuroscience 224:223–234. doi: 10.1016/j.neuroscience.2012.08.038 PubMedCrossRefGoogle Scholar
  356. 356.
    Grade S, Weng YC, Snapyan M, Kriz J, Malva JO, Saghatelyan A (2013) Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 8(1), e55039. doi: 10.1371/journal.pone.0055039 PubMedPubMedCentralCrossRefGoogle Scholar
  357. 357.
    Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J (2011) BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules 16(12):10146–10156. doi: 10.3390/molecules161210146 PubMedCrossRefGoogle Scholar
  358. 358.
    Behar TN, Dugich-Djordjevic MM, Li YX et al (1997) Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur J Neurosci 9(12):2561–2570. doi: 10.1111/j.1460-9568.1997.tb01685.x PubMedCrossRefGoogle Scholar
  359. 359.
    Delgado AC, Ferron SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM, D’Ocon P, Farinas I (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83(3):572–585. doi: 10.1016/j.neuron.2014.06.015 PubMedCrossRefGoogle Scholar
  360. 360.
    Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci U S A 89(2):648–652PubMedPubMedCentralCrossRefGoogle Scholar
  361. 361.
    Kokaia Z, Andsberg G, Yan Q, Lindvall O (1998) Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 154(2):289–301. doi: 10.1006/exnr.1998.6888 PubMedCrossRefGoogle Scholar
  362. 362.
    Kokaia Z, Zhao Q, Kokaia M, Elmer E, Metsis M, Smith ML, Siesjo BK, Lindvall O (1995) Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 136(1):73–88. doi: 10.1006/exnr.1995.1085 PubMedCrossRefGoogle Scholar
  363. 363.
    Sulejczak D, Ziemlinska E, Czarkowska-Bauch J, Nosecka E, Strzalkowski R, Skup M (2007) Focal photothrombotic lesion of the rat motor cortex increases BDNF levels in motor-sensory cortical areas not accompanied by recovery of forelimb motor skills. J Neurotrauma 24(8):1362–1377. doi: 10.1089/neu.2006.0261 PubMedCrossRefGoogle Scholar
  364. 364.
    Bejot Y, Prigent-Tessier A, Cachia C, Giroud M, Mossiat C, Bertrand N, Garnier P, Marie C (2011) Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats. Neurochem Int 58(1):102–111. doi: 10.1016/j.neuint.2010.10.019 PubMedCrossRefGoogle Scholar
  365. 365.
    Park KI, Hack MA, Ourednik J et al (2006) Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 199(1):156–178. doi: 10.1016/j.expneurol.2006.04.002 PubMedCrossRefGoogle Scholar
  366. 366.
    Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20(11):1111–1117. doi: 10.1038/nbt751 PubMedCrossRefGoogle Scholar
  367. 367.
    Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122. doi: 10.1073/pnas.0408258102 PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Aboody KS, Brown A, Rainov NG et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97(23):12846–12851. doi: 10.1073/pnas.97.23.12846 PubMedPubMedCentralCrossRefGoogle Scholar
  369. 369.
    Kelly S, Bliss TM, Shah AK et al (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101(32):11839–11844. doi: 10.1073/pnas.0404474101 PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026(1):11–22. doi: 10.1016/j.brainres.2004.07.087 PubMedCrossRefGoogle Scholar
  371. 371.
    Flax JD, Aurora S, Yang C et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16(11):1033–1039. doi: 10.1038/3473 PubMedCrossRefGoogle Scholar
  372. 372.
    Snapyan M, Lemasson M, Brill MS et al (2009) Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci 29(13):4172–4188. doi: 10.1523/JNEUROSCI.4956-08.2009 PubMedCrossRefGoogle Scholar
  373. 373.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650. doi: 10.1002/jor.1100090504 PubMedCrossRefGoogle Scholar
  374. 374.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25(11):2896–2902. doi: 10.1634/stemcells.2007-0637 PubMedCrossRefGoogle Scholar
  375. 375.
    Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H (2014) Stem-cell challenges in the treatment of Alzheimer’s disease: a long way from bench to bedside. Med Res Rev 34(5):957–978. doi: 10.1002/med.21309 PubMedCrossRefGoogle Scholar
  376. 376.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940. doi: 10.1161/CIRCRESAHA.111.243147 PubMedPubMedCentralCrossRefGoogle Scholar
  377. 377.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192. doi: 10.1634/stemcells.19-3-180 PubMedCrossRefGoogle Scholar
  378. 378.
    Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31(1):285–316. doi: 10.1146/annurev-immunol-032712-095919 PubMedCrossRefGoogle Scholar
  379. 379.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946. doi: 10.2217/rme.10.72 PubMedPubMedCentralCrossRefGoogle Scholar
  380. 380.
    Wyse RD, Dunbar GL, Rossignol J (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 15(2):1719–1745. doi: 10.3390/ijms15021719 PubMedPubMedCentralCrossRefGoogle Scholar
  381. 381.
    Yaghoobi MM, Mowla SJ (2006) Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett 397(1-2):149–154. doi: 10.1016/j.neulet.2005.12.009 PubMedCrossRefGoogle Scholar
  382. 382.
    Ribeiro CA, Salgado AJ, Fraga JS, Silva NA, Reis RL, Sousa N (2011) The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J Tissue Eng Regen Med 5(8):668–672. doi: 10.1002/term.365 PubMedCrossRefGoogle Scholar
  383. 383.
    Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29(41):12764–12767. doi: 10.1523/JNEUROSCI.3566-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  384. 384.
    Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64. doi: 10.1016/j.expneurol.2005.10.029 PubMedCrossRefGoogle Scholar
  385. 385.
    Montzka K, Fuhrmann T, Muller-Ehmsen J, Woltje M, Brook GA (2010) Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage. Cytotherapy 12(7):870–880. doi: 10.3109/14653249.2010.501789 PubMedCrossRefGoogle Scholar
  386. 386.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370PubMedCrossRefGoogle Scholar
  387. 387.
    Munoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 24(19):4585–4595. doi: 10.1523/JNEUROSCI.5060-03.2004 PubMedCrossRefGoogle Scholar
  388. 388.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256. doi: 10.1006/exnr.2000.7389 PubMedCrossRefGoogle Scholar
  389. 389.
    Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A 100(3):1364–1369. doi: 10.1073/pnas.0336479100 PubMedPubMedCentralCrossRefGoogle Scholar
  390. 390.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174(1):11–20. doi: 10.1006/exnr.2001.7853 PubMedCrossRefGoogle Scholar
  391. 391.
    Segal-Gavish H, Karvat G, Barak N et al (2016) Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice. Autism Res 9(1):17–32. doi: 10.1002/aur.1530 PubMedCrossRefGoogle Scholar
  392. 392.
    Hsieh JY, Wang HW, Chang SJ et al (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8), e72604. doi: 10.1371/journal.pone.0072604 PubMedPubMedCentralCrossRefGoogle Scholar
  393. 393.
    Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70. doi: 10.1016/j.scr.2009.02.006 PubMedCrossRefGoogle Scholar
  394. 394.
    Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMedCrossRefGoogle Scholar
  395. 395.
    Blais M, Levesque P, Bellenfant S, Berthod F (2013) Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and glial-derived neurotrophic factor enhance angiogenesis in a tissue-engineered in vitro model. Tissue Eng A 19(15-16):1655–1664. doi: 10.1089/ten.tea.2012.0745 CrossRefGoogle Scholar
  396. 396.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384. doi: 10.1634/stemcells.22-3-377 PubMedCrossRefGoogle Scholar
  397. 397.
    Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66(8):4249–4255. doi: 10.1158/0008-5472.CAN-05-2789 PubMedCrossRefGoogle Scholar
  398. 398.
    Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84(8):1656–1668. doi: 10.1002/jnr.21087 PubMedCrossRefGoogle Scholar
  399. 399.
    Shen L, Zeng W, Wu YX et al (2013) Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells. Cell Transplant 22(6):1011–1021. doi: 10.3727/096368912X657495 PubMedCrossRefGoogle Scholar
  400. 400.
    Akiyama Y, Mikami Y, Watanabe E et al (2014) The P75 neurotrophin receptor regulates proliferation of the human MG63 osteoblast cell line. Differentiation 87(3-4):111–118. doi: 10.1016/j.diff.2014.01.002 PubMedCrossRefGoogle Scholar
  401. 401.
    Mikami Y, Suzuki S, Ishii Y, Watanabe N, Takahashi T, Isokawa K, Honda MJ (2012) The p75 neurotrophin receptor regulates MC3T3-E1 osteoblastic differentiation. Differentiation 84(5):392–399. doi: 10.1016/j.diff.2012.07.001 PubMedCrossRefGoogle Scholar
  402. 402.
    Mogi M, Kondo A, Kinpara K, Togari A (2000) Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci 67(10):1197–1206. doi: 10.1016/S0024-3205(00)00705-0 PubMedCrossRefGoogle Scholar
  403. 403.
    Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653. doi: 10.1002/wsbm.86 PubMedPubMedCentralCrossRefGoogle Scholar
  404. 404.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. doi: 10.1038/nature12984 PubMedPubMedCentralCrossRefGoogle Scholar
  405. 405.
    Traycoff CM, Abboud MR, Laver J, Clapp DW, Hoffman R, Law P, Srour EF (1994) Human umbilical cord blood hematopoietic progenitor cells: are they the same as their adult bone marrow counterparts? Blood Cells 20(2-3):382–390, discussion 390-381PubMedGoogle Scholar
  406. 406.
    Chevalier S, Praloran V, Smith C et al (1994) Expression and functionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells. Blood 83(6):1479–1485PubMedGoogle Scholar
  407. 407.
    Cattoretti G, Schiro R, Orazi A, Soligo D, Colombo MP (1993) Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood 81(7):1726–1738PubMedGoogle Scholar
  408. 408.
    Simone MD, De Santis S, Vigneti E, Papa G, Amadori S, Aloe L (1999) Nerve growth factor: a survey of activity on immune and hematopoietic cells. Hematol Oncol 17(1):1–10PubMedCrossRefGoogle Scholar
  409. 409.
    Bracci-Laudiero L, Celestino D, Starace G et al (2003) CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 136(1-2):130–139. doi: 10.1016/S0165-5728(03)00007-9 PubMedCrossRefGoogle Scholar
  410. 410.
    Matsuda H, Coughlin MD, Bienenstock J, Denburg JA (1988) Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci U S A 85(17):6508–6512PubMedPubMedCentralCrossRefGoogle Scholar
  411. 411.
    Kannan Y, Matsuda H, Ushio H, Kawamoto K, Shimada Y (1993) Murine granulocyte-macrophage and mast cell colony formation promoted by nerve growth factor. Int Arch Allergy Immunol 102(4):362–367PubMedCrossRefGoogle Scholar
  412. 412.
    Matsuda H, Kannan Y, Ushio H, Kiso Y, Kanemoto T, Suzuki H, Kitamura Y (1991) Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 174(1):7–14. doi: 10.1084/jem.174.1.7 PubMedCrossRefGoogle Scholar
  413. 413.
    Tsuda T, Wong D, Dolovich J, Bienenstock J, Marshall J, Denburg JA (1991) Synergistic effects of nerve growth factor and granulocyte-macrophage colony-stimulating factor on human basophilic cell differentiation. Blood 77(5):971–979PubMedGoogle Scholar
  414. 414.
    Hamada A, Watanabe N, Ohtomo H, Matsuda H (1996) Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol 93(2):299–302PubMedCrossRefGoogle Scholar
  415. 415.
    Noga O, Englmann C, Hanf G, Grutzkau A, Guhl S, Kunkel G (2002) Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin Exp Allergy 32(9):1348–1354PubMedCrossRefGoogle Scholar
  416. 416.
    Hahn C, Islamian AP, Renz H, Nockher WA (2006) Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 117(4):787–794. doi: 10.1016/j.jaci.2005.12.1339 PubMedCrossRefGoogle Scholar
  417. 417.
    Noga O, Englmann C, Hanf G, Grutzkau A, Seybold J, Kunkel G (2003) The production, storage and release of the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 by human peripheral eosinophils in allergics and non-allergics. Clin Exp Allergy 33(5):649–654PubMedCrossRefGoogle Scholar
  418. 418.
    Nassenstein C, Braun A, Erpenbeck VJ et al (2003) The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma. J Exp Med 198(3):455–467. doi: 10.1084/jem.20010897 PubMedPubMedCentralCrossRefGoogle Scholar
  419. 419.
    Bischoff SC, Dahinden CA (1992) Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood 79(10):2662–2669PubMedGoogle Scholar
  420. 420.
    Bürgi B, Otten UH, Ochensberger B, Rihs S, Heese K, Ehrhard PB, Ibanez CF, Dahinden CA (1996) Basophil priming by neurotrophic factors. Activation through the trk receptor. J Immunol 157(12):5582–5588PubMedGoogle Scholar
  421. 421.
    Wohrer S, Knapp DJ, Copley MR et al (2014) Distinct stromal cell factor combinations can separately control hematopoietic stem cell survival, proliferation, and self-renewal. Cell Rep 7(6):1956–1967. doi: 10.1016/j.celrep.2014.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  422. 422.
    Besser M, Wank R (1999) Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and Neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162(11):6303–6306PubMedGoogle Scholar
  423. 423.
    Schuhmann B, Dietrich A, Sel S et al (2005) A role for brain-derived neurotrophic factor in B cell development. J Neuroimmunol 163(1–2):15–23. doi: 10.1016/j.jneuroim.2005.01.023 PubMedCrossRefGoogle Scholar
  424. 424.
    Li Z, Beutel G, Rhein M et al (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113(9):2028–2037. doi: 10.1182/blood-2008-05-155200 PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Yang M, Huang K, Busche G, Ganser A, Li Z (2014) Activation of TRKB receptor in murine hematopoietic stem/progenitor cells induced mastocytosis. Blood 124(7):1196–1197. doi: 10.1182/blood-2014-03-560466 PubMedCrossRefGoogle Scholar
  426. 426.
    Celebi B, Mantovani D, Pineault N (2012) Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine 58(3):327–331. doi: 10.1016/j.cyto.2012.02.011 PubMedCrossRefGoogle Scholar
  427. 427.
    DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464. doi: 10.1002/ana.410270502 PubMedCrossRefGoogle Scholar
  428. 428.
    Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11(1):29–37. doi: 10.1016/0197-4580(90)90059-9 PubMedCrossRefGoogle Scholar
  429. 429.
    Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384. doi: 10.1016/j.neurobiolaging.2005.09.012 PubMedCrossRefGoogle Scholar
  430. 430.
    Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 33(2):190–199. doi: 10.1002/ana.410330209 PubMedCrossRefGoogle Scholar
  431. 431.
    Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16(3):285–298. doi: 10.1016/0197-4580(95)00013-5, discussion 298-304PubMedCrossRefGoogle Scholar
  432. 432.
    Lue LF, Kuo YM, Roher AE et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155(3):853–862. doi: 10.1016/S0002-9440(10)65184-X PubMedPubMedCentralCrossRefGoogle Scholar
  433. 433.
    Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7(12):548–554. doi: 10.1016/S1471-4914(01)02173-6 PubMedCrossRefGoogle Scholar
  434. 434.
    LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872. doi: 10.1038/nrn960 PubMedCrossRefGoogle Scholar
  435. 435.
    Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463. doi: 10.1016/j.tins.2008.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  436. 436.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. doi: 10.1038/nature05292 PubMedCrossRefGoogle Scholar
  437. 437.
    Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi: 10.1038/nm1782 PubMedPubMedCentralCrossRefGoogle Scholar
  438. 438.
    Almeida CG, Takahashi RH, Gouras GK (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26(16):4277–4288. doi: 10.1523/JNEUROSCI.5078-05.2006 PubMedCrossRefGoogle Scholar
  439. 439.
    Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D (1995) Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 270(34):19702–19708PubMedCrossRefGoogle Scholar
  440. 440.
    Sulistio YA, Heese K (2016) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol 53(2):905–931. doi: 10.1007/s12035-014-9063-4 PubMedCrossRefGoogle Scholar
  441. 441.
    Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38(1):87–103. doi: 10.1146/annurev-neuro-071714-033828 PubMedPubMedCentralCrossRefGoogle Scholar
  442. 442.
    De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31(1):151–173. doi: 10.1146/annurev.neuro.31.061307.090711 PubMedCrossRefGoogle Scholar
  443. 443.
    Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622. doi: 10.1016/S1474-4422(13)70090-5 PubMedCrossRefGoogle Scholar
  444. 444.
    Stokin GB, Lillo C, Falzone TL et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288. doi: 10.1126/science.1105681 PubMedCrossRefGoogle Scholar
  445. 445.
    Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11(3):155–159. doi: 10.1038/nrn2786 PubMedGoogle Scholar
  446. 446.
    Goedert M (2015) Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349(6248):1255555. doi: 10.1126/science.1255555 PubMedCrossRefGoogle Scholar
  447. 447.
    Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3):209–245. doi: 10.1016/S0301-0082(02)00079-5 PubMedCrossRefGoogle Scholar
  448. 448.
    Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190. doi: 10.1126/science.6338589 PubMedCrossRefGoogle Scholar
  449. 449.
    Gutierrez H, Miranda MI, Bermudez-Rattoni F (1997) Learning impairment and cholinergic deafferentation after cortical nerve growth factor deprivation. J Neurosci 17(10):3796–3803PubMedGoogle Scholar
  450. 450.
    Prakash N, Cohen-Cory S, Penschuck S, Frostig RD (2004) Basal forebrain cholinergic system is involved in rapid nerve growth factor (NGF)-induced plasticity in the barrel cortex of adult rats. J Neurophysiol 91(1):424–437. doi: 10.1152/jn.00489.2003 PubMedCrossRefGoogle Scholar
  451. 451.
    Backman C, Rose GM, Hoffer BJ, Henry MA, Bartus RT, Friden P, Granholm AC (1996) Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci 16(17):5437–5442PubMedGoogle Scholar
  452. 452.
    Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6(8):2155–2162PubMedGoogle Scholar
  453. 453.
    Hatanaka H, Tsukui H, Nihonmatsu I (1988) Developmental change in the nerve growth factor action from induction of choline acetyltransferase to promotion of cell survival in cultured basal forebrain cholinergic neurons from postnatal rats. Brain Res 467(1):85–95. doi: 10.1016/0165-3806(88)90069-7 PubMedCrossRefGoogle Scholar
  454. 454.
    Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Bjorklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A 83(23):9231–9235PubMedPubMedCentralCrossRefGoogle Scholar
  455. 455.
    Mobley WC, Rutkowski JL, Tennekoon GI, Gemski J, Buchanan K, Johnston MV (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Res 387(1):53–62. doi: 10.1016/0169-328X(86)90020-3 PubMedCrossRefGoogle Scholar
  456. 456.
    Alderson RF, Alterman AL, Barde YA, Lindsay RM (1990) Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5(3):297–306. doi: 10.1016/0896-6273(90)90166-D PubMedCrossRefGoogle Scholar
  457. 457.
    Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263(5153):1618–1623. doi: 10.1126/science.7907431 PubMedCrossRefGoogle Scholar
  458. 458.
    Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8(7):1452–1460PubMedCrossRefGoogle Scholar
  459. 459.
    Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57(6):846–851. doi: 10.1001/archneur.57.6.846 PubMedCrossRefGoogle Scholar
  460. 460.
    Forlenza OV, Miranda AS, Guimar I, Talib LL, Diniz BS, Gattaz WF, Teixeira AL (2015) Decreased neurotrophic support is associated with cognitive decline in non-demented subjects. J Alzheimers Dis 46(2):423–429. doi: 10.3233/JAD-150172 PubMedCrossRefGoogle Scholar
  461. 461.
    Crutcher KA, Scott SA, Liang S, Everson WV, Weingartner J (1993) Detection of NGF-like activity in human brain tissue: increased levels in Alzheimer’s disease. J Neurosci 13(6):2540–2550PubMedGoogle Scholar
  462. 462.
    Hellweg R, Gericke CA, Jendroska K, Hartung HD, Cervos-Navarro J (1998) NGF content in the cerebral cortex of non-demented patients with amyloid-plaques and in symptomatic Alzheimer’s disease. Int J Dev Neurosci 16(7-8):787–794. doi: 10.1016/s0736-5748(98)00088-4 PubMedCrossRefGoogle Scholar
  463. 463.
    Narisawa-Saito M, Wakabayashi K, Tsuji S, Takahashi H, Nawa H (1996) Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport 7(18):2925–2928PubMedCrossRefGoogle Scholar
  464. 464.
    Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Brain Res 387(1):85–92PubMedCrossRefGoogle Scholar
  465. 465.
    Hock C, Heese K, Muller-Spahn F, Hulette C, Rosenberg C, Otten U (1998) Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neurosci Lett 241(2-3):151–154. doi: 10.1016/S0304-3940(98)00019-6 PubMedCrossRefGoogle Scholar
  466. 466.
    Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104(34):13666–13671. doi: 10.1073/pnas.0706192104 PubMedPubMedCentralCrossRefGoogle Scholar
  467. 467.
    Cooper JD, Salehi A, Delcroix JD et al (2001) Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci U S A 98(18):10439–10444. doi: 10.1073/pnas.181219298 PubMedPubMedCentralCrossRefGoogle Scholar
  468. 468.
    Mufson EJ, Conner JM, Kordower JH (1995) Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. Neuroreport 6(7):1063–1066PubMedCrossRefGoogle Scholar
  469. 469.
    Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7(Suppl 1 (s1)):43–56. doi: 10.1111/j.1601-183X.2007.00378.x PubMedPubMedCentralCrossRefGoogle Scholar
  470. 470.
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63(6):641–649PubMedCrossRefGoogle Scholar
  471. 471.
    Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7(5):695–702PubMedCrossRefGoogle Scholar
  472. 472.
    Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res Mol Brain Res 76(2):347–354PubMedCrossRefGoogle Scholar
  473. 473.
    Connor B, Young D, Yan Q, Faull RLM, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Mol Brain Res 49(1-2):71–81. doi: 10.1016/S0169-328x(97)00125-3 PubMedCrossRefGoogle Scholar
  474. 474.
    Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58(7):729–739PubMedCrossRefGoogle Scholar
  475. 475.
    Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervos-Navarro J, Riederer P (2000) Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci 18(8):807–813. doi: 10.1016/S0736-5748(00)00046-0 CrossRefGoogle Scholar
  476. 476.
    Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70(3):462–473. doi: 10.1002/jnr.10351 PubMedCrossRefGoogle Scholar
  477. 477.
    Michalski B, Fahnestock M (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Mol Brain Res 111(1-2):148–154. doi: 10.1016/S0169-328x(03)00003-2 PubMedCrossRefGoogle Scholar
  478. 478.
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93(6):1412–1421. doi: 10.1111/j.1471-4159.2005.03135.x PubMedCrossRefGoogle Scholar
  479. 479.
    Laske C, Stransky E, Leyhe T et al (2007) BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res 41(5):387–394. doi: 10.1016/j.jpsychires.2006.01.014 PubMedCrossRefGoogle Scholar
  480. 480.
    Kunugi H, Ueki A, Otsuka M et al (2001) A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry 6(1):83–86PubMedCrossRefGoogle Scholar
  481. 481.
    Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269. doi: 10.1016/S0092-8674(03)00035-7 PubMedCrossRefGoogle Scholar
  482. 482.
    Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, Lee FS (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24(18):4401–4411. doi: 10.1523/jneurosci.0348-04.2004 PubMedCrossRefGoogle Scholar
  483. 483.
    Chen ZY, Ieraci A, Teng H et al (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25(26):6156–6166. doi: 10.1523/jneurosci.1017-05.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  484. 484.
    Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK (2006) BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59(9):812–815. doi: 10.1016/j.biopsych.2005.09.022 PubMedCrossRefGoogle Scholar
  485. 485.
    Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23(17):6690–6694PubMedGoogle Scholar
  486. 486.
    Nagata T, Shinagawa S, Nukariya K, Yamada H, Nakayama K (2012) Association between BDNF polymorphism (Val66Met) and executive function in patients with amnestic mild cognitive impairment or mild Alzheimer disease. Dement Geriatr Cogn Disord 33(4):266–272. doi: 10.1159/000339358 PubMedCrossRefGoogle Scholar
  487. 487.
    Tsai SJ, Hong CJ, Liu HC, Liu TY, Hsu LE, Lin CH (2004) Association analysis of brain-derived neurotrophic factor Val66Met polymorphisms with Alzheimer’s disease and age of onset. Neuropsychobiology 49(1):10–12. doi: 10.1159/000075332 PubMedCrossRefGoogle Scholar
  488. 488.
    Fukumoto N, Fujii T, Combarros O et al (2010) Sexually dimorphic effect of the Val66Met polymorphism of BDNF on susceptibility to Alzheimer’s disease: new data and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 153b(1):235–242. doi: 10.1002/ajmg.b.30986 PubMedGoogle Scholar
  489. 489.
    Ventriglia M, Bocchio Chiavetto L, Benussi L, Binetti G, Zanetti O, Riva MA, Gennarelli M (2002) Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol Psychiatry 7(2):136–137. doi: 10.1038/sj.mp.4000952 PubMedCrossRefGoogle Scholar
  490. 490.
    Bagnoli S, Nacmias B, Tedde A et al (2004) Brain-derived neurotrophic factor genetic variants are not susceptibility factors to Alzheimer’s disease in Italy. Ann Neurol 55(3):447–448. doi: 10.1002/ana.10842 PubMedCrossRefGoogle Scholar
  491. 491.
    Combarros O, Infante J, Llorca J, Berciano J (2004) Polymorphism at codon 66 of the brain-derived neurotrophic factor gene is not associated with sporadic Alzheimer’s disease. Dement Geriatr Cogn Disord 18(1):55–58. doi: 10.1159/000077736 PubMedCrossRefGoogle Scholar
  492. 492.
    Nishimura M, Kuno S, Kaji R, Kawakami H (2005) Brain-derived neurotrophic factor gene polymorphisms in Japanese patients with sporadic Alzheimer’s disease, Parkinson’s disease, and multiple system atrophy. Mov Disord 20(8):1031–1033. doi: 10.1002/mds.20491 PubMedCrossRefGoogle Scholar
  493. 493.
    Zhang H, Ozbay F, Lappalainen J et al (2006) Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer’s disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. Am J Med Genet B Neuropsychiatr Genet 141b(4):387–393. doi: 10.1002/ajmg.b.30332 PubMedPubMedCentralCrossRefGoogle Scholar
  494. 494.
    Ji H, Dai D, Wang Y et al (2015) Association of BDNF and BCHE with Alzheimer’s disease: meta-analysis based on 56 genetic case-control studies of 12,563 cases and 12,622 controls. Exp Ther Med 9(5):1831–1840. doi: 10.3892/etm.2015.2327 PubMedPubMedCentralCrossRefGoogle Scholar
  495. 495.
    Lin Y, Cheng S, Xie Z, Zhang D (2014) Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer’s disease: a meta-analysis. PLoS One 9(4), e94961. doi: 10.1371/journal.pone.0094961 PubMedPubMedCentralCrossRefGoogle Scholar
  496. 496.
    Voineskos AN, Lerch JP, Felsky D et al (2011) The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch Gen Psychiatry 68(2):198–206. doi: 10.1001/archgenpsychiatry.2010.194 PubMedCrossRefGoogle Scholar
  497. 497.
    Notaras M, Hill R, van den Buuse M (2015) The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 20(8):916–930. doi: 10.1038/mp.2015.27 PubMedCrossRefGoogle Scholar
  498. 498.
    Borroni B, Grassi M, Archetti S et al (2009) BDNF genetic variations increase the risk of Alzheimer’s disease-related depression. J Alzheimers Dis 18(4):867–875. doi: 10.3233/jad-2009-1191 PubMedCrossRefGoogle Scholar
  499. 499.
    Borroni B, Archetti S, Costanzi C et al (2009) Role of BDNF Val66Met functional polymorphism in Alzheimer’s disease-related depression. Neurobiol Aging 30(9):1406–1412. doi: 10.1016/j.neurobiolaging.2007.11.023 PubMedCrossRefGoogle Scholar
  500. 500.
    Numata S, Ueno S, Iga J et al (2006) Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. Neurosci Lett 401(1-2):1–5. doi: 10.1016/j.neulet.2006.02.054 PubMedCrossRefGoogle Scholar
  501. 501.
    Chen ZY, Jing D, Bath KG et al (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314(5796):140–143. doi: 10.1126/science.1129663 PubMedPubMedCentralCrossRefGoogle Scholar
  502. 502.
    Bian JT, Zhang JW, Zhang ZX, Zhao HL (2005) Association analysis of brain-derived neurotrophic factor (BDNF) gene 196 A/G polymorphism with Alzheimer’s disease (AD) in mainland Chinese. Neurosci Lett 387(1):11–16. doi: 10.1016/j.neulet.2005.07.009 PubMedCrossRefGoogle Scholar
  503. 503.
    Shintani A, Ono Y, Kaisho Y, Igarashi K (1992) Characterization of the 5′-flanking region of the human brain-derived neurotrophic factor gene. Biochem Biophys Res Commun 182(1):325–332PubMedCrossRefGoogle Scholar
  504. 504.
    Riemenschneider M, Schwarz S, Wagenpfeil S, Diehl J, Muller U, Forstl H, Kurz A (2002) A polymorphism of the brain-derived neurotrophic factor (BDNF) is associated with Alzheimer’s disease in patients lacking the Apolipoprotein E epsilon4 allele. Mol Psychiatry 7(7):782–785. doi: 10.1038/sj.mp.4001073 PubMedCrossRefGoogle Scholar
  505. 505.
    Diniz BS, Teixeira AL (2011) Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromol Med 13(4):217–222. doi: 10.1007/s12017-011-8154-x CrossRefGoogle Scholar
  506. 506.
    Olson LE, Roper RJ, Baxter LL, Carlson EJ, Epstein CJ, Reeves RH (2004) Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Dev Dyn 230(3):581–589. doi: 10.1002/dvdy.20079 PubMedCrossRefGoogle Scholar
  507. 507.
    Mann DMA (1988) The pathological association between down syndrome and Alzheimer-disease. Mech Ageing Dev 43(2):99–136. doi: 10.1016/0047-6374(88)90041-3 PubMedCrossRefGoogle Scholar
  508. 508.
    Salehi A, Delcroix JD, Belichenko PV et al (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51(1):29–42. doi: 10.1016/j.neuron.2006.05.022 PubMedCrossRefGoogle Scholar
  509. 509.
    Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21(1):479–505. doi: 10.1146/annurev.neuro.21.1.479 PubMedCrossRefGoogle Scholar
  510. 510.
    Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20(4):154–159. doi: 10.1016/S0166-2236(96)01030-2 PubMedCrossRefGoogle Scholar
  511. 511.
    Ari C, Borysov SI, Wu J, Padmanabhan J, Potter H (2014) Alzheimer amyloid beta inhibition of Eg5/kinesin 5 reduces neurotrophin and/or transmitter receptor function. Neurobiol Aging 35(8):1839–1849. doi: 10.1016/j.neurobiolaging.2014.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  512. 512.
    Heese K, Inoue N, Nagai Y, Sawada T (2004) APP, NGF & the ‘Sunday-driver’ in a trolley on the road. Restor Neurol Neurosci 22(2):131–136PubMedGoogle Scholar
  513. 513.
    Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VMY (1993) Abnormal tau phosphorylation at Ser396 in alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10(6):1089–1099. doi: 10.1016/0896-6273(93)90057-x PubMedCrossRefGoogle Scholar
  514. 514.
    Ahlijanian MK, Barrezueta NX, Williams RD et al (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 97(6):2910–2915. doi: 10.1073/pnas.040577797 PubMedPubMedCentralCrossRefGoogle Scholar
  515. 515.
    Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24(8):1079–1085. doi: 10.1016/j.neurobiolaging.2003.04.007 PubMedCrossRefGoogle Scholar
  516. 516.
    Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromolecular Med 2(2):151–165. doi: 10.1385/NMM:2:2:151 PubMedCrossRefGoogle Scholar
  517. 517.
    Cowan CM, Bossing T, Page A, Shepherd D, Mudher A (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120(5):593–604. doi: 10.1007/s00401-010-0716-8 PubMedCrossRefGoogle Scholar
  518. 518.
    Shemesh OA, Erez H, Ginzburg I, Spira ME (2008) Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9(4):458–471. doi: 10.1111/j.1600-0854.2007.00695.x PubMedCrossRefGoogle Scholar
  519. 519.
    Butzlaff M, Hannan SB, Karsten P et al (2015) Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity. Hum Mol Genet 24(13):3623–3637. doi: 10.1093/hmg/ddv107 PubMedCrossRefGoogle Scholar
  520. 520.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866):1086–1089. doi: 10.1126/science.1152993 PubMedPubMedCentralCrossRefGoogle Scholar
  521. 521.
    Seiler M, Schwab ME (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300(1):33–39. doi: 10.1016/0006-8993(84)91338-6 PubMedCrossRefGoogle Scholar
  522. 522.
    Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol 66(3):161–190. doi: 10.1016/S0301-0082(01)00031-4 PubMedCrossRefGoogle Scholar
  523. 523.
    Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18(3):425–438. doi: 10.1016/S0896-6273(00)81243-X PubMedCrossRefGoogle Scholar
  524. 524.
    Wakana Y, Villeneuve J, van Galen J, Cruz-Garcia D, Tagaya M, Malhotra V (2013) Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface. J Cell Biol 202(2):241–250. doi: 10.1083/jcb.201303163 PubMedPubMedCentralCrossRefGoogle Scholar
  525. 525.
    Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H (2015) NGF and ProNGF: regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 58:16–27. doi: 10.1016/j.jbior.2014.11.003 PubMedCrossRefGoogle Scholar
  526. 526.
    Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci 27(10):2628–2635. doi: 10.1523/JNEUROSCI.5053-06.2007 PubMedCrossRefGoogle Scholar
  527. 527.
    Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU (1997) Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Exp Neurol 146(1):91–103. doi: 10.1006/exnr.1997.6504 PubMedCrossRefGoogle Scholar
  528. 528.
    Mufson EJ, Li JM, Sobreviela T, Kordower JH (1996) Decreased trkA gene expression within basal forebrain neurons in Alzheimer’s disease. Neuroreport 8(1):25–29. doi: 10.1097/00001756-199612200-00006 PubMedCrossRefGoogle Scholar
  529. 529.
    Mufson EJ, Ma SY, Cochran EJ, Bennett DA, Beckett LA, Jaffar S, Saragovi HU, Kordower JH (2000) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 427(1):19–30. doi: 10.1002/1096-9861(20001106)427:1<19::AID-CNE2>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  530. 530.
    Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97(2):475–487. doi: 10.1111/j.1471-4159.2006.03764.x PubMedCrossRefGoogle Scholar
  531. 531.
    Chu YP, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH (2001) Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 437(3):296–307. doi: 10.1002/Cne.1284 PubMedCrossRefGoogle Scholar
  532. 532.
    Allen SJ, Wilcock GK, Dawbarn D (1999) Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease. Biochem Biophys Res Commun 264(3):648–651. doi: 10.1006/bbrc.1999.1561 PubMedCrossRefGoogle Scholar
  533. 533.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86(1):109–127. doi: 10.1093/bmb/ldn013 PubMedCrossRefGoogle Scholar
  534. 534.
    Doherty KM, van de Warrenburg BP, Peralta MC, Silveira-Moriyama L, Azulay JP, Gershanik OS, Bloem BR (2011) Postural deformities in Parkinson’s disease. Lancet Neurol 10(6):538–549. doi: 10.1016/S1474-4422(11)70067-9 PubMedCrossRefGoogle Scholar
  535. 535.
    Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2(4):229–237. doi: 10.1016/S1474-4422(03)00351-X PubMedCrossRefGoogle Scholar
  536. 536.
    Horimoto Y, Matsumoto M, Nakazawa H et al (2003) Cognitive conditions of pathologically confirmed dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol Sci 216(1):105–108PubMedCrossRefGoogle Scholar
  537. 537.
    Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(6):745–752. doi: 10.1136/jnnp.51.6.745 PubMedPubMedCentralCrossRefGoogle Scholar
  538. 538.
    Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6(1):193–222. doi: 10.1146/annurev-pathol-011110-130242 PubMedCrossRefGoogle Scholar
  539. 539.
    Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325. doi: 10.1146/annurev-genom-082410-101440 PubMedPubMedCentralCrossRefGoogle Scholar
  540. 540.
    Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454. doi: 10.1038/nrneurol.2013.132 PubMedCrossRefGoogle Scholar
  541. 541.
    Irwin DJ, Lee VM, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci 14(9):626–636. doi: 10.1038/nrn3549 PubMedPubMedCentralCrossRefGoogle Scholar
  542. 542.
    Charlesworth G, Gandhi S, Bras JM et al (2012) Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiol Aging 33(4):838.e7–838.e11. doi: 10.1016/j.neurobiolaging.2011.11.001
  543. 543.
    Chauhan NB, Siegel GJ, Lee JM (2001) Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat 21(4):277–288. doi: 10.1016/S0891-0618(01)00115-6 PubMedCrossRefGoogle Scholar
  544. 544.
    Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270(1):45–48PubMedCrossRefGoogle Scholar
  545. 545.
    Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 10(3):557–561PubMedCrossRefGoogle Scholar
  546. 546.
    Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135. doi: 10.1006/exnr.2000.7483 PubMedCrossRefGoogle Scholar
  547. 547.
    Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259. doi: 10.1523/JNEUROSCI.4601-04.2005 PubMedCrossRefGoogle Scholar
  548. 548.
    Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411(6833):86–89. doi: 10.1038/35075076 PubMedCrossRefGoogle Scholar
  549. 549.
    Guillin O, Griffon N, Bezard E, Leriche L, Diaz J, Gross C, Sokoloff P (2003) Brain-derived neurotrophic factor controls dopamine D3 receptor expression: therapeutic implications in Parkinson’s disease. Eur J Pharmacol 480(1-3):89–95. doi: 10.1016/j.ejphar.2003.08.096 PubMedCrossRefGoogle Scholar
  550. 550.
    Du X, Stull ND, Iacovitti L (1995) Brain-derived neurotrophic factor works coordinately with partner molecules to initiate tyrosine hydroxylase expression in striatal neurons. Brain Res 680(1-2):229–233. doi: 10.1016/0006-8993(95)00215-C PubMedCrossRefGoogle Scholar
  551. 551.
    Peng C, Aron L, Klein R, Li M, Wurst W, Prakash N, Le W (2011) Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J Neurosci 31(36):12802–12815. doi: 10.1523/JNEUROSCI.0898-11.2011 PubMedCrossRefGoogle Scholar
  552. 552.
    Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 30(6):939–946. doi: 10.1007/s10571-010-9523-y PubMedCrossRefGoogle Scholar
  553. 553.
    Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135(Pt 7):2058–2073. doi: 10.1093/brain/aws133 PubMedPubMedCentralCrossRefGoogle Scholar
  554. 554.
    Lamberts JT, Hildebrandt EN, Brundin P (2015) Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol Dis 77:276–283. doi: 10.1016/j.nbd.2014.07.002 PubMedCrossRefGoogle Scholar
  555. 555.
    Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29(11):3365–3373. doi: 10.1523/JNEUROSCI.5427-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  556. 556.
    Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754. doi: 10.1074/jbc.M113.451815 PubMedPubMedCentralCrossRefGoogle Scholar
  557. 557.
    Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860. doi: 10.1038/39885 PubMedCrossRefGoogle Scholar
  558. 558.
    Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17(7):2295–2313PubMedGoogle Scholar
  559. 559.
    Zhou XF, Rush RA (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74(4):945–951. doi: 10.1016/S0306-4522(96)00237-0 PubMedCrossRefGoogle Scholar
  560. 560.
    de Wert G, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18(4):672–682PubMedCrossRefGoogle Scholar
  561. 561.
    Hug K (2006) Therapeutic perspectives of human embryonic stem cell research versus the moral status of a human embryo--does one have to be compromised for the other? Medicina (Kaunas) 42(2):107–114Google Scholar
  562. 562.
    Hug K, Hermeren G (2011) Do we still need human embryonic stem cells for stem cell-based therapies? Epistemic and ethical aspects. Stem Cell Rev 7(4):761–774. doi: 10.1007/s12015-011-9257-3 PubMedCrossRefGoogle Scholar
  563. 563.
    Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357. doi: 10.1096/fj.06-6769com PubMedCrossRefGoogle Scholar
  564. 564.
    Wang Q, Matsumoto Y, Shindo T et al (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Investig 53(1-2):61–69CrossRefGoogle Scholar
  565. 565.
    Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096. doi: 10.1038/nature04960 PubMedCrossRefGoogle Scholar
  566. 566.
    Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA (2011) The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 29(5):802–811. doi: 10.1002/stem.626 PubMedPubMedCentralCrossRefGoogle Scholar
  567. 567.
    Yue W, Li Y, Zhang T et al (2015) ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep 5(5):776–790. doi: 10.1016/j.stemcr.2015.09.010 CrossRefGoogle Scholar
  568. 568.
    Oakley H, Cole SL, Logan S et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006 PubMedCrossRefGoogle Scholar
  569. 569.
    Kimura R, Ohno M (2009) Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis 33(2):229–235. doi: 10.1016/j.nbd.2008.10.006 PubMedCrossRefGoogle Scholar
  570. 570.
    Blurton-Jones M, Kitazawa M, Martinez-Coria H et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi: 10.1073/pnas.0901402106 PubMedPubMedCentralCrossRefGoogle Scholar
  571. 571.
    Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, LaFerla FM, Blurton-Jones M (2015) Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 25(7):813–826. doi: 10.1002/hipo.22405 PubMedPubMedCentralCrossRefGoogle Scholar
  572. 572.
    Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22(7):1246–1255. doi: 10.1634/stemcells.2004-0094 PubMedCrossRefGoogle Scholar
  573. 573.
    Bjorklund LM, Sanchez-Pernaute R, Chung S et al (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4):2344–2349. doi: 10.1073/pnas.022438099 PubMedPubMedCentralCrossRefGoogle Scholar
  574. 574.
    Barberi T, Klivenyi P, Calingasan NY et al (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207. doi: 10.1038/nbt870 PubMedCrossRefGoogle Scholar
  575. 575.
    Takagi Y, Takahashi J, Saiki H et al (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115(1):102–109. doi: 10.1172/JCI21137 PubMedPubMedCentralCrossRefGoogle Scholar
  576. 576.
    Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, Mosharov EV, Studer L (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33(2):204–209. doi: 10.1038/nbt.3124 PubMedPubMedCentralCrossRefGoogle Scholar
  577. 577.
    Sterniczuk R, Antle MC, Laferla FM, Dyck RH (2010) Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 2. Behavioral and cognitive changes. Brain Res 1348:149–155. doi: 10.1016/j.brainres.2010.06.011 PubMedCrossRefGoogle Scholar
  578. 578.
    Yeung ST, Myczek K, Kang AP, Chabrier MA, Baglietto-Vargas D, Laferla FM (2014) Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 259:214–222. doi: 10.1016/j.neuroscience.2013.11.054 PubMedCrossRefGoogle Scholar
  579. 579.
    Lee P, Morley G, Huang Q et al (1998) Conditional lineage ablation to model human diseases. Proc Natl Acad Sci U S A 95(19):11371–11376PubMedPubMedCentralCrossRefGoogle Scholar
  580. 580.
    McGill TJ, Cottam B, Lu B et al (2012) Transplantation of human central nervous system stem cells—neuroprotection in retinal degeneration. Eur J Neurosci 35(3):468–477. doi: 10.1111/j.1460-9568.2011.07970.x PubMedCrossRefGoogle Scholar
  581. 581.
    Heese K, Low JW, Inoue N (2006) Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15(1):1–12. doi: 10.1159/000094383 PubMedCrossRefGoogle Scholar
  582. 582.
    Scardigli R, Capelli P, Vignone D et al (2014) Neutralization of nerve growth factor impairs proliferation and differentiation of adult neural progenitors in the subventricular zone. Stem Cells 32(9):2516–2528. doi: 10.1002/stem.1744 PubMedCrossRefGoogle Scholar
  583. 583.
    Nagahara AH, Merrill DA, Coppola G et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337. doi: 10.1038/nm.1912 PubMedPubMedCentralCrossRefGoogle Scholar
  584. 584.
    Nagahara AH, Mateling M, Kovacs I et al (2013) Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci 33(39):15596–15602. doi: 10.1523/JNEUROSCI.5195-12.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  585. 585.
    Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148(1):135–146. doi: 10.1006/exnr.1997.6634 PubMedCrossRefGoogle Scholar
  586. 586.
    Lindvall O (2015) Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc Lond B Biol Sci 370(1680):20140370. doi: 10.1098/rstb.2014.0370 PubMedPubMedCentralCrossRefGoogle Scholar
  587. 587.
    Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345. doi: 10.1634/stemcells.2006-0066 PubMedCrossRefGoogle Scholar
  588. 588.
    Redmond DE Jr, Bjugstad KB, Teng YD et al (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104(29):12175–12180. doi: 10.1073/pnas.0704091104 PubMedPubMedCentralCrossRefGoogle Scholar
  589. 589.
    Gu S, Huang H, Bi J, Yao Y, Wen T (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res 1257:1–9. doi: 10.1016/j.brainres.2008.12.016 PubMedCrossRefGoogle Scholar
  590. 590.
    Daviaud N, Garbayo E, Sindji L, Martinez-Serrano A, Schiller PC, Montero-Menei CN (2015) Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson’s disease. Stem Cells Transl Med 4(6):670–684. doi: 10.5966/sctm.2014-0139 PubMedPubMedCentralCrossRefGoogle Scholar
  591. 591.
    Daviaud N, Garbayo E, Lautram N, Franconi F, Lemaire L, Perez-Pinzon M, Montero-Menei CN (2014) Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease. Neuroscience 256:10–22. doi: 10.1016/j.neuroscience.2013.10.021 PubMedCrossRefGoogle Scholar
  592. 592.
    Giteau A, Venier-Julienne MC, Marchal S, Courthaudon JL, Sergent M, Montero-Menei C, Verdier JM, Benoit JP (2008) Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres. Eur J Pharm Biopharm 70(1):127–136. doi: 10.1016/j.ejpb.2008.03.006 PubMedCrossRefGoogle Scholar
  593. 593.
    Delcroix GJ, Garbayo E, Sindji L, Thomas O, Vanpouille-Box C, Schiller PC, Montero-Menei CN (2011) The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials 32(6):1560–1573. doi: 10.1016/j.biomaterials.2010.10.041 PubMedCrossRefGoogle Scholar
  594. 594.
    Tatard VM, Sindji L, Branton JG, Aubert-Pouessel A, Colleau J, Benoit JP, Montero-Menei CN (2007) Pharmacologically active microcarriers releasing glial cell line—derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats. Biomaterials 28(11):1978–1988. doi: 10.1016/j.biomaterials.2006.12.021 PubMedCrossRefGoogle Scholar
  595. 595.
    Danielyan L, Schafer R, von Ameln-Mayerhofer A et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16. doi: 10.1089/rej.2010.1130 PubMedCrossRefGoogle Scholar
  596. 596.
    Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15(12):1164–1175. doi: 10.1038/mp.2009.110 PubMedCrossRefGoogle Scholar
  597. 597.
    Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3(3):216–227. doi: 10.1038/nrn752 PubMedCrossRefGoogle Scholar
  598. 598.
    Turgeman G (2015) The therapeutic potential of mesenchymal stem cells in Alzheimer’s disease: converging mechanisms. Neural Regen Res 10(5):698–699. doi: 10.4103/1673-5374.156953 PubMedPubMedCentralCrossRefGoogle Scholar
  599. 599.
    Takata K, Kitamura Y, Yanagisawa D et al (2007) Microglial transplantation increases amyloid-beta clearance in Alzheimer model rats. FEBS Lett 581(3):475–478. doi: 10.1016/j.febslet.2007.01.009 PubMedCrossRefGoogle Scholar
  600. 600.
    Lee HJ, Lee JK, Lee H et al (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33(3):588–602. doi: 10.1016/j.neurobiolaging.2010.03.024 PubMedCrossRefGoogle Scholar
  601. 601.
    Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450(2):136–141. doi: 10.1016/j.neulet.2008.11.059 PubMedCrossRefGoogle Scholar
  602. 602.
    Lee JK, Schuchman EH, Jin HK, Bae JS (2012) Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid beta ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 30(7):1544–1555. doi: 10.1002/stem.1125 PubMedCrossRefGoogle Scholar
  603. 603.
    Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502. doi: 10.1016/j.neuron.2006.01.022 PubMedCrossRefGoogle Scholar
  604. 604.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96(19):10711–10716PubMedPubMedCentralCrossRefGoogle Scholar
  605. 605.
    Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 113(11-12):831–844. doi: 10.1111/j.1600-0463.2005.apm_3061.x PubMedCrossRefGoogle Scholar
  606. 606.
    Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2016) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79. doi: 10.1016/j.coph.2015.09.011 PubMedCrossRefGoogle Scholar
  607. 607.
    Vincent AJ, Gasperini R, Foa L, Small DH (2010) Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 22(3):699–714. doi: 10.3233/JAD-2010-101089 PubMedCrossRefGoogle Scholar
  608. 608.
    Savonenko A, Xu GM, Melnikova T et al (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 18(3):602–617. doi: 10.1016/j.nbd.2004.10.022 PubMedCrossRefGoogle Scholar
  609. 609.
    Pihlaja R, Koistinaho J, Malm T, Sikkila H, Vainio S, Koistinaho M (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2):154–163. doi: 10.1002/glia.20599 PubMedCrossRefGoogle Scholar
  610. 610.
    Song MS, Learman CR, Ahn KC, Baker GB, Kippe J, Field EM, Dunbar GL (2015) In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice. Neuroscience 307:37–50. doi: 10.1016/j.neuroscience.2015.08.011 PubMedCrossRefGoogle Scholar
  611. 611.
    Zilka N, Zilkova M, Kazmerova Z, Sarissky M, Cigankova V, Novak M (2011) Mesenchymal stem cells rescue the Alzheimer’s disease cell model from cell death induced by misfolded truncated tau. Neuroscience 193:330–337. doi: 10.1016/j.neuroscience.2011.06.088 PubMedCrossRefGoogle Scholar
  612. 612.
    Gengler S, Hamilton A, Holscher C (2010) Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS One 5(3), e9764. doi: 10.1371/journal.pone.0009764 PubMedPubMedCentralCrossRefGoogle Scholar
  613. 613.
    Politis M, Lindvall O (2012) Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 10(1):1. doi: 10.1186/1741-7015-10-1 PubMedPubMedCentralCrossRefGoogle Scholar
  614. 614.
    Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10(7):649–656. doi: 10.1016/S1474-4422(11)70121-1 PubMedCrossRefGoogle Scholar
  615. 615.
    Cova L, Armentero MT, Zennaro E et al (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 1311:12–27. doi: 10.1016/j.brainres.2009.11.041 PubMedCrossRefGoogle Scholar
  616. 616.
    Bouchez G, Sensebe L, Vourc’h P et al (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52(7):1332–1342. doi: 10.1016/j.neuint.2008.02.003 PubMedCrossRefGoogle Scholar
  617. 617.
    Danielyan L, Beer-Hammer S, Stolzing A et al (2014) Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell Transplant 23(Suppl 1):S123–S139. doi: 10.3727/096368914X684970 PubMedCrossRefGoogle Scholar
  618. 618.
    Suzuki S, Kawamata J, Iwahara N et al (2015) Intravenous mesenchymal stem cell administration exhibits therapeutic effects against 6-hydroxydopamine-induced dopaminergic neurodegeneration and glial activation in rats. Neurosci Lett 584:276–281. doi: 10.1016/j.neulet.2014.10.039 PubMedCrossRefGoogle Scholar
  619. 619.
    Bahat-Stroomza M, Barhum Y, Levy YS, Karpov O, Bulvik S, Melamed E, Offen D (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39(1-2):199–210. doi: 10.1007/s12031-008-9166-3 PubMedCrossRefGoogle Scholar
  620. 620.
    McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG (2008) Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210(1):14–29. doi: 10.1016/j.expneurol.2007.10.011 PubMedCrossRefGoogle Scholar
  621. 621.
    Teixeira FG, Carvalho MM, Sousa N, Salgado AJ (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882. doi: 10.1007/s00018-013-1290-8 PubMedCrossRefGoogle Scholar
  622. 622.
    Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pegas Henriques JA (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77(3):221–228. doi: 10.1016/j.diff.2008.10.016 PubMedCrossRefGoogle Scholar
  623. 623.
    Yagi T, Ito D, Okada Y et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539. doi: 10.1093/hmg/ddr394 PubMedCrossRefGoogle Scholar
  624. 624.
    Young JE, Goldstein LS (2012) Alzheimer’s disease in a dish: promises and challenges of human stem cell models. Hum Mol Genet 21(R1):R82–R89. doi: 10.1093/hmg/dds319 PubMedPubMedCentralCrossRefGoogle Scholar
  625. 625.
    Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870PubMedCrossRefGoogle Scholar
  626. 626.
    Israel MA, Yuan SH, Bardy C et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. doi: 10.1038/nature10821 PubMedPubMedCentralGoogle Scholar
  627. 627.
    Woodruff G, Young JE, Martinez FJ et al (2013) The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5(4):974–985. doi: 10.1016/j.celrep.2013.10.018 PubMedCrossRefGoogle Scholar
  628. 628.
    Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor MD, Sachdev P, Munch G (2013) Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm (Vienna) 120(1):103–111. doi: 10.1007/s00702-012-0839-2 CrossRefGoogle Scholar
  629. 629.
    Wojda U, Kuznicki J (2013) Alzheimer’s disease modeling: ups, downs, and perspectives for human induced pluripotent stem cells. J Alzheimers Dis 34(3):563–588. doi: 10.3233/JAD-121984 PubMed<