Advertisement

Molecular Neurobiology

, Volume 54, Issue 9, pp 6903–6916 | Cite as

Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress

  • Alice Kunzler
  • Fares Zeidán-Chuliá
  • Juciano Gasparotto
  • Carolina Saibro Girardi
  • Karina Klafke
  • Lyvia Lintzmaier Petiz
  • Rafael Calixto Bortolin
  • Diana Carolina Rostirolla
  • Alfeu Zanotto-Filho
  • Matheus Augusto de Bittencourt Pasquali
  • Phillip Dickson
  • Peter Dunkley
  • José Cláudio Fonseca Moreira
  • Daniel Pens Gelain
Article

Abstract

Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson’s disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment. We found that RA treatment for 7 days reduced the cell number and proliferative capacity and induced the expression of adult catecholaminergic/neuronal markers such as tyrosine hydroxylase (TH), β-III tubulin, and enolase-2. Evaluation of intracellular RS production by DCFH oxidation assay and quantification of cell non-enzymatic antioxidant activity by TRAP demonstrated that RA increases RS production. Furthermore, mitochondrial NADH oxidation showed to be inhibited under differentiation with RA. Cells subjected to co-treatment with antioxidant Trolox® demonstrated a remaining proliferative capacity and a decrease in the pro-oxidant state and RS production. Besides, antioxidant treatment restores the mitochondrial NADH oxidation. Importantly, Trolox® co-treatment inhibited the appearance of morphological characteristics such as neurite extension and branching, and decreased the expression of TH, β-III tubulin, and enolase-2 after a seven-day differentiation with RA, indicating that RS production is a necessary step in this process. Trolox® also inhibited the phosphorylation of Akt and ERK1/2, which are involved in differentiation and survival, respectively, of these cells. Altogether, these data indicate the presence of a redox-dependent mechanism in SH-SY5Y RA-differentiation process and can be a useful insight to improve understanding of neuronal differentiation signaling.

Keywords

Retinoic acid Neuronal differentiation SH-SY5Y Oxidative stress Tyrosine hydroxylase 

Notes

Acknowledgments

This work was supported by the Brazilian funds CNPq (401260/2014-3, 400437/2013-9, 443514/2014-3, 401368/2012-2 and 303227/2015-0), CAPES, FAPERGS (2299-2551/14-6), and Propesq-UFRGS. The authors thank Mr. Henrique Biehl for their technical assistance at the CME.

References

  1. 1.
    Alberio T, Lopiano L, Fasano M (2012) Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J 279(7):1146–1155. doi: 10.1111/j.1742-4658.2012.08516.x CrossRefPubMedGoogle Scholar
  2. 2.
    Hattori N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S, Mochizuki H (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism and Related Disorders 15:S35–S38CrossRefGoogle Scholar
  3. 3.
    Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer’s disease: JAD 20(4):1069–1082CrossRefPubMedGoogle Scholar
  4. 4.
    Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003CrossRefPubMedGoogle Scholar
  5. 5.
    Filograna R, Civiero L, Ferrari V, Codolo G, Greggio E, Bubacco L, Beltramini M, Bisaglia M (2015) Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS One 10(8):e0136769. doi: 10.1371/journal.pone.0136769 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8(5):e63862. doi: 10.1371/journal.pone.0063862 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765. doi: 10.1038/nrn2212 CrossRefPubMedGoogle Scholar
  8. 8.
    Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30(1):127–135. doi: 10.1016/j.neuro.2008.11.001 CrossRefPubMedGoogle Scholar
  9. 9.
    Miloso M, Villa D, Crimi M, Galbiati S, Donzelli E, Nicolini G, Tredici G (2004) Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res 75:241–252CrossRefPubMedGoogle Scholar
  10. 10.
    Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR, Chung DH (2012) PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun 424(3):421–426. doi: 10.1016/j.bbrc.2012.06.125 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Masia S, Alvarez S, de Lera AR, Barettino D (2007) Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21(10):2391–2402CrossRefPubMedGoogle Scholar
  12. 12.
    Li W, Chen S, Li JY (2015) Human induced pluripotent stem cells in Parkinson’s disease: a novel cell source of cell therapy and disease modeling. Prog Neurobiol. doi: 10.1016/j.pneurobio.2015.09.009 Google Scholar
  13. 13.
    Klamt F, Dal-Pizzol F, Roehrs R, de Oliveira RB, Dalmolin R, Henriques JAP, de Andrades HHR, de Paula Ramos ALL et al (2003) Genotoxicity, recombinogenicity and cellular preneoplasic transformation induced by vitamin a supplementation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 539(1–2):117–125. doi: 10.1016/s1383-5718(03)00155-4 CrossRefGoogle Scholar
  14. 14.
    Gelain DP, Moreira JC (2008) Evidence of increased reactive species formation by retinol, but not retinoic acid, in PC12 cells. Toxicology in vitro: an international journal published in association with BIBRA 22(3):553–558. doi: 10.1016/j.tiv.2007.11.007 CrossRefGoogle Scholar
  15. 15.
    Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ, Pasquali MA, Moreira JC (2008) Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicology in vitro: an international journal published in association with BIBRA 22(5):1205–1212. doi: 10.1016/j.tiv.2008.04.001 CrossRefGoogle Scholar
  16. 16.
    Pasquali MA, Gelain DP, Zanotto-Filho A, de Souza LF, de Oliveira RB, Klamt F, Moreira JC (2008) Retinol and retinoic acid modulate catalase activity in Sertoli cells by distinct and gene expression-independent mechanisms. Toxicology in vitro: an international journal published in association with BIBRA 22(5):1177–1183. doi: 10.1016/j.tiv.2008.03.007 CrossRefGoogle Scholar
  17. 17.
    Klamt F, Dal-Pizzol F, Roehrs R, de Oliveira RB, Dalmolin R, Henriques JA, de Andrades HH, de Paula Ramos AL et al (2003) Genotoxicity, recombinogenicity and cellular preneoplasic transformation induced by vitamin A supplementation. Mutat Res 539(1–2):117–125CrossRefPubMedGoogle Scholar
  18. 18.
    Dal-Pizzol F, Klamt F, Dalmolin RJ, Bernard EA, Moreira JC (2001) Mitogenic signaling mediated by oxidants in retinol treated Sertoli cells. Free Radic Res 35(6):749–755CrossRefPubMedGoogle Scholar
  19. 19.
    Gelain DP, Cammarota M, Zanotto-Filho A Jr, de Oliveira RB, Dal-Pizzol F, Izquierdo I, Bevilaqua LRM, Moreira JC (2006) Retinol induces the ERK1/2-dependent phosphorylation of CREB through a pathway involving the generation of reactive oxygen species in cultured Sertoli cells. Cell Signal 18(10):1685–1694. doi: 10.1016/j.cellsig.2006.01.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Moreira JC, Dal-Pizzol F, Rocha AB, Klamt F, Ribeiro NC, Ferreira CJ, Bernard EA (2000) Retinol-induced changes in the phosphorylation levels of histones and high mobility group proteins from Sertoli cells. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 33(3):287–293Google Scholar
  21. 21.
    Gelain DP, Moreira JC, Bevilaqua LR, Dickson PW, Dunkley PR (2007) Retinol activates tyrosine hydroxylase acutely by increasing the phosphorylation of serine40 and then serine31 in bovine adrenal chromaffin cells. J Neurochem 103(6):2369–2379. doi: 10.1111/j.1471-4159.2007.04935.x CrossRefPubMedGoogle Scholar
  22. 22.
    de Bittencourt Pasquali MA, de Ramos VM, Albanus RD, Kunzler A, de Souza LH, Dalmolin RJ, Gelain DP, Ribeiro L et al (2014) Gene expression profile of NF-kappaB, Nrf2, glycolytic, and p53 pathways during the SH-SY5Y neuronal differentiation mediated by retinoic acid. Mol Neurobiol. doi: 10.1007/s12035-014-8998-9 PubMedGoogle Scholar
  23. 23.
    Schneider L, Giordano S, Zelickson BR, Johnson MS, Benavides GA, Ouyang X, Fineberg N, Darley-Usmar VM et al (2011) Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 51(11):2007–2017. doi: 10.1016/j.freeradbiomed.2011.08.030 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK et al (2009) Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med 47(6):867–879. doi: 10.1016/j.freeradbiomed.2009.06.029 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nitti M, Furfaro AL, Cevasco C, Traverso N, Marinari UM, Pronzato MA, Domenicotti C (2010) PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal 22(5):828–835. doi: 10.1016/j.cellsig.2010.01.007 CrossRefPubMedGoogle Scholar
  26. 26.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116. doi: 10.1038/nprot.2006.179 CrossRefPubMedGoogle Scholar
  27. 27.
    Rabelo TK, Zeidan-Chulia F, Vasques LM, dos Santos JP, da Rocha RF, Pasquali MA, Rybarczyk-Filho JL, Araujo AA et al (2012) Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicology in vitro: an international journal published in association with BIBRA 26(2):304–314. doi: 10.1016/j.tiv.2011.12.003 CrossRefGoogle Scholar
  28. 28.
    Wang HaJ JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5/6):612–616CrossRefGoogle Scholar
  29. 29.
    Voss DO, Campello AP, Bacila M (1961) The respiratory chain and the oxidative phosphorylation of rat brain mitochondria. Biochem Biophys Res Comm 4(1):48–51CrossRefPubMedGoogle Scholar
  30. 30.
    Singer TP (1974) Determination of the activity of succinate, NADH, choline, and α-glycerophosphate dehydrogenases. Methods Biochem Anal 22:123–175PubMedGoogle Scholar
  31. 31.
    LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193Google Scholar
  32. 32.
    Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D (2002) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem 277(28):25297–25304. doi: 10.1074/jbc.M201869200 CrossRefPubMedGoogle Scholar
  33. 33.
    Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651CrossRefPubMedGoogle Scholar
  34. 34.
    Lestanova Z, Bacova Z, Kiss A, Havranek T, Strbak V, Bakos J (2015) Oxytocin increases neurite length and expression of cytoskeletal proteins associated with neuronal growth. J Mol Neurosci. doi: 10.1007/s12031-015-0664-9 PubMedGoogle Scholar
  35. 35.
    Graser S, Mentrup B, Schneider D, Klein-Hitpass L, Jakob F, Hofmann C (2015) Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line. Bone 79:150–161. doi: 10.1016/j.bone.2015.05.033 CrossRefPubMedGoogle Scholar
  36. 36.
    de Miranda RV, Zanotto-Filho A, de Bittencourt Pasquali MA, Klafke K, Gasparotto J, Dunkley P, Gelain DP, Moreira JC (2015) NRF2 mediates neuroblastoma proliferation and resistance to retinoic acid cytotoxicity in a model of in vitro neuronal differentiation. Mol Neurobiol. doi: 10.1007/s12035-015-9506-6 PubMedGoogle Scholar
  37. 37.
    Canon E, Cosgaya JM, Scsucova S, Aranda A (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol Biol Cell 15(12):5583–5592. doi: 10.1091/mbc.E04-05-0439 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aggarwal S, Kim SW, Cheon K, Tabassam FH, Yoon JH, Koo JS (2006) Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol Biol Cell 17(2):566–575CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Fonseca Moreira JC (2011) Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation. Toxicology 289(1):38–44. doi: 10.1016/j.tox.2011.07.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJS, Pasquali MAB, Moreira JCF (2008) Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol in Vitro 22(5):1205–1212. doi: 10.1016/j.tiv.2008.04.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Gelain DP, Pasquali MA, Caregnato FF, Castro MA, Moreira JC (2012) Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways. Acta Pharmacol Sin 33(4):558–567. doi: 10.1038/aps.2011.202 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Bittencourt Pasquali MA, Gelain DP, Zeidan-Chulia F, Pires AS, Gasparotto J, Terra SR, Moreira JC (2013) Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell Signal 25(4):939–954CrossRefPubMedGoogle Scholar
  43. 43.
    da Frota Junior ML, Pires AS, Zeidan-Chulia F, Bristot IJ, Lopes FM, de Bittencourt Pasquali MA, Zanotto-Filho A, Behr GA et al (2011) In vitro optimization of retinoic acid-induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Mol Cell Biochem 358(1–2):325–334. doi: 10.1007/s11010-011-0983-2 CrossRefPubMedGoogle Scholar
  44. 44.
    Xun Z, Lee DY, Lim J, Canaria CA, Barnebey A, Yanonne SM, McMurray CT (2012) Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech Ageing Dev 133(4):176–185. doi: 10.1016/j.mad.2012.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Strom J, Xu B, Tian X, Chen QM (2015) Nrf2 protects mitochondrial decay by oxidative stress. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. doi: 10.1096/fj.14-268904 Google Scholar
  46. 46.
    Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M, Isogai E, Kageyama H, Imaizumi M et al (2006) Bcl-2 is a key regulator for the retinoic acid-induced apoptotic cell death in neuroblastoma. Oncogene 25(36):5046–5055. doi: 10.1038/sj.onc.1209515 CrossRefPubMedGoogle Scholar
  47. 47.
    Wang X, Yu S, Wang CY, Wang Y, Liu HX, Cui Y, Zhang LD (2015) Advanced glycation end products induce oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In vitro cellular & developmental biology Animal 51(2):204–209. doi: 10.1007/s11626-014-9823-5 CrossRefGoogle Scholar
  48. 48.
    Moran M, Moreno-Lastres D, Marin-Buera L, Arenas J, Martin MA, Ugalde C (2012) Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radic Biol Med 53(3):595–609. doi: 10.1016/j.freeradbiomed.2012.05.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Distelmaier F, Valsecchi F, Forkink M, van Emst-de Vries S, Swarts HG, Rodenburg RJ, Verwiel ET, Smeitink JA et al (2012) Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxid Redox Signal 17(12):1657–1669. doi: 10.1089/ars.2011.4294 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alice Kunzler
    • 1
  • Fares Zeidán-Chuliá
    • 1
  • Juciano Gasparotto
    • 1
  • Carolina Saibro Girardi
    • 1
  • Karina Klafke
    • 1
  • Lyvia Lintzmaier Petiz
    • 1
  • Rafael Calixto Bortolin
    • 1
  • Diana Carolina Rostirolla
    • 1
  • Alfeu Zanotto-Filho
    • 1
  • Matheus Augusto de Bittencourt Pasquali
    • 1
  • Phillip Dickson
    • 2
  • Peter Dunkley
    • 2
  • José Cláudio Fonseca Moreira
    • 1
  • Daniel Pens Gelain
    • 1
  1. 1.Departamento de Bioquímica, Centro de Estudos em Estresse OxidativoUniversidade Federal do Rio Grande do Sul—UFRGSPorto AlegreBrazil
  2. 2.The School of Biomedical Sciences and The Hunter Medical Research Institute, Faculty of HealthThe University of NewcastleCallaghanAustralia

Personalised recommendations