Molecular Neurobiology

, Volume 54, Issue 8, pp 6412–6425 | Cite as

Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies

  • Agata Mata
  • Laura Urrea
  • Silvia Vilches
  • Franc Llorens
  • Katrin Thüne
  • Juan-Carlos Espinosa
  • Olivier Andréoletti
  • Alejandro M. Sevillano
  • Juan María Torres
  • Jesús Rodríguez Requena
  • Inga Zerr
  • Isidro Ferrer
  • Rosalina Gavín
  • José Antonio del Río


Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer’s disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.


Reelin Creutzfeldt-Jakob disease Dab-1 Cellular prion protein 



The authors thank Tom Yohannan for the editorial advice and M. Segura-Feliu for the technical assistance. We thank members of the Del Río, Torres, Requena, Zerr and Ferrer groups for stimulating discussions and ideas. We thank members of José Luis Labandeira laboratory (CIMUS) for helping us with the histological processing of the inoculated mice. We also thank Eduardo Soriano for the gift of the reeler mice and Tom Curran for the gift of the Reln in situ probe. This research was supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO) (BFU2015-67777-R and TEC2015-72718-EXP), the Spanish prion network (Prionet Spain, AGL2015-71764-REDT), the Generalitat de Catalunya (SGR2014-1218), CIBERNED (PI2014/02-4 (Rapid dementias) and PRY-14-114), and La Caixa Obra Social Foundation, La Marató de TV3 to JADR. R.G. was supported by Fondo de Investigaciones Sanitarias (FIS, PI11-00075). I.F. was funded by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS grants PI14/00757, and CIBERNED (PI2014/02-4). JM.T. was supported by Spanish Ministry Economy and Competitiveness (RTA2012-00004 and AGL2012-37988-C04 projects). J.R.R. was supported by a grant from the Spanish Ministry of Economy and Competitiveness (MINECO) (BFU2013-48436-C2-1-P). I.Z. received support by the Robert-Koch-Institute through funds of Federal Ministry of Health (grant no. 1369-341) and DZNE (German Center for Neurodegenerative Diseases). A.M. was supported by a fellowship from the Spanish Ministry of Economy and Competitiveness. S.V was supported by a Juan de la Cierva contract of the Spanish Ministry of Science and Innovation (MICIM).

Compliance with Ethical Standards

Ethics Statement

All experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) of the University of Barcelona, and the protocol for the use of animals in this study was reviewed and approved by the CEEA of the University of Barcelona (CEEA approval no. 276/16 and 141/15).

Experiments were approved by the Committee on the Ethics of Animal Experiments of the author’s institutions (INIA and INRA; and University of Santiago de Compostela, 15005AE/12/FUN01/PAT05/JRR3).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

12035_2016_177_MOESM1_ESM.jpg (1.2 mb)
Fig S1Determination of PrPC expression in primary cortical neurons at different DIVs. (JPEG 1190 kb)


  1. 1.
    D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723. doi:10.1038/374719a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Soriano E, Del Rio JA (2005) The cells of cajal-retzius: still a mystery one century after. Neuron 46(3):389–394. doi:10.1016/j.neuron.2005.04.019 CrossRefPubMedGoogle Scholar
  3. 3.
    Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J Neurosci 27(38):10165–10175. doi:10.1523/JNEUROSCI.1772-07.2007 CrossRefPubMedGoogle Scholar
  4. 4.
    Rogers JT, Weeber EJ (2008) Reelin and apoE actions on signal transduction, synaptic function and memory formation. Neuron Glia Biol 4(3):259–270. doi:10.1017/S1740925X09990184 CrossRefPubMedGoogle Scholar
  5. 5.
    Ohkubo N, Vitek MP, Morishima A, Suzuki Y, Miki T, Maeda N, Mitsuda N (2007) Reelin signals survival through Src-family kinases that inactivate BAD activity. J Neurochem 103(2):820–830. doi:10.1111/j.1471-4159.2007.04804.x CrossRefPubMedGoogle Scholar
  6. 6.
    Frotscher M (2010) Role for reelin in stabilizing cortical architecture. Trends Neurosci 33(9):407–414. doi:10.1016/j.tins.2010.06.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Pujadas L, Gruart A, Bosch C, Delgado L, Teixeira CM, Rossi D, de Lecea L, Martinez A et al (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30(13):4636–4649. doi:10.1523/JNEUROSCI.5284-09.2010 CrossRefPubMedGoogle Scholar
  8. 8.
    Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24(8):1897–1906. doi:10.1523/JNEUROSCI.4084-03.2004 CrossRefPubMedGoogle Scholar
  9. 9.
    Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, Li J, Xiong X et al (2015) MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting reelin. Stroke 46(2):551–556. doi:10.1161/STROKEAHA.114.007041 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Won SJ, Kim SH, Xie L, Wang Y, Mao XO, Jin K, Greenberg DA (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198(1):250–259. doi:10.1016/j.expneurol.2005.12.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Cuchillo-Ibanez I, Balmaceda V, Botella-Lopez A, Rabano A, Avila J, Saez-Valero J (2013) Beta-amyloid impairs reelin signaling. PLoS One 8(8):e72297. doi:10.1371/journal.pone.0072297 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pujadas L, Rossi D, Andres R, Teixeira CM, Serra-Vidal B, Parcerisas A, Maldonado R, Giralt E et al (2014) Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer’s disease. Nat Commun 5:3443. doi:10.1038/ncomms4443 CrossRefPubMedGoogle Scholar
  13. 13.
    Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci U S A 106(37):15938–15943. doi:10.1073/pnas.0908176106 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24(2):481–489CrossRefPubMedGoogle Scholar
  15. 15.
    Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA et al (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701CrossRefPubMedGoogle Scholar
  16. 16.
    Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13(1):18–26CrossRefPubMedGoogle Scholar
  17. 17.
    Herz J, Chen Y (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 7(11):850–859CrossRefPubMedGoogle Scholar
  18. 18.
    Beffert U, Morfini G, Bock HH, Reyna H, Brady ST, Herz J (2002) Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem 277(51):49958–49964. doi:10.1074/jbc.M209205200 CrossRefPubMedGoogle Scholar
  19. 19.
    Park TJ, Curran T (2008) Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway. J Neurosci 28(50):13551–13562. doi:10.1523/JNEUROSCI.4323-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma Y, Wu X, Li X, Fu J, Shen J, Li X, Wang H (2012) Corticosterone regulates the expression of neuropeptide Y and reelin in MLO-Y4 cells. Mol Cells 33(6):611–616. doi:10.1007/s10059-012-0053-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcantara S, Burgaya F, Sheldon M, Nakajima K, Bernal J et al (1999) Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19(16):6979–6993PubMedGoogle Scholar
  22. 22.
    Lussier AL, Caruncho HJ, Kalynchuk LE (2009) Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. Neurosci Lett 460(2):170–174. doi:10.1016/j.neulet.2009.05.050 CrossRefPubMedGoogle Scholar
  23. 23.
    Buret L, van den Buuse M (2014) Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia. Int J Neuropsychopharmacol 17(8):1221–1232. doi:10.1017/S1461145714000121 CrossRefPubMedGoogle Scholar
  24. 24.
    Miettinen R, Riedel A, Kalesnykas G, Kettunen HP, Puolivali J, Soininen H, Arendt T (2005) Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J Chem Neuroanat 30(2–3):105–118. doi:10.1016/j.jchemneu.2005.06.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Rideau Batista Novais A, Guiramand J, Cohen-Solal C, Crouzin N, de Jesus Ferreira MC, Vignes M, Barbanel G, Cambonie G (2013) N-acetyl-cysteine prevents pyramidal cell disarray and reelin-immunoreactive neuron deficiency in CA3 after prenatal immune challenge in rats. Pediatr Res 73(6):750–755. doi:10.1038/pr.2013.40 CrossRefPubMedGoogle Scholar
  26. 26.
    Palacios-Garcia I, Lara-Vasquez A, Montiel JF, Diaz-Veliz GF, Sepulveda H, Utreras E, Montecino M, Gonzalez-Billault C et al (2015) Prenatal stress down-regulates reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One 10(2):e0117680. doi:10.1371/journal.pone.0117680 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Herring A, Donath A, Yarmolenko M, Uslar E, Conzen C, Kanakis D, Bosma C, Worm K et al (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J 26(1):117–128. doi:10.1096/fj.11-193193 CrossRefPubMedGoogle Scholar
  28. 28.
    Cotter D, Pariante CM (2002) Stress and the progression of the developmental hypothesis of schizophrenia. The British Journal of Psychiatry: The Journal of Mental Science 181:363–365CrossRefGoogle Scholar
  29. 29.
    Pompili A, Arnone B, Gasbarri A (2012) Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology 37(9):1379–1396. doi:10.1016/j.psyneuen.2012.01.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Tareen RS, Kamboj MK (2012) Role of endocrine factors in autistic spectrum disorders. Pediatr Clin N Am 59(1):75–88 . doi:10.1016/j.pcl.2011.10.013xCrossRefGoogle Scholar
  31. 31.
    Forero DA, Casadesus G, Perry G, Arboleda H (2006) Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J Cell Mol Med 10(3):796–805CrossRefPubMedGoogle Scholar
  32. 32.
    Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci 4:976–997Google Scholar
  33. 33.
    Pamplona R, Naudi A, Gavin R, Pastrana MA, Sajnani G, Ilieva EV, Del Rio JA, Portero-Otin M et al (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45(8):1159–1166. doi:10.1016/j.freeradbiomed.2008.07.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Fatemi SH, Kroll JL, Stary JM (2001) Altered levels of reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12(15):3209–3215CrossRefPubMedGoogle Scholar
  35. 35.
    Fatemi SH, Stary JM, Egan EA (2002) Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell Mol Neurobiol 22(2):139–152CrossRefPubMedGoogle Scholar
  36. 36.
    Herring A, Donath A, Steiner KM, Widera MP, Hamzehian S, Kanakis D, Kolble K, ElAli A et al (2012) Reelin depletion is an early phenomenon of Alzheimer’s pathology. J Alzheimers Dis 30(4):963–979. doi:10.3233/JAD-2012-112069 PubMedGoogle Scholar
  37. 37.
    Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA et al (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103(14):5573–5578. doi:10.1073/pnas.0601279103 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saez-Valero J, Costell M, Sjogren M, Andreasen N, Blennow K, Luque JM (2003) Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J Neurosci Res 72(1):132–136. doi:10.1002/jnr.10554 CrossRefPubMedGoogle Scholar
  39. 39.
    Knuesel I, Nyffeler M, Mormede C, Muhia M, Meyer U, Pietropaolo S, Yee BK, Pryce CR et al (2009) Age-related accumulation of reelin in amyloid-like deposits. Neurobiol Aging 30(5):697–716. doi:10.1016/j.neurobiolaging.2007.08.011 CrossRefPubMedGoogle Scholar
  40. 40.
    Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9(5):1055–1071CrossRefPubMedGoogle Scholar
  41. 41.
    Krstic D, Pfister S, Notter T, Knuesel I (2013) Decisive role of reelin signaling during early stages of Alzheimer’s disease. Neuroscience 246:108–116. doi:10.1016/j.neuroscience.2013.04.042 CrossRefPubMedGoogle Scholar
  42. 42.
    Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27(11):2727–2733. doi:10.1523/JNEUROSCI.3758-06.2007 CrossRefPubMedGoogle Scholar
  43. 43.
    Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316(3):145–148CrossRefPubMedGoogle Scholar
  44. 44.
    Doehner J, Madhusudan A, Konietzko U, Fritschy JM, Knuesel I (2010) Co-localization of reelin and proteolytic AbetaPP fragments in hippocampal plaques in aged wild-type mice. J Alzheimers Dis 19(4):1339–1357. doi:10.3233/JAD-2010-1333 CrossRefPubMedGoogle Scholar
  45. 45.
    Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy JM, Knuesel I (2010) Reduced reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci 30(27):9228–9240. doi:10.1523/JNEUROSCI.0418-10.2010 CrossRefPubMedGoogle Scholar
  46. 46.
    Botella-Lopez A, Cuchillo-Ibanez I, Cotrufo T, Mok SS, Li QX, Barquero MS, Dierssen M, Soriano E et al (2010) Beta-amyloid controls altered reelin expression and processing in Alzheimer’s disease. Neurobiol Dis 37(3):682–691. doi:10.1016/j.nbd.2009.12.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Lane-Donovan C, Philips GT, Wasser CR, Durakoglugil MS, Masiulis I, Upadhaya A, Pohlkamp T, Coskun C et al (2015) Reelin protects against amyloid beta toxicity in vivo. Sci Signal 8(384):ra67. doi:10.1126/scisignal.aaa6674 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Herrmann US, Sonati T, Falsig J, Reimann RR, Dametto P, O’Connor T, Li B, Lau A et al (2015) Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways. PLoS Pathog 11(2):e1004662. doi:10.1371/journal.ppat.1004662 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gavin R, Urena J, Rangel A, Pastrana MA, Requena JR, Soriano E, Aguzzi A, Del Rio JA (2008) Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Neurobiol Dis 30(2):243–254. doi:10.1016/j.nbd.2008.02.001 CrossRefPubMedGoogle Scholar
  50. 50.
    Gavin R, Ferrer I, del Rio JA (2010) Involvement of Dab1 in APP processing and beta-amyloid deposition in sporadic Creutzfeldt-Jakob patients. Neurobiol Dis 37(2):324–329. doi:10.1016/j.nbd.2009.10.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582CrossRefPubMedGoogle Scholar
  52. 52.
    Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A et al (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264PubMedPubMedCentralGoogle Scholar
  53. 53.
    Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103(9):3416–3421. doi:10.1073/pnas.0511290103 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ordonez-Gutierrez L, Torres JM, Gavin R, Anton M, Arroba-Espinosa AI, Espinosa JC, Vergara C, Del Rio JA et al (2013) Cellular prion protein modulates beta-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging 34(12):2793–2804. doi:10.1016/j.neurobiolaging.2013.05.019 CrossRefPubMedGoogle Scholar
  55. 55.
    Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I et al (2014) Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5:5821. doi:10.1038/ncomms6821 CrossRefPubMedGoogle Scholar
  56. 56.
    Padilla D, Beringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A et al (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 7(3):e1001319. doi:10.1371/journal.ppat.1001319 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vilches S, Vergara C, Nicolas O, Mata A, Del Rio JA, Gavin R (2015) Domain-specific activation of death-associated intracellular signalling cascades by the cellular prion protein in neuroblastoma cells. Mol Neurobiol. doi:10.1007/s12035-015-9360-6 PubMedGoogle Scholar
  58. 58.
    Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, Del Rio JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22(17):3041–3054. doi:10.1091/mbc.E11-04-0321 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mingorance A, Fontana X, Sole M, Burgaya F, Urena JM, Teng FY, Tang BL, Hunt D et al (2004) Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci 26(1):34–49. doi:10.1016/j.mcn.2004.01.001 CrossRefPubMedGoogle Scholar
  60. 60.
    Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C et al (2015) Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 41(5):631–645. doi:10.1111/nan.12175 CrossRefPubMedGoogle Scholar
  61. 61.
    Sandberg MK, Al-Doujaily H, Sharps B, De Oliveira MW, Schmidt C, Richard-Londt A, Lyall S, Linehan JM et al (2014) Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nat Commun 5:4347. doi:10.1038/ncomms5347 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546CrossRefPubMedGoogle Scholar
  63. 63.
    Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78CrossRefPubMedGoogle Scholar
  64. 64.
    Vilches S, Vergara C, Nicolas O, Sanclimens G, Merino S, Varon S, Acosta GA, Albericio F et al (2013) Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 8(8):e70881. doi:10.1371/journal.pone.0070881 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Vassallo N (2009) Properties and pathogenicity of prion-derived peptides. Protein Pept Lett 16(3):230–238CrossRefPubMedGoogle Scholar
  66. 66.
    Gavin R, Braun N, Nicolas O, Parra B, Urena JM, Mingorance A, Soriano E, Torres JM et al (2005) PrP(106-126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrPc. FEBS Lett 579(19):4099–4106. doi:10.1016/j.febslet.2005.06.037 CrossRefPubMedGoogle Scholar
  67. 67.
    Duit S, Mayer H, Blake SM, Schneider WJ, Nimpf J (2010) Differential functions of ApoER2 and very low density lipoprotein receptor in reelin signaling depend on differential sorting of the receptors. J Biol Chem 285(7):4896–4908. doi:10.1074/jbc.M109.025973 CrossRefPubMedGoogle Scholar
  68. 68.
    Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and non neuronal cells. Proc Natl Acad Sci U S A 100(23):13326–13331. doi:10.1073/pnas.2235648100 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pietri M, Caprini A, Mouillet-Richard S, Pradines E, Ermonval M, Grassi J, Kellermann O, Schneider B (2006) Overstimulation of PrPC signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem 281(38):28470–28479. doi:10.1074/jbc.M602774200 CrossRefPubMedGoogle Scholar
  70. 70.
    Vilches S, Vergara C, Nicolas O, Mata A, Del Rio JA, Gavin R (2016) Domain-specific activation of death-associated intracellular signalling cascades by the cellular prion protein in neuroblastoma cells. Mol Neurobiol 53(7):4438–4448. doi:10.1007/s12035-015-9360-6 CrossRefPubMedGoogle Scholar
  71. 71.
    Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18(19):7779–7799PubMedGoogle Scholar
  72. 72.
    Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8(4):615–623CrossRefPubMedGoogle Scholar
  73. 73.
    Cuchillo-Ibanez I, Balmaceda V, Mata-Balaguer T, Lopez-Font I, Saez-Valero J (2016) Reelin in Alzheimer’s disease, increased levels but impaired signaling: when more is less. J Alzheimers Dis. doi:10.3233/JAD-151193 PubMedGoogle Scholar
  74. 74.
    Stranahan AM, Haberman RP, Gallagher M (2011) Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats. Cereb Cortex 21(2):392–400. doi:10.1093/cercor/bhq106 CrossRefPubMedGoogle Scholar
  75. 75.
    Stranahan AM, Salas-Vega S, Jiam NT, Gallagher M (2011) Interference with reelin signaling in the lateral entorhinal cortex impairs spatial memory. Neurobiol Learn Mem 96(2):150–155. doi:10.1016/j.nlm.2011.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Devanathan V, Jakovcevski I, Santuccione A, Li S, Lee HJ, Peles E, Leshchyns’ka I, Sytnyk V et al (2010) Cellular form of prion protein inhibits reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth. J Neurosci 30(27):9292–9305. doi:10.1523/JNEUROSCI.5657-09.2010 CrossRefPubMedGoogle Scholar
  77. 77.
    Rangel A, Madronal N, Gruart A, Gavin R, Llorens F, Sumoy L, Torres JM, Delgado-Garcia JM et al (2009) Regulation of GABA(a) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 4(10):e7592. doi:10.1371/journal.pone.0007592 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavin R, Ferrer I, Legname G et al (2015) Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep 5:11971. doi:10.1038/srep11971 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Benvegnu S, Roncaglia P, Agostini F, Casalone C, Corona C, Gustincich S, Legname G (2011) Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiol Genomics 43(12):711–725. doi:10.1152/physiolgenomics.00205.2010 CrossRefPubMedGoogle Scholar
  80. 80.
    Rubenstein R, Chang B, Petersen R, Chiu A, Davies P (2015) T-tau and P-tau in brain and blood from natural and experimental prion diseases. PLoS One 10(12):e0143103. doi:10.1371/journal.pone.0143103 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Simon D, Herva ME, Benitez MJ, Garrido JJ, Rojo AI, Cuadrado A, Torres JM, Wandosell F (2014) Dysfunction of the PI3K-Akt-GSK-3 pathway is a common feature in cell culture and in vivo models of prion disease. Neuropathol Appl Neurobiol 40(3):311–326. doi:10.1111/nan.12066 CrossRefPubMedGoogle Scholar
  82. 82.
    Newaz K, Sriram K, Bera D (2015) Identification of major signaling pathways in prion disease progression using network analysis. PLoS One 10(12):e0144389. doi:10.1371/journal.pone.0144389 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rizzardini M, Chiesa R, Angeretti N, Lucca E, Salmona M, Forloni G, Cantoni L (1997) Prion protein fragment 106-126 differentially induces heme oxygenase-1 mRNA in cultured neurons and astroglial cells. J Neurochem 68(2):715–720CrossRefPubMedGoogle Scholar
  84. 84.
    Keshvara L, Magdaleno S, Benhayon D, Curran T (2002) Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J Neurosci 22(12):4869–4877PubMedGoogle Scholar
  85. 85.
    Llorens F, Schmitz M, Karch A, Cramm M, Lange P, Gherib K, Varges D, Schmidt C et al (2015) Comparative analysis of cerebrospinal fluid biomarkers in the differential diagnosis of neurodegenerative dementia. Alzheimers Dement. doi:10.1016/j.jalz.2015.10.009 PubMedGoogle Scholar
  86. 86.
    Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M, Sklaviadis T, Laplanche JL et al (2015) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol Neurobiol. doi:10.1007/s12035-015-9167-5 PubMedCentralGoogle Scholar
  87. 87.
    Miyashita A, Hatsuta H, Kikuchi M, Nakaya A, Saito Y, Tsukie T, Hara N, Ogishima S et al (2014) Genes associated with the progression of neurofibrillary tangles in Alzheimer’s disease. Transl Psychiatry 4:e396. doi:10.1038/tp.2014.35 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1(3):213–222. doi:10.1080/14734220260418448 CrossRefPubMedGoogle Scholar
  89. 89.
    Clinton J, Forsyth C, Royston MC, Roberts GW (1993) Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study. Neuroreport 4(1):65–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Agata Mata
    • 1
    • 2
    • 3
    • 4
  • Laura Urrea
    • 1
    • 2
    • 3
    • 4
  • Silvia Vilches
    • 1
    • 2
    • 3
    • 4
  • Franc Llorens
    • 5
  • Katrin Thüne
    • 5
  • Juan-Carlos Espinosa
    • 6
  • Olivier Andréoletti
    • 7
  • Alejandro M. Sevillano
    • 8
    • 9
  • Juan María Torres
    • 6
  • Jesús Rodríguez Requena
    • 8
    • 9
  • Inga Zerr
    • 5
  • Isidro Ferrer
    • 10
    • 11
    • 12
  • Rosalina Gavín
    • 1
    • 2
    • 3
    • 4
  • José Antonio del Río
    • 1
    • 2
    • 3
    • 4
  1. 1.Molecular and Cellular NeurobiotechnologyInstitute of Bioengineering of Catalonia (IBEC), Parc Científic de BarcelonaBarcelonaSpain
  2. 2.Department of Cell Biology, Physiology and ImmunologyUniversitat de BarcelonaBarcelonaSpain
  3. 3.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
  4. 4.Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
  5. 5.Department of Neurology, German Center for Neurodegenerative Diseases – DZNEUniversitätsmedizin GöttingenBonnGermany
  6. 6.Centro de Investigación en Sanidad Animal (CISA-INIA)MadridSpain
  7. 7.UMR INRA ENVT 1225Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de ToulouseToulouseFrance
  8. 8.CIMUS Biomedical Research InstituteUniversity of Santiago de Compostela-IDISSantiago de CompostelaSpain
  9. 9.Department of MedicineUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  10. 10.Institut de NeuropatologiaIDIBELL-Hospital Universitari de Bellvitge, Hospitalet de LlobregatBarcelonaSpain
  11. 11.Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
  12. 12.Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain

Personalised recommendations